集总电路中电压电流的约束关系

合集下载

第1章 电压电流约束关系

第1章 电压电流约束关系

电 路 模 型
电路元件模型: 电路元件模型:实际元件理想化
–在一定条件下得出; 在一定条件下得出; –表征了实际元件的主要特性和物理现象 –是一种近似关系。 是一种近似关系。
电路模型:理想化的电路元件所构成 电路模型:
–电路理论:以电路模型为基础(R、L、C等) 电路理论:以电路模型为基础(R、L、C等 (R、L、C
§1-1
电路及集总电路模型
时变 非时变
电路的种类
线性电路 集总参数电路 电路 分布参数电路 非线性电路
集总参数电路:电路的几何尺寸远小于最高工作频率的波长。 集总参数电路:电路的几何尺寸远小于最高工作频率的波长。
光 (v) 速 波 (λ) = 长 频 (f ) 率
如:市电网的频率为50Hz,则 市电网的频率为50 50H 3×108 波 (λ) = 长 = 6×106 m= 6000 里 公
电压及其参考方向
电压( 电压(降):电路中a、b两点间的电压是单位正电荷由a点转移 电路中a 两点间的电压是单位正电荷由a 点所失去的能量。 到b点所失去的能量。 R dw A B uAB = _ + u dq 如:
A
i R
i =5A
A
i R
i = −5A
A
+ UR −
A
− UR +
U =5V
U = −5V
I0 5Ω Ω
+ U -
10I2 I2 10Ω Ω I1 10I1
6A 3Ω Ω 10A 1A 2Ω Ω Ω 4A 4Ω
I1
I2
电路的图
电路的图:在电路中以线段代替支路,以点代替节点,由线 电路的图:在电路中以线段代替支路,以点代替节点, 段和点组成的几何结构图形就称为电路的图。 段和点组成的几何结构图形就称为电路的图。 定向图:图中每条支路规定一个方向,所得的图称为定向图。 定向图:图中每条支路规定一个方向,所得的图称为定向图。 + Us − 2 3 ③ ④ ③ 4 ② 4 3 ④ ③ 5

第1章 集总参数电路中电压电流的约束关系

第1章 集总参数电路中电压电流的约束关系
i
iS
26
电流源的两种工作状态: 电流源的两种工作状态:
1. 产生电功率, 产生电功率, 作为电源工作。 作为电源工作。 2. 吸收电功率, 吸收电功率, 作为负载工作。 作为负载工作。
U U
IS
IS
零值电流源:一个零值电流源相当于开路。 零值电流源:一个零值电流源相当于开路。
iS
a u b a u
a
i1 + i2 + i3 = 0 i1 − i4 + i6 = 0 i2 + i4 − i5 = 0 i3 + i5 − i6 = 0 i1 + i2 + i3 = 0
i1 i2 i3
b
i4 i5 i6
c
节点c 节点 上面3式相加 式相加, 上面 式相加,得
19
三. 基尔霍夫电压定律
KVL:集总电路中,任何时刻,沿任一回路, :集总电路中,任何时刻,沿任一回路, 所有支路电压的代数和为零。 所有支路电压的代数和为零。 可表达为:
dq = i ( t ) dt
a
b
u (t)
11
电荷失去的能量(即电路所吸收的能量) 电荷失去的能量(即电路所吸收的能量)为
dw = u ( t ) dq = u ( t ) i ( t ) dt
该时刻该电路吸收电能的速率(电功率) 该时刻该电路吸收电能的速率(电功率)为
p (t ) = dw dt = u (t ) i (t )
实际吸收24W功率。 功率。 实际吸收 功率
14
例2. 已知 i= 2A,u = -5V,求其产生的功率和 -2 , ,求其产生的功率和0- 秒产生的电能。 秒产生的电能。 i (t) a b 解:关联参考方向下

基尔霍夫定律

基尔霍夫定律

n
uk 0
k 1
列写KVL方程 时,亦需要注 意两套符号
◆在应用该定律列写方程式时,应首先选定回路的绕
行方向(可顺时针方向,也可逆时针方向)。一般规定:
当支路(元件)电压的参考方向与回路的绕行方向一致
时,该电压的前面取“+”号;反之取“-”号。

+ u1
+
u4
u2
+
u3 +
u1 u2 + u3 u4 = 0
2、节点:为简便起见,通常把3条或3条(或2条 或2条)以上支路的联接点称为节点。根据这一定义, 右上图所示电路中有2、5两个节点(或1、2、3、4、 5)五个节点 。
3、回路:电路中任意闭合路径称为回路。在右 图所示电路中,共有3条回路,分别由元件1、2、5、 6,元件3、4、5、 6 元件1、2、3、4构成。
uad=u3+u4-u5
将已知数据代入,得
uad=2V+6V-10V=-2V
假想
回路
例 已知右图所示电路中各元件的 电压u1=2V,u2=-3V ,u3=4V, u4=8V ,u5=-6V,试求u6。
解 可以根据KVL求u6 。选定 回路的绕行方向如图。
电路的KVL方程为
-u1+ u2-u3 + u4-u5 + u6
i4
i2 = 4A
= 5 (4) + (3)
i3 = 3A
= 2A
b)割集的定义 割集确切定义为:割集是具有下述性质
的支路的集合,若把集合的所有支路切割 (或移去),电路将成为两个分离部分, 然而,只要少切割(或移去)其中的任一 条支路,则电路仍然是连通的。

《电路分析基础》第一章:集总电路中电压(流)的约束关系

《电路分析基础》第一章:集总电路中电压(流)的约束关系

信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流

电路分析第1章 集总参数电路中电压电流的约束的关系-PPT精品文档

电路分析第1章 集总参数电路中电压电流的约束的关系-PPT精品文档
如果求出 i > 0 ,则 真实方向与参考方向一致 如果求出 i < 0 ,则 真实方向与参考方向相反
<1> 在电路分析中,电路中标出的电流方向都是参 考方向。如果没有方向,自己要设一个参考方向,在 图上标出,按所标参考方向进行计算。不设参考方向, 算出的结果没有意义。 <2>算得结果的正负配合参考方向就可确定真实方 向,但不要把参考方向改为真实方向。
2、作业要书写整洁,图要标绘清楚,答数要注明单位。
第一章 集总参数电路中电压、电流的约束关系
1.1 1.2 1.3 1.4
1.5 1.6 1.7 1.8
1.9 1.10
电路及集总电路模型 电路变量,电流,电压及功率 基尔霍夫定律 电阻元件 电压源 电流源 受控源 分压公式和分流公式
两类约束,KCL、KVL方程的独立性 支路分析
–+ B
否则计算结果没有意义.
电压、电流实际方向与参考方向相同为正值,相反为负值
例如:E=3V,若假定电路中U的参考方向为上“+”下“–” 则U=3V或UAB=3V
高电位端。
电压和电流的参考方向
电压、电流的参考方向:任意假定。
电流的参考方向用箭头表示;电压的参考方向除 用极性“+”、“–”外,还用双下标或箭头表示。
当电压、电流参考方向与实际方向相同时,其值
为正,反之则为负值。
R1
R2
U1
IU R3
例如: (1)图中 若I=3A,则表明电流的 实 际方向与参考方向相
= c = 3×108m/s =6×106m=6000km
f
50Hz
对于以此为工作频率的实验室电气电子设备而言,其尺寸远 小于这一波长,可以按集总电路处理。

第1章集总参数电路中电压、电流的约束关系

第1章集总参数电路中电压、电流的约束关系

3. 参考方向
任意选定某一方向作为参考方向,或称为 正方向。电流的参考方向是假定的电流方向。 表示法: (1)箭标法:→ (2)双下标法: iab 4. 例
i i = 1A i
则电流的实 际方向为: 从左到右
则电流的实 际方向为: 从右到左
i = 1A
i = 2A 则电流的实 际方向为: 无法确定
i = 0
图l-10
思考与练习
求图示电路中的电流i.
i 1A 2A 0 i 3A
三、基尔霍夫电压定律
1、能量守恒法则: 在任意单位时间内,电路中产生和消耗的能量必须相等, 或所有元件能量的代数和为零。 因此可以得到电路的功率守恒法则:在任意时刻,电路 中产生的功率和消耗的功率相等,或所有元件功率的代数和
解:各二端元件吸收的功率为
P1 U 1 I 1 (1V ) (1A ) 1W
P2 U 2 I 2 ( 6V ) ( 3A ) 18 W
P4 U 4 I 4 ( 5V ) ( 1A ) 5W ( 发出5W)
P5 U 5 I 5 ( 10 V ) ( 3A ) 30 W ( 发出30W)
网孔与平面电路的画法有关,例如将图示电路中的支
路1和支路2交换位置,则三个网孔变为 {1,2}、{1,3,4}和{4,5,6}。
注:平面电路是指能够画在一个平面上而没有支路交叉的电路。
二、基尔霍夫电流定律(
Kirchhoff’s Current Law, KCL)
1、电荷守恒:电荷既不能创造,也不能消灭, 是自然界的基本法则。
② P “+‖或 “-‖表示了能量的流向。
P “+‖表示P>0 吸收(消耗)能量 P ―-‖表示P<0 产生(提供)能量

李瀚荪《电路分析基础》笔记和典型题(含考研真题)详解(集总参数电路中电压、电流的约束关系)

李瀚荪《电路分析基础》笔记和典型题(含考研真题)详解(集总参数电路中电压、电流的约束关系)

第1章1.1 复习笔记一、电路及集总电路模型1.基础元件图形实际电路是由电阻器、电容器、线圈、电源等部件和晶体管等器件相互连接组成的,各种部、器件可以用图形符号表示,如表1-1所示。

表1-1 部分电气图用图形符号2.集总电路(1)定义集总电路是指由集总参数元件组成的电路。

(2)应用条件当电路的尺寸远小于最高频率所对应的波长时,可以当做集总电路来处理。

二、电路变量电流、电压及功率1.电流(1)定义电流是指每单位时间内通过导体横截面的电荷量。

(2)表达式电流的表达式为(3)分类①恒定电流恒定电流是指大小和方向都不随时间变化的电流,简称直流。

②交变电流交变电流是指大小和方向都随时间作周期性变化的电流,简称交流。

2.电压(1)定义电路中a、b两点间的电压是指单位正电荷由a点转移到b点时所获得或失去的能量。

(2)表达式电压的表达式为(3)分类①恒定电压恒定电压是指大小和极性都不随时间而变动的电压,也叫直流电压。

②时变电压时变电压是指大小和极性都随时间变化的电压,也叫交流电压。

(4)关联参考方向:关联参考方向是指电流参考方向与电压参考方向一致,如图1-1所示。

图1-1 关联的参考方向3.功率(1)定义功率是指能量流动的速率。

(2)表达式功率的表达式为p(t)=u(t)i(t)(3)功率的正负功率的正负表示能力的吸收与产生,电压电流取关联参考方向时:①当功率为正,电路吸收能量,p值即为吸收能量的速率;②当功率为负,电路提供能量,p值为产生能量的速率。

三、基尔霍夫定律1.基尔霍夫电流定律(1)定律内容基尔霍夫电流定律可表述为:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。

(2)表达式基尔霍夫电流定律的数学表示式为(3)理论基础基尔霍夫电流定律的理论基础是电荷守恒法。

2.基尔霍夫电压定律(1)定律内容基尔霍夫电压定律可表述为:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零。

集总参数电路的两种约束形式

集总参数电路的两种约束形式

集总参数电路的两种约束形式
集总参数电路是一种简化电路分析和计算的方法,它将复杂的
电路系统简化为等效的电路元件和参数。

在分析集总参数电路时,
常常会遇到两种约束形式,分别是电压约束和电流约束。

1. 电压约束:
电压约束是指在集总参数电路中,电压在不同节点之间的关系。

根据基尔霍夫电压定律,电压约束可以通过节点电压和电压源来表示。

在节点电压法中,每个节点都有一个节点电压,通过节点之间
的电压关系来建立方程。

电压源则可以用来表示电路中的电源或电
压信号。

通过电压约束,可以得到电路中各个节点电压之间的关系,进而求解电路中的电流和功率等参数。

2. 电流约束:
电流约束是指在集总参数电路中,电流在不同支路之间的关系。

根据基尔霍夫电流定律,电流约束可以通过支路电流和电流源来表示。

在支路电流法中,每个支路都有一个支路电流,通过支路之间
的电流关系来建立方程。

电流源则可以用来表示电路中的电流源或
电流信号。

通过电流约束,可以得到电路中各个支路电流之间的关系,进而求解电路中的电压和功率等参数。

这两种约束形式是集总参数电路分析的基础,通过建立和求解约束方程,可以得到电路中各个节点和支路的电压、电流和功率等重要参数。

在实际应用中,根据具体的电路结构和问题要求,可以灵活选择使用电压约束或电流约束,或者结合两者进行综合分析。

电路课件第1章集总参数电路中电压、电流的约束关系

电路课件第1章集总参数电路中电压、电流的约束关系

电压源与电流源的等效变换
总结词
电压源和电流源是电路中的两种基本元件,它们可以通过一定的等效变换相互转换。
详细描述在一定条件下,一个源自压源可以等效转换为电流源,反之亦然。这种等效变换对于简化电路分析非常有用,尤其 是在处理含有电源元件的复杂电路时。通过等效变换,可以将电路中的元件进行简化,从而更容易地求解电路中 的电压和电流。
欧姆定律
总结词
欧姆定律是集总参数电路中电压和电流的基 本关系,它指出在纯电阻电路中,电压和电 流成正比,电阻是它们比例的倒数。
详细描述
欧姆定律是电路分析的基本定律之一,它适 用于集总参数电路中的纯电阻元件。根据该 定律,在纯电阻电路中,电压和电流成正比 ,电阻是它们比例的倒数。也就是说,当电 压增加时,电流也会相应增加,反之亦然。 这一原理不仅适用于直流电路,也适用于交 流电路。
电路ppt课件第1章集 总参数电路中电压、电
流的约束关系
CONTENTS 目录
• 集总参数电路的概述 • 电压的约束关系 • 电流的约束关系 • 电路分析方法 • 实际应用案例
CHAPTER 01
集总参数电路的概述
定义与特点
定义
集总参数电路是指在实际电路中 ,凡具有两个或两个以上端点的 电路元称为元件,而不论这些元 件的大小、长短和形状如何。
电路的基本定律
欧姆定律
流过电阻元件的电流与电阻元件两端 的电压成正比,与电阻成反比。
诺顿定理
任何有源二端线性网络都可以等效为 一个理想电流源和一个电阻的串联。
基尔霍夫定律
在集总参数电路中,流入节点的电流 之和等于流出节点的电流之和,即 KCL定律;在任意回路上,电压降等 于电压升,即KVL定律。
戴维南定理

第一章集总参数电路中的电压电流的约束关系

第一章集总参数电路中的电压电流的约束关系
i1 , i2 … , i10 ; u1 , u2 … , u10

i7
8
7

− −1A
+
+5V − 10
u9 9 +
求得电流和电压为
例1-3-2
i4 = i1 − i2 = −3 − 2 = −5A
i7 = −i5 − i9 = −2 + 1 = −1A
u1 = u3 − u4 − u6 = 4 + 1 + 2 = 7V
dq i (t ) = dt
(1-2-1)
单位:安培(A),1安培=1库仑/秒。 常用的电流单位 有 µ A, A。 mA=1000µ A,1A=1000mA 。 m 1 方向:习惯规定正电荷移动的方向为电流的真实 方向。
1-2 电路分析的基本变量 参考方向:为了便于分析,可以先任意假设一 个电流的流向,这个假设的方向称为参考方向 或正向。 在参考方向下,计算出的电流值为正,说 明真实方向与假设的参考方向一致;如果为负, 则说明真实方向与参考方向相反。即:
b
其中,b为节点处的支路数, ik (t )为第k条支路 电流。 或表示为:
∑i

= ∑ i入
1-3 基尔霍夫定律 关于KCL的讨论: (1)KCL的实质是电流连续性原理或电荷守 恒定律的体现。 (2)KCL说明了节点上各支路电流的线性约 束关系,各支路电流是线性相关的,KCL方 程是一个线性齐次代数方程。 (3)KCL与支路元件性质无关,只决定于电路 的结构。 (4) KCL不仅适用于一个节点,还可以推广为 任意封闭面。这个封闭面称为广义节点。
例1-2-1 已知某支路电压电流参考方向如图所示。 (1)如i=2mA,u=-5mV,求元件吸收的功率, (2)如u=-200V,元件吸收功率p=12kW,求电流。

电路分析典型习题与解答

电路分析典型习题与解答

电路分析典型习题与解答目录第一章:集总参数电路中电压、电流的约束关系................... 错误!未定义书签。

、本章主要内容:......................................... 错误!未定义书签。

、注意:................................................. 错误!未定义书签。

、典型例题:............................................. 错误!未定义书签。

第二章网孔分析与节点分析.................................... 错误!未定义书签。

、本章主要内容:......................................... 错误!未定义书签。

、注意:................................................. 错误!未定义书签。

、典型例题:............................................. 错误!未定义书签。

第三章叠加方法与网络函数.................................... 错误!未定义书签。

、本章主要内容:......................................... 错误!未定义书签。

、注意:................................................. 错误!未定义书签。

、典型例题:............................................. 错误!未定义书签。

第四章分解方法与单口网络.................................... 错误!未定义书签。

、本章主要内容:......................................... 错误!未定义书签。

电路中电压电流的约束关系

电路中电压电流的约束关系

橡皮筋特性
27
二、基尔霍夫定律 1. 基尔霍夫电流定律 KCL(Kirchhoff s Current Law) 陈述 : 对于任一集总电路中的任一节点,在任一 时刻流出(或流入)该节点所有支路电流的 代数和等于零。 K KCL: 节点电流为零 ik t 0 k 1 例 i1 流出为正:i1 i2 + i3 i4 = 0 i2 i4 流入为正: i1 + i2 i3 + i4 = i3 0 28
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。

注 意
(1) 电路中标出的电压、电流的方向都是参考方向。 (2) 如果电路中给定了参考方向,就按给定的参考方向求 解,否则必须自己选定参考方向,在电路中标出,在 计算过程中不得任意改变。 (3)参考方向不同时,其表达式相差一负号,但实际 方向不变。
44?第一章集总电路中电压电流的约束关系?第二章运用独立电流电压变量的分析方法?第四章分解方法及单口网络?第六章电容元件和电感元件?第七章一阶电路?第八章二阶电路?第十章正弦稳态功率和能量三相电路?第九章阻抗与导纳?第三章叠加方法与网络函数?第十一章电路的频率响应?第十二章耦合电感和理想变压器?第五章双口网络5512111113118129实际电路功能信息的传递与处理
三、功率 P(对二端网络而言)
1. 定义:电路中的某一段在单位时间内所吸收或产生 的能量 dw p( t ) dt 2. 计算式:
+ u
i
dw dw dq P( t ) u(t ) i(t ) dt dq dt
21
i 注意: ① 在 u 、i 为关联参考方向下 P(t)= u t t 若 u 、i 为非关联参考方向, P(t)= -u t t i

第一章(集总参数电路中u-i的约束关系)

第一章(集总参数电路中u-i的约束关系)
v
f (u, i ) 0
i
0
无记忆性! • 电阻器的分类
v
R(t1 )
R(t2 ) i
按时间:非时变与时变 按vi关系:线性与非线性
0
线性非时变电阻器
定Байду номын сангаас:伏安特性曲线是与时间 变化无关的一条过原点的直线。
i (t )
v
v(t )
0
i
解析式
v(t ) Ri(t ) 欧姆定律 i(t ) Gv(t ) R=1/G
对普通家用电器而言,可不必考虑分布参数。
课程将只讨论集中参数电路,即为一个假设:集总假设。
§2 电路变量
基本要求:
( 1) 电流
( 2) 电压
( 3) 功率
参考 方向
1、基本变量(电流i和电压u)
电路理论中一般选用电流i和电压v作为基本变量
电流: 电压:
a
i dq dt
(单位时间内通过导体横截面的电量) (单位正电荷由一点转移到另一点获 得或失去的能量 )
说明
• KVL的重要性和普遍性也体现在该定律与回路 中元件的性质无关。
• KCL 、KVL只对电路中各元件相互连接时, 提出了结构约束条件。因此,对电路只要画出 线图即可得方程。 例如:求图中所示电流i。
5A
a
2A
i+2A+5A=0 i = -7A
i
例如:求图中所示电压u。 a
u
2V
3V
d
+
推论:电路中任何两点之间的电压与路径无关。
4、什么电路可以建立起集中参数电路模型?
**电路的尺度必须远小于电路最高频率所对应的波长 ** 集中化判据:λ≥10 l

电路分析基础 第1章 集总参数电路中电压电流的约束关系

电路分析基础 第1章 集总参数电路中电压电流的约束关系

电压升:正电荷从低电位到高电位,能量得。
5、电压的真实极性(方向): 电压从高到低称为电压的真实极性(实际极性)。
6、电压的参考极性(方向):
在分析电路时,参考极性为任意假定,在元件或电路的两
端用“+”和“-”表示。
7、参考极性与真实极性的关系: 1)若u > 0,真实极性与参考极性相同
2)若u < 0,真实极性与参考极性相反
U4=5V, U5=-10V, I1=1A, I2=-3A , I3=4A, I4=-1A, I5=-3A。
试求:(1) 各二端元件吸收的功率; (2) 整个电路吸收的功率。
例1-4 在下图电路中,已知U1=1V, U2=-6V, U3=-4V,U4=5V, U5=-10V, I1=1A, I2=-3A , I3=4A, I4=-1A, I5=-3A。 解:各二端元件吸收的功率为
5、参考方向与实际方向的关系:
若电流i的实际方向与参考方向一致,则i>0;或若i>0,表 明实际方向与参考方向一致。 反之: 若电流i的实际方向与参考方向不一致,则若i<0;或若i<0 ,表明实际方向与参考方向相反。 注意:在未标注参考方向时,电流的正、负无意义。因为正 负是一个相对的概念。在此就是实际方向相对于参考方向。 说明:在集总电路中,在任一时刻从任一元件一端流入的电 流一定等于从它另一端流出的电流,流经元件的电流是一个 可确定的量,可用电流表测读。
(2)信号处理:实现电信号产生、加工、传输、变换等。
电气图
用元件图形符号表示的各部、器件相互连接关系的图。
3、分类:
线 性 非线性 时 变 时不变 集总参数 分布参数 激励与响应满足叠加性和齐次性的电路。 电路元件参数不随时间变化。 实际电路几何尺寸远小于最高工作频率所 对应的波长的电路。( d<<λ)

第1章集总参数电路中电压、电流的约束关系

第1章集总参数电路中电压、电流的约束关系
第1章 集总参数电路中电压、电流的约束关系
§1.1 电路及集总电路模型 §1.2 电路变量 电流、电压及功率 §1.3 基尔霍夫定律 §1.4 电阻元件 §1.5 电压源 §1.6 电流源 §1.7 受控源 §1.8 分压公式和分流公式 §1.9 两类约束 KCL、KVL方程的独立性 §1.10 支路分析
三、电位
在电路中任选一个点O作参考点(零电位点), 则 电路中一点A到O点的电压UAO称为A点的电位,记为VA, 单位:伏特(V)。
电路的参考点可以任意选取
a
d b
设c点为电位参考点,则 Vc= 0
c
Va Uac
Vb Ubc Vd Udc
电压也称为电位差:电路中a、b之间的电压就是a点 电位与b点电位之差。U V V
I1
a
I2 IG
支路:ab、bc、ca、… (共6条)
c
d
G RG I3 I + b E I4 -
节点:a、 b、c、d (共4个)
网孔:abd、 abc、bcd (共3 个) 回路:abda、abca、 adbca … (共7 个)
二、基尔霍夫电流定律(KCL) 在任一瞬间,流入电路中任一节点的电流之和 等于流出该节点的电流之和。
a + i u1

b + u2 - c
P1 u1 i 3 1 3 W 吸收 P2 u2 i 7 1 7W 吸收
+ u3 -
P3 u3 i 10 1 10 W 释放 P1 P2 P3 0 能量守恒
右图电路,若已知元件吸收功率为-20W,电压 U=5V,求电流 I 。 +
电压电流参考方向如图中所标,问:对A、B两部分 电路电压电流参考方向关联否?

集总参数电路中电压、电流的约束关系

集总参数电路中电压、电流的约束关系

电感元件的电压、电流关系推导
定义
电感元件是具有存储磁场能量的元件 ,其电压和电流具有时间延迟的特性 。
约束关系
在集总参数电路中,电感元件的电压 和电流满足$V = L*dI/dt$和$I = (1/L)*∫Vdt$的关系,其中$L$为电感 值。
04
CATALOGUE
电压、电流约束关系的实际应用
计算复杂电路的电压和电流
计算电压和电流
在集总参数电路中,电压和电流可以通过基尔霍夫定律进行计算。通过设定电路中的节点和支路,可以建立相应 的方程组,求解得到各节点的电压和支路的电流。
电压和电流的求解方法
对于复杂电路,可以使用节点电压法、网孔电流法等计算方法,通过代数运算或微积分运算,求得各节点的电压 和支路的电流。
分析电路的工作状态
详细描述
电感元件的电压和电流之间存在相位差,即电压相位滞后于电流相位。这种关系可以用数学公式表示 为 V=L×di/dt,其中 V 是电压,L 是电感值,di/dt 是电流的变化率。
02
CATALOGUE
基尔霍夫定律
基尔霍夫第一定律(节点电流定律)
总结词
基尔霍夫第一定律指出,在集总参数电路中,流入一个节点 的电流之和等于流出该节点的电流之和。
电容元件
总结词
电容元件的电流和电压具有相位差,遵循电容定律。
详细描述
电容元件的电流和电压之间存在相位差,即电流相位滞后于电压相位。这种关系 可以用数学公式表示为 I=C×dV/dt,其中 I 是电流,C 是电容值,dV/dt 是电 压的变化率。
电感元件
总结词
电感元件的电压和电流具有相位差,遵循电感定律。
集总参数电路中电 压、电流的约束关 系

电路(第一章 集总参数电路中电压、电流的约束关系)10-11(1)

电路(第一章 集总参数电路中电压、电流的约束关系)10-11(1)
返 回 上一页 下一页
电路分析基础
(2)在非关联方向下,表示沿着电压方向移动 正电荷,电场力作负功,该元件发出能量,则为吸收 能量的负值,所以吸收功率为 d w( t ) p( t ) ui dt 功率的单位为瓦(W),即1W = 1J/s。
若功率为正值,则表示该元件实际吸收功率;
返 回 上一页 下一页
电路分析基础
最简单的电路: 手电筒电路
S
它由 3 部分组成: ① ① 是电源。 干 ②灯泡 它的作用是将其他形 电 式的能量转换为电能。 池 ③导线 ② 是负载。 用电装臵。 它将电源供给的电能转换为其他形式的能量。 ③ 是连接电源与负载传输电能的金属导线。 图中干电池是电源,是将化学能转换为电能。 图中 S是为了节约电能所加的控制开关,需要照 图中灯泡是负载,是将电能转换为光和热能。 明时将开关S闭合,不需要照明时将S打开。
返 回 上一页 下一页
电路分析基础
u1i1 u2i2 u3i3 u4i1 u5回路 i3 u i1 0 16 中各支 i2 i1 i3 路电压的代数 和 (u1 u2 u4 u6 )i1 (u2 u3 u5 )i3 0
u1 u2 u4 u6 0 u2 u3 u5 0 u1 u4 u6 u5 u3 0
电压是矢量吗?
返 回
上一页
下一页
电路分析基础
R1 US R4
R5
R2
称为电桥电路
R3
请问:电阻R5的电流(电压)方向如何? 在复杂电路中,电流(电压)的真实方向是难以 确定的; 或在交流电路中,电流(电压)的方向是交变的。
在电路中任意选定一个参考方向作为电流(电 压)的方向。规定电流(电压)的真实方向与参考方 向一致,电流(电压)为正值; 若两者相反,则电流 (电压)值小于零。

电路分析第一章集总参数电路中电压、电流的约束关系

电路分析第一章集总参数电路中电压、电流的约束关系
根据电流源的性质得电流i2a为求出电流源的功率必须首先计算电流源的端压u由kvl得电流源的端电压为u252v12v故电流源的功率为12v2a24w0为产生功率故电阻的功率5w20w0为吸收功率电压源的功率2v2a4w0为吸收功率求电流源的功率必须计算电流源的端电压2a小结恒压源恒流源ab的大小方向均是恒定的外电路对ab无影响
1.性质:入门性技术基础课。 2.内容:研究电路组成、定律、定理和分析方法。 3.授课时间:本学期 4.授课内容:一、总论和电阻电路的分析(1、2、3、4) 二、动态电路的时域分析(6、7、) 工三、动态电路的相量分析法和S域分析法(9、10) 3.实验地点:6号楼101电路实验室
三、学习方法:
重视听课;抓概念、抓规律;重视作业实验 作业要认真、规范(必须抄题,画电路图; 按解题步骤一步步求解)
◆在电路分析中,常将理想电路元件简称为电
路元件。常用的电路元件只有几种,它们可以 用来表征千千万万种实际器件。
2. 连线模型—— 理想导线 导线电阻、电感、电容近似为零。 3.理想电路元件的特点 (1)在不同的工作条件下,同一实际器件可 用一种或几种理想电路元件近似表征。 具有相近电磁性能的实际器件,也可用同 一种理想电路元件近似表征。 (2)理想电路元件都有各自精确的数学定义, 在电路图中用规定的符号表示。
1-2 电路变量 电流、电压及功率
一、电流 i
i
1. 定义:单位时间内流过导体横截面的电荷量。
dq 2. 定义式: i(t ) dt
电流 大小 方向
说明:
(1)方向:正电荷移动的方向。 (2)大小方向不随时间变化叫直流。DC 大小方向都随时间变化叫交流。AC (3)符号意义:大写 U、I ——表示直流 小写 u、i ——表示交流

集总参数电路中电压、电流的约束关系

集总参数电路中电压、电流的约束关系

表明 正电阻元件在任何时刻总是消耗功率的,为无源元件
负电阻元件向外提供功率,为有源元件。
返回 上页 下页
++
能量 从 t0 到 t 电阻消耗的能量:
WR
t pdξ
t0
t uidξ
t0
u
4.电阻的开路与短路
开路
0
i
i i i0 u0
uu
R
R or G 0
u
––
短路
i0 u0
0
i
R 0 or G
注意
d
集总参数电路中u、i 可以是时间的函数,
但与空间坐标无关。因此,任何时刻,流入两 端元件一个端子的电流等于从另一端子流出的 电流;端子间的电压为单值量。
返回 上页 下页
注意
①具有相同的主要电磁性能的实际电路部件, 在 一定条件下可用同一电路模型表示;
②同一实际电路部件在不同的应用条件下,其电路 模型可以有不同的形式。
第一章 集总参数电路中电压 、电流的约束关系
本章重点
1.1 电路和电路模型 1.2 电流和电压电功率和能量 1.3 基尔霍夫定律 1.4 电阻元件
1.5 电压源 1.6 电流源 1.7 受控电源 1.8 分压公式和分流公式
首页
重点: 1. 电压、电流、功率的参考方向 2. 电阻元件和电源元件的特性 3. 基尔霍夫定律
返回 上页 下页
电路吸收或提供(发出)功率的判断
u, i 取关联参考方向
+
P=ui 表示元件吸收的功率
u P>0 吸收正功率 (实际吸收)
i
- P<0 吸收负功率 (实际提供)
-
u, i 取非关联参考方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年5月16日7时信6分息学院
12
结束
(1-12)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
在指定电压的参考方向后,根据电压值的正负,能确切 断定电压的实际方向。
例2 如图所示元件两端电压为1v,若已知正电荷由该元 件的b点移向a点且获得能量,试标出电压的真实极性。 试为该电压选择参考极性,并写出相应的电压表达式。
1-1 电路及集总电路模型
一、电路 若干个电气设备或电子器件,按照一定的方式连接起来,构
成电路的作用
2020年5月16日7时信6分息学院
4
结束
(1-4)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
1. 能量的输送与转换
发电机
升压 输电线 降压
变压器
变压器
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
第一部分 总论和电阻电路分析
第一章 集总参数电路中电压、电流的约束关系 第二章 网孔分析和节点分析 第三章 叠加方法与网络函数 第四章 分解方法及单口网络
2020年5月16日7时信6分息学院
1
结束
(1-1)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
2020年5月16日7时信6分息学院
13
结束
(1-13)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
三、关联的参考方向
若电流参考方向从a到b,电压的参考方向a为高电位, b为低电位,此参考方向为关联参考方向。即电流与电 压参考方向一致。在电路中只需标出电流或电压的参 考极性中的任何一种。
2
结束
(1-2)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
学习目的:掌握直流电路的基本概念和基本定律。 学习重点:会用基尔霍夫定律列写电路方程 学习难点:电压源和电流源模型的特点,功率的
产生和消耗。
2020年5月16日7时信6分息学院
3
结束
(1-3)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
表征元件的主要性能,忽略其次要性质,仅显示单一的电磁现 象。
2.主要的集总参数元件(器件模型)
电阻元件R:耗能元件,不存储能量。 电容元件C:存储电场能量,不消耗能量。 电感元件L:存储磁场能量,不消耗能量。 电压源、电流源:提供能量。
2020年5月16日7时信6分息学院
6
结束
(1-6)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
第一章 集总参数电路中电压、电流的约束关系
1-1 电路及集总电路模型 1-2 电路变量 电流、电压及功率 1-3 基尔霍夫定律 1-4 电阻元件 1-5 电压源 1-6 电流源 1-7 受控源 1-8 分压公式和分流公式 1-9 两类约束 KCL、KVL方程的独力性 1-10 支路分析
2020年5月16日7时信6分息学院
i(t) dq dt
3.分类:直流、时变电流(包括交流)
4.单位:安培(A);千安(kA);毫安(mA);微安 A
2020年5月16日7时信6分息学院
9
结束
(1-9)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
4.电流方向 1)实际方向:正电荷运动的方向。 2)参考方向:人为假定的电流方向,电路图上用箭头表示。 规定:当参考方向与实际电流方向相同时,电流为正值, 否则为负值。 实际测量时
电路模型
电路分析理论所研究的对象都是由理想电路元件组成的实际 电路的电路模型。
2020年5月16日7时信6分息学院
8
结束
(1-8)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
1-2.电路变量-电流、电压及功率
一、电流
1.电流的形成:电荷有规则的定向运动。 2.定义:单位时间内通过导体横截面的电荷量。数学表达式
思考
如何测量电路中的电压和电流?
2020年5月16日7时信6分息学院
14
结束
(1-14)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
四、功率
1.定义:单位时间内电路所做功的大小。 数学表达式:
p(t) dw dt
其中 dw 为功,单位焦耳; p(t)为功率,单位瓦特。
2020年5月16日7时信6分息学院
(1-11)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
二、电压
1.定义:将单位正电荷从a点移动到b点所获得或失去的 能量。数学表达式:
u(t) dw dq
其中:dw ,单位焦耳(J),dq 单位库仑(c),u(t)
单位伏特(v)。
2.极性 实际极性:电压降低的方向。 参考极性:人为假定的方向。电路图中在两端用“+”、“”表示。
例1:设1A的电流由a向b流过元件,试问如何表示这一电流?
2020年5月16日7时信6分息学院
10
结束
(1-10)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
解:有两种表示方式 (1)i1应表示为i1=1A (2)i2应表示为i2=-1A
2020年5月16日7时信6分息学院
11
结束
产生磁场 储存磁场能量
L
(电感性)
2020年5月16日7时信6分息学院
7
结束
(1-7)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
4.集总电路(电路模型)
将实际电路中各个部件都用其模型符号表示,所做出
的电路图,称为电路模型或电路原理图。
无阻
导线


负载
连接导线
+S
_E
RL
RS
实际电路
1 电源
2 中间环节
电灯 电动机
3 负载
2. 信号的传递和处理 话筒
信号源
扬声器 放 大 器
负载
2020年5月16日7时信6分息学院
5
结束
(1-5)
第1章 总论和集总参数电路中电压、电流的约束关系 电路分析基础
三、集总参数元件、集总电路
1.集总参数元件:当实际电路的尺寸远小于正常最高工作频率 所对应的波长时,电路中的实际器件可用集总参数元件表示, 又称器件模型。
3.实际元件的电路模型 (1)不同的实际电路部件,只要具有相同的主要电磁性能
在一定条件下,可用同一个模型表示。例如,灯泡、电 炉、电阻等在低频电路中都可用电阻模型表示。 (2)同一个实际电路元件,在不同的应用条件下,它的模 型可以有不同的形式。
例如:一个白炽灯在有电流通过时
消耗电能 (电阻性) R
i
15
结束
(1-15)
相关文档
最新文档