七年级数学正数与负数
正数和负数(28张PPT)
例2 (1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.
(2)四种品牌的手机今年的销售量与去年相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%写出今年这些品牌的手机销售量的增长率.
思考:增长-2%是什么意思?什么情况下增长率是0?
上述问题中出现了具有相反意义的量.零上和零下温度是以 0℃ 为分界点的具有相反意义的量.
盈利额和亏损额是具有相反意义的量.
零下3摄氏度用- 3℃表示,这里出现了“-3” .
用-10万表示亏损10万元,这里出现了“-10” .
增长的百分率和减少的百分率是具有相反意义的量.
用-0.7%表示减少0.7%,这里出现了“-0.7%” .
1 .如果水库的水位升高 3 m 时,水位变化记作 +3 m,那么水位下降 3 m 时,水位变化记作 ________ m,水位不升不降时,水位变化记作 ________ m.
-3
2 .一袋面粉的标准质量是10 kg,如果比标准质量多 0.1 kg记作+0.1kg,那么-0.1 kg,0 kg,+0.5 kg分别表示什么?
下面我们进入“第一章 有理数”的学习.
第一章 有理数1.1 正数和负数
1.梳理小学阶段学过的整数、分数(小数)知识,掌握正数和负数概念.2. 会区分两种不同意义的量,会用符号表示正数和负数.3.在经历从具体例子引入负数的过程中,理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正、负数表示具有相反意义的量,理解 0 所表示的意义.
(2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数分别表示“盈利50万元”和“亏损10万元”?
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
七年级上册数学正数和负数知识点
七年级上册数学正数和负数知识点
1. 正数和负数:正数是大于0的数,用正号表示,例如1、2、3等;负数是小于0的数,用负号表示,例如-1、-2、-3等。
2. 数轴:数轴是一个直线上从左到右的有序排列的数的集合。
正数在数轴右侧,负数在数轴左侧,0位于数轴中间。
3. 数的绝对值:数的绝对值是这个数到0的距离,用两个竖线表示,例如|-3|=3,|5|=5。
4. 正数和负数的加减:正数与正数相加减,结果仍为正数;负数与负数相加减,结果仍为负数;正数与负数相加减,结果为两数绝对值较大的那个数的符号。
5. 数的比较:正数之间比较大小,绝对值较大的数较大;负数之间比较大小,绝对值较小的数较大;正数和负数比较大小,正数较大。
6. 数的相反数:两个数互为相反数,它们的绝对值相等,但符号相反,例如3的相反数是-3,-7的相反数是7。
7. 数的倒数:倒数是指数的相反数,其乘积等于1,例如3的
倒数是1/3,-5的倒数是-1/5。
8. 同号数的乘法:两个正数或两个负数相乘,结果为正数;一个正数与一个负数相乘,结果为负数。
9. 异号数的乘法:一个正数与一个负数相乘,结果为负数。
10. 同号数的除法:两个正数或两个负数相除,结果为正数;一个正数除以一个负数,结果为负数。
11. 异号数的除法:一个正数除以一个负数,结果为负数。
12. 数的平方:一个数的平方是这个数乘以它本身,例如3的平方是3x3=9,-4的平方是-4x-4=16。
以上是七年级上册数学正数和负数的主要知识点。
七年级数学正数和负数(含答案).
正数和负数本节主要通过生活中的实例,引导学生发现问题:负数的产生,通过具有相反意义的量来帮助学生理解掌握负数的含义,并通过丰富的实例加深印象。
结合以前的知识引入了有理数的概念及分类,为后面的学习打下了良好的基础。
一、用正负数来表示具有相反意义的量这是本节的重点知识,设置了【知识点击】中【针对训练】第1题,【当堂检测】中第3题,【课时作业】中第6题【备选题目】第1题。
二、正负数在实际的应用本知识既是重点又是难点,为突破此知识,特设置了【典例引路】中例1,【课时作业】中第18题。
三、易错题目【课时作业】中第1题,【典例引路】中例2,在进行分类时,要注意不同的标准下所包含的范围大小,做到不重不漏。
在找规律时看清各数间的变化情况。
点击一:正数、负数概念在以前学过的0以外的数前面加上负号“-”的数叫负数,如:-1,-2,-3等;把在以前学过的0以外的数都叫正数.有进正数前面也加上“+”(正号),一个数前面的“+”、“-”号叫做它的符号.数0既不是正数,也不是负数.点击二:相反意义的量1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
正数和负数可以代表意义相反的量.如:正数可代表:上升,盈利,增加,运入,海平面以上,零度以上……负数可代表:下降,亏本,减少,运出,海平面以下,零度以下……针对性练习:1.用正负数表示具有相反意义的量。
(1)如果零上3 ℃记为+3 ℃,那么-7 ℃表示的意义是___ ___;(2)如果下降了3米记为-3米,那么上升5米记为_ _____;(3)如果前进5千米记为+5千米,那么后退6千米记为___ ___;【解析】要知道上与下、下降与升高、前进与后退、运进与运出等表示相反意义.答案: (1)零下7 ℃; (2)+5米;(3)-6千米;类型之一:应用创新型例1.(1)在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?【解析】因为“加分与扣分”、“逆时针转圈与顺时针转圈”、“超出标准质量与低于标准质量”是相反意义的量,所以加分用正数表示则扣分就用负数表示;逆时针转圈用正数表示则顺时针转圈就用负数表示;超出标准质量记作正数则负数表示低于标准质量.【答案】(1)扣20分记作-20分;(2)沿顺时针方向转了12圈记作-12圈;(3)-0.03克表示乒乓球的质量低于标准质量0.03克.类型之二:规律探索型例2.观察下列按次序排成的一列数,你能发现它的排列有什么规律?它后面的三个数能是什么数?试把它写出来.(1)2,-4,6,-8,10,-12,________,________,________.(2)-2 004,-2 002,-2 000,________,________,________.【解析】研究数字的排列规律,要从两方面入手,一是符号的排列规律;二是数字本身与序号及其他数字之间的关系.(1)序号为奇数的数为正数,序号为偶数的数为负数,且它们与序号的关系依次为2×1,-2×2,2×3,-2×4,2×5,-2×6,…,依此规律,后面的三个数分别为14,-16,18;(2)都为负数,且后面的数都比前面的数大2,依此规律,后面的三个数分别为-1 998,-1 996,-1 994.【答案】14,-16,18; -1 998,-1 996,-1 994.1.如果向东走3米,记作+3米,那么向西走4米,记作( ).A.1米B.7米C.-4米D.-7米解析:向东与向西是一对相反意义的量.选择C.2.下面各数2,-3,+1,31,-1.5,0,0.2,341,-453中,哪些是正数,哪些是负数? 【解析】根据正数负数概念进行判断.【答案】正数:12,+1,31,0.2,341;负数:-3,-1.5,-453; 3.小明的妈妈今天经商,营利为50元,记作+50元,那么亏损40元怎样记作?【解析】根据营利与亏损是一对相反意义的量.则亏损记作负40元.【答案】-40元.4.0是正数吗?还是负数?为什么?解析:根据0是正数,负数的分界点,是基数,也就是0即不是正数也不是负数.【答案】0即不是正数也不是负数.因为根据0是正数,负数的分界点,是基数.1.一袋面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A.24.70千克B.25.30千克C.25.51千克D.24.80千克【解析】D “25±0.25千克”的含义是这袋面粉的质量在(25-0.25)千克与(25+0.25)千克之间,即24.75—25.25千克.只要面粉的质量在24.75—25.25千克之间就是合格产品.2.下列语句中正确的是( )A 、一个正数是1B 、一个负数是-1C 、正数和负数都包括0D 、0不是正数,也不是负数.【解析】D 这时主要考查对正负数概念的理解. A 、B 、C 三项将所属范围弄错.3.用正负数表示具有相反意义的量。
七年级正数和负数知识点
七年级正数和负数知识点正数和负数是数学中的基础知识点,也是我们日常生活中必备的概念。
在七年级的数学中,正数和负数的学习是重要的,掌握了这一部分知识,才能够更好地理解高中数学的相关内容。
下面将重点介绍七年级正数和负数的知识点。
一、正数和负数正数是大于0的数,用“+”表示。
例如:1、2、3、4等等。
负数是小于0的数,用“-”表示。
例如:-1、-2、-3、-4等等。
二、数轴数轴是表示数的一种工具,用于帮助我们直观地理解正数和负数的概念。
数轴的中心是0点,向右数轴为正,向左数轴为负。
例如在数轴上表示数字2,可以在0点右边2个单位的位置上画一个点,这样我们就可以立即看到2是正数。
三、正数和负数的加减法1.同号相加时,先把数的绝对值相加,再加上相同的符号。
例如:5+3=8;-5+(-3)=-8。
2.异号相加时,先把绝对值相减,差的符号与绝对值大的数的符号相同。
例如:5+(-3)=2;-5+3=-2。
四、绝对值绝对值是一个数的大小,与正负无关,用竖线“| |”来表示。
例如:|-2|=2;|3|=3。
当然,对于整数来说,绝对值就是这个数本身。
五、小数和分数小数是指一个有小数点的数,例如:0.5、1.2、3.6等等。
分数是指一个数可以表示为两个整数的除数和被除数的比值,例如:1/2、2/3、5/8等等。
在数学中,我们要会将小数转化为分数,也要会将分数转化为小数。
六、应用1.正数、负数与温度:正数表示高温,负数表示低温,在气象预报中有广泛应用。
2.财务方面:营业额、成本、利润等都是正数;支出、亏损等都是负数。
3.地理方面:由于海平面随着时间的变化而变化,地形起伏不一,有时候高于海平面,有时候低于海平面,因此地平面的高度也可以用正负数来表示。
综上所述,正数和负数是七年级数学中非常重要的基础知识点。
在学习中,我们要充分运用数轴、运算法则等方法来加深理解,这样才能更好地应用数学知识于实践中。
七年级数学(上)正数和负数
正数可以表示为加法 或减法的结果,如 2=1+1或3-1等。
负数的定义
负数是小于零的数,如-2、3.5、-0.001等。
负数可以表示为减法的结果, 如-2=0-2或-3=3-6等。
负数可以表示实际生活中的一 些量,如温度、海拔高度等。
正数和负数的表示方法
正数可以用加号表示,如+2、 +3.5等。
负数可以用减号表示,如-2、3.5等。
正数和负数也可以用绝对值表示, 正数的绝对值等于它本身,负数
的绝对值等于它的相反数。
02
正数和负数的性质
正数的性质
1 2
正数是大于零的数
正数定义为大于零的数,包括整数、小数和分数。
正数表示实际数量
正数可以用来表示实际数量,如温度、海拔、收 入等。
3
正数的绝对值越大,数值越大
04
正数和负数的运算
加法运算
总结词
正数与正数相加,结果仍为正数;负数与负数相加,结果仍为负数。
详细描述
正数与正数相加时,只需将两个数的绝对值相加,符号保持不变。例如,+5 + +3 = +8。负数与负数相加时,同样将两个数的绝对值相加,但符号取相反数。 例如,-5 + -3 = -8。
减法运算
总结词
正数减去正数得正数或0,正数减去负数得 正数,负数减去正数得负数,负数减去负 数得正数或0。
VS
详细描述
正数减去正数时,结果取决于被减数与减 数的相对大小。例如,+5 - +3 = +2。 正数减去负数时,相当于两个正数相加。 例如,+5 - (-3) = +8。负数减去正数时 ,相当于两个负数相加。例如,-5 - +3 = -8。负数减去负数时,结果取决于被减 数与减数的绝对值大小关系。例如,-5 (-3) = -2。
人教版七年级数学上册 1.1 正数和负数 (26张PPT)
从上面的例题中看到增长 -1就是减少1,那 么增长 -6.4%是什么意思呢?什么情况下增 长率是0?减少 -1又是什么意思呢?
归纳:如果一个问题中出现相反意义的量, 我们可以用正数和负数分别表示它们。
在地形图上表示某地的高度时, 需要以海平面为基准(规定海 平面的海拔高度为0),通常用 正数表示高于海平面的某地的 海拔高度,负数表示低于海平面 的某地的海拔高度.例如,珠穆 朗玛峰的海拔高度为8 844.43 m,吐鲁番盆地的海拔高度 为-155 m.记录账目时,通常用正数表示收入款额, 负数表示支出款额.
图中的正数与负数的含义是什么? 答案:“4600”表示高出海平面4600米 “-100”表示低于海平面100米
图中的正数与负数的含义是什么?
“2300.00”表示存入2300元 “-1800.00”表示支出1800元
0只表示没有吗?
0℃是一个确切的温度 海拔0m表示海平面的平均高度 0是正数与负数的分界
根据需要,有时在正数前面也加上“+”号,例如, +3,+2,+0.5,…就是3,2,0.5,….一个数前面的 “+”、“-”号叫做它的符号.
0是正数么?是负数么? 答:0既不是正数,也不是负数.
小试牛刀
1.读下列各数,并指出其中哪些是正数,哪些是负数。(口答)
-1,2.5,+ 4 ,0,-3.14,120,-1.732,- 2
平均温度零下150℃,记作
℃。
6.下列结论中正确的是 ( D). (A)0既是正数,又是负数 (B)0是最小的正数 (C)0是最大的负数 (D)0既不是正数,也不是负数
挑战自我
小明从商场买回几瓶酸奶,因当天喝不完, 想放进冰冷藏起来,酸奶上标明保存温度是 4±2℃。 (1)小明把温度调至10℃,请问可以吗? (2)小明可调控的温度应在什么范围?
初中数学正数和负数
初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
初一数学正数和负数知识点
初一数学正数和负数知识点
初一数学正数和负数
知识点一:正数和负数的概念
•正数:大于0的数,例如1、2、3等。
•负数:小于0的数,例如-1、-2、-3等。
知识点二:正数和负数的表示方式
1.正数直接写出,例如1、2、3等。
2.负数在前面加上负号“-”,例如-1、-2、-3等。
知识点三:正数和负数的比较
•正数比较:数值大的正数大,数值小的正数小。
•负数比较:数值大的负数小,数值小的负数大。
•正数和负数比较:正数大于任何一个负数。
知识点四:正数和负数的运算
•正数与正数相加、相减,结果仍为正数。
•负数与负数相加、相减,结果仍为负数。
•正数与负数相加、相减,结果的符号由数值大的数决定。
知识点五:正数和负数在数轴上的表示
•正数在数轴上向右表示。
•负数在数轴上向左表示。
•数轴上的0既不是正数也不是负数。
知识点六:正数和负数的绝对值
•正数的绝对值等于自身,例如|5|=5。
•负数的绝对值等于去掉负号,例如|-5|=5。
结语:
正数和负数是数学中重要的概念,我们需要了解他们的定义、表示方式、比较和运算规则以及在数轴上的表示。
同时,也需要注意正数和负数的绝对值的概念和计算方法。
通过对正数和负数的学习,我们可以更好地理解数学中的各种概念和运算。
七年级正数负数知识点
七年级正数负数知识点正数和负数是数学中最基本的概念之一,是我们在生活中经常会碰到的数。
在七年级的数学中,学习正数负数的知识点是非常重要的,因此,本文将会就该知识点进行详细的介绍和讲解。
一、正数和负数的概念正数是指大于零的数,例如 1、2、3、4……,用“+”号表示;而负数则是小于零的数,例如-1、-2、-3、-4……,用“-”号表示。
正数和负数是以零为分界点的数轴两侧的数,并且它们可以相加、相减、相乘以及相除。
二、正数和负数的加法正数和正数相加,结果仍然是正数;负数和负数相加,结果仍然是负数;而正数和负数相加,则需要根据两个数的绝对值来判断结果的正负性。
如果两个数的绝对值相等则结果为零,如果两个数的绝对值不相等,则结果的正负性由绝对值大的数所带的符号决定。
例如,3 + 5 = 8;-3 + (-5) = -8;3 + (-5) = -2。
三、正数和负数的减法正数和负数的减法可以转化为加法。
对于两个数 a 和 b,a - b 可以转化为 a + (-b)。
因此,正数和正数、负数和负数相减,结果仍然是正数或负数;而正数和负数相减,结果的正负性由两个数的绝对值大小以及绝对值大的数的符号决定。
例如,5 - 3 = 2;-3 - (-5) = 2;-3 - 5 = -8。
四、正数和负数的乘法正数和正数相乘,结果仍然是正数;负数和负数相乘,结果也是正数。
而正数和负数相乘,则结果为负数。
例如,3 × 4 = 12;-3 × (-4) = 12;-3 × 4 = -12。
五、正数和负数的除法两个负数相除,结果仍然是正数;两个正数相除,结果仍然是正数。
而正数除以负数,结果为负数;负数除以正数,结果也为负数。
例如,12 ÷ 3 = 4;-12 ÷ (-3) = 4;-12 ÷ 3 = -4。
六、正数和负数的性质正数和负数的性质有很多,其中最重要的性质是它们可以彼此抵消。
七年级上册数学正数和负数知识点
七年级上册数学正数和负数知识点正数和负数是数学中的基本概念,对于七年级的学生来说,理解正数和负数的概念以及它们的运算规则是非常重要的。
本文将介绍七年级上册数学中关于正数和负数的知识点。
一、正数和负数的概念正数是大于零的数,用正号“+”表示,如1、2、3等。
负数是小于零的数,用负号“-”表示,如-1、-2、-3等。
正数和负数统称为有理数。
二、正数和负数的比较正数和负数之间可以进行比较。
对于两个正数来说,数值越大,表示的大小越大;对于两个负数来说,数值越小,表示的大小越大;而正数和负数之间,正数大于负数。
三、正数和负数的加减法1. 正数加正数:两个正数相加,结果仍为正数。
例如:2 + 3 = 5。
2. 负数加负数:两个负数相加,结果仍为负数。
例如:-2 + (-3) = -5。
3. 正数加负数:正数加负数时,先将它们的绝对值相减,然后取绝对值较大的数的符号。
例如:2 + (-3) = -1。
4. 负数加正数:负数加正数时,先将它们的绝对值相加,然后取绝对值较大的数的符号。
例如:-2 + 3 = 1。
四、正数和负数的乘除法1. 正数乘正数:两个正数相乘,结果仍为正数。
例如:2 × 3 = 6。
2. 负数乘负数:两个负数相乘,结果为正数。
例如:-2 × (-3) = 6。
3. 正数乘负数:正数乘负数时,结果为负数。
例如:2 × (-3) = -6。
4. 负数乘正数:负数乘正数时,结果为负数。
例如:-2 × 3 = -6。
5. 正数除以正数:两个正数相除,结果仍为正数。
例如:6 ÷2 = 3。
6. 负数除以负数:两个负数相除,结果为正数。
例如:-6 ÷ (-2) = 3。
7. 正数除以负数:正数除以负数时,结果为负数。
例如:6 ÷ (-2) =-3。
8. 负数除以正数:负数除以正数时,结果为负数。
例如:-6 ÷ 2 = -3。
人教版数学七年级上册1.1正数与负数课件
正数、负数的意义
变式1-1
如果水位升高6m时水位变化记作+6m,那么水位下降3m时水位变
化记作(
)
A.-3m
B.3m
C.6m
D.-6m
【答案】A
【详解】
解:水位升高6m时水位变化记作+6m,那么水位下降3m时水位变化记作-3m,
故选:A.
相反意义的量
典例2 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两
以8日为例:-4.5表示支出4.5元,4元表示结余4元
以12日为例:-5.2表示支出5.2元,-1.2元表示亏空1.2元
正数、负数的概念
正数:大于0的数。
负数:在正数前面加“-”(负)的数。(即小于0的数)
【注意事项】
1、正号可以省略不写,负号不可以省略。
2、一个数前面的“+”、“-”号叫做它的符号,“-”读作负,“+”读作
理解相反意义的量
相反意义的量包含两个要素:
1、它们的意义要相反,即互为反义词。
例:如扩大和减少,收入与支出,向北或向南等。
2、它们都是数量,而且是同类的量。
例:如前进10m与后退5m等。
【问题】上涨和下降是相反意义的量吗?
不是,虽然意义相反,但缺少实际的数量。
0的实际意义
此时海平面的高度如何表示?
∴标准大米的质量最多相差:0.4-(-0.4)=0.4+0.4=0.8(kg),
故选:C.
正负数在实际生活中的应用
变式3-1 一种面粉的质量标识为“25±0.25kg”,则下列面粉中合格的是(
A.25.30kg
B.24.80kg
C.25.51kg
D.24.70kg
七年级正数和负数的知识点
七年级正数和负数的知识点正数和负数是我们生活中常见的概念,也是数学中非常重要的基础知识。
在七年级数学中,学生需要掌握正数和负数的概念、正负数的加减法、绝对值等知识点。
接下来,我们来详细了解一下这些知识点。
一、正数和负数的概念正数是大于零的数,用“+”表示;负数是小于零的数,用“-”表示。
我们通常用数轴来表示正数和负数。
在数轴上,从原点向右的为正数,向左的为负数。
例如,3表示在数轴上距离原点3个单位,而-3即表示在数轴上距离原点3个单位的相反方向上。
二、正负数的加减法1.同号数的加减法两个同号数相加或相减,先忽略符号,然后按照加减法的规则计算,最后加上符号即可。
例如,5+3=8,-5-3=- 8。
2.异号数的加减法两个异号数相加,先忽略符号,将绝对值较大的数减去绝对值较小的数,最后加上绝对值较大的数的符号即可;两个异号数相减,先转化为加法,将减数的相反数与被减数相加,再加上被减数的符号即可。
例如,-5+3=- 2,5-3=2。
三、绝对值绝对值是一个数距离零点的距离,通常用“|x|”表示。
绝对值是一定大于等于零的。
例如,|5|=5,|-5|=5。
四、应用正数和负数的加减法在生活中经常用到。
例如,目前温度为10℃,明天会降到-3℃,我们需要计算温度降低了多少度。
此时,我们需要用到负数,表示温度的下降。
计算过程为:10-(-3)=13,即温度下降了13℃。
此外,正数和负数在数列中也有应用,例如,在从左到右的数列中,-3, -2, 1, 5, 8,-3为最小值,8为最大值。
我们还可以通过正数和负数来表示收入和支出,存款和贷款等。
综上所述,掌握正数和负数的概念和加减法,以及绝对值的应用是非常重要的。
只有掌握了这些基础知识,才能更好地理解其他数学知识,提高数学水平。
七年级数学正数与负数知识点
七年级数学正数与负数知识点正数与负数是数学中的基本概念,它们在我们日常生活和学习中都有着广泛的应用。
在七年级数学中,正数与负数是一项非常重要的知识点。
本文将详细介绍关于正数与负数的概念、性质、运算规则及其应用。
一、正数与负数的概念正数是大于零的数,用“+”表示,比如1、2、3等,可以表示物体的数量、温度的高低等。
负数是小于零的数,用“-”表示,比如-1、-2、-3等,可以表示欠款、温度的低下等。
0是既不是正数也不是负数的数,在数轴上它的位置在正数和负数之间。
二、正数与负数的性质1.正数与正数相加等于正数,负数与负数相加等于负数,正数与负数相加的结果可能是正数、负数或0。
2.正数相乘结果为正数,负数相乘结果为正数,正数与负数相乘结果为负数。
3.正数、负数的绝对值相等时,它们的相反数是相等的。
4.正数、负数相减等于它们的和,再加上相减的两数的符号。
三、正数与负数的运算规则1.同号相加减,异号相加减。
同号则加,异号则减,并取相同符号。
2.先把减法转化为加法,再按照相加运算的规则进行运算。
3.乘法和除法满足加法和减法的分配律和结合律。
举例:4×(-3) = -12, (-3)×4 = -12, (-4)×(-3) = 12,12÷3 = 4,(-12)÷(-3) = 4。
四、正数与负数的应用1.温度计,正数表示高温,负数表示低温。
2.距离问题,如两个位置之间的距离为8km,如果向东移动5km,则位置就是3km,如果向西移动5km,则位置就是-13km。
3.财务问题,如盈利就表示正数,亏损就表示负数。
4.坐标系,坐标系中正方向向右、上,负方向向左、下。
五、小结正数与负数在数学中是基本概念,掌握正数与负数的性质、运算规则及其应用对于七年级学生来说非常重要。
在课堂上,老师会通过教学视频或实例演示的形式进行讲解。
同学们可以通过课后习题巩固自己的学习成果。
在生活中,我们也要善于运用数学知识,更好地理解和实践正数与负数的应用。
【最新】人教版七年级数学上册第一节正数和负数含答案.doc
第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4 (2007年武汉)下表是我国几个城市某年一月份的平均气温.城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4 其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例 5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg 表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg 少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温6 0-9-15 15A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位 1.5m记作+1.5mB、低于正常水位 1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298。
七年级数学第一章第一节正数负数课件ppt
方法归纳
根据相反意义合理使用正、负数对实际问题 进行表示.一般情况下,把向北(东)、上升、增加、 收入等规定为正,把它们的相反意义规定为负
当堂练习
1.(1)如果零上5℃记作+5℃,那么零下3℃记作 -3℃. (2)东、西为两个相反方向,如果-4米表示一个物体向西
运动4米,那么+2米表示 向东运动2米 .物体原地不动记 为 0米 . (3)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应 记作 -3.8吨 . 2.抗洪期间,如果水位超过标准水位1.5米记作+1.5米, 那么后来记录的-0.9米表示 低于标准水位0.9米.
况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%,中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长 -1kg,小强体重增长0kg.
(2)六个国家2001年商品出口总额的增长率: 美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国 -3.5%, 意大利 0.2%, 中国 7.5%.
蔬菜店购进黄瓜50kg, 蔬菜店售出黄瓜2kg.
它们都表示相反的意义.
你会用正、负数来表示它们吗?
我们以海平面高度 为基准,珠穆朗玛峰的 海拔高度比海平面高 8848米,记为+8844.4米; 0 鲁番盆地的海拔高度比 海平面低155米,我们记 为-155米.
典例精析
例2 一物体沿东西两个相反的方向运动时,可以
典例精析
例1 读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
七年级正负数运算知识点
七年级正负数运算知识点在初中数学中,正数和负数的概念是必须学会的,而且正负数的加减乘除也是必备的技能。
下面将为大家详细介绍七年级正负数运算知识点。
一、正数和负数的概念及表示方法正数是指数值大于零的数,用“+”表示;负数是指数值小于零的数,用“-”表示。
例如,3是一个正数,表示为“+3”;-5是一个负数,表示为“-5”。
二、正数和负数的加法1. 正数加正数:正数加正数,结果为正数。
例如,5+3=8。
2. 负数加负数:负数加负数,结果也为负数。
例如,-4+ (-3)=-7。
3. 正数加负数:正数加负数,结果可能为正数、负数或零。
- 如果正数的绝对值大于负数的绝对值,结果为正数。
例如,4+(-2)=2。
- 如果正数的绝对值等于负数的绝对值,结果为零。
例如,3+(-3)=0。
- 如果正数的绝对值小于负数的绝对值,结果为负数。
例如,2+(-5)=-3。
三、正数和负数的减法减法可以转化为加法,所以正数和负数的减法可以看成是正数加负数或负数加正数。
1. 正数减正数:正数减正数,结果可能为正数、负数或零。
- 如果被减数大于减数,结果为正数。
例如,5-2=3。
- 如果被减数等于减数,结果为零。
例如,3-3=0。
- 如果被减数小于减数,结果为负数。
例如,2-5=-3。
2. 负数减负数:负数减负数,结果可能为正数、负数或零。
- 如果被减数的绝对值大于减数的绝对值且两数异号,结果为正数。
例如,-2-(-4)=2。
- 如果被减数的绝对值等于减数的绝对值,结果为零。
例如,-3-(-3)=0。
- 如果被减数的绝对值小于减数的绝对值且两数异号,结果为负数。
例如,-2-(-5)=3。
3. 正数减负数:正数减负数,结果为正数。
例如,8-(-2)=10。
四、正数和负数的乘法1. 正数乘正数:正数乘正数,结果为正数。
例如,3×4=12。
2. 负数乘负数:负数乘负数,结果为正数。
例如,-3×(-4)=12。
3. 正数乘负数:正数乘负数,结果为负数。
最新-七年级数学教案正数与负数(优秀15篇)
七年级数学教案正数与负数(优秀15篇)作为一名教师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。
来参考自己需要的教案吧!以下是勤劳的小编给大家收集整理的15篇正数与负数教案的相关文章,仅供借鉴,希望对大家有所启发。
七年级数学正数和负数教案篇一1.1《正数和负数》教学设计方案(第1课时)教材分析:一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。
是本章有理数学习的基础。
二、教学目标知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念教学过程教师演示第一节首图片为主体的多媒体课件。
环节教师活动学生活动设计意图创设情境导入新课自主学习师生互动合作探究达标检测学习总结教师出示图片说明自然数的产生、分数的产生。
接着出示问题问题1 天气预报:北京市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?问题2 有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?三个问题中的-3、0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学正数与负数
1.1正数和负数
★目标预设
一、知识与能力
七年级数学正数与负数
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
★教学重难点
一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表
示具有相反意义的量
二、难点:负数的意义,理解具有相反意义的量。
★教学准备
带有负数的实例若干
★预习导学
在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,
⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?
⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)
★教学过程
一、创设情景,谈话引入
在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生
数0,由分物、测量产生分数1
2
,
1
3
,……,但在预习导学中表示温度、净胜球
数、加工允许误差时用到数
-3,3,2,-2,0,+0.5,-0.5。
二、精讲点拨,质疑问难
这里出现了一种新数:-3,-2,-0.5。
在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。
我们把这样的数(即以前学过的0以外的数)叫做正数数字前的“+”,“-”分别读“正”,“负”。
正数前的“+”可加也可省略。
数0既不是正数,也不是负数。
把0以外的数分成正数和负数,表示具有相反意义的量。
三、课堂活动,强化训练
小组讨论:生活中你们见过带“-”的数吗?(代表发言,教师适当表扬学生)例1:下面哪些数是正数,哪些是负数。
(学生独立思考,个别回答,教师点评)
-11,4.8,+73,-2.7,1
6
,-
3
4
,-8.12,100
例2:在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(个别回答,学生点评)
练习:见书本P5练习(学生独立完成,教师巡视,个别指导)
四、延伸拓展,巩固内化
例3:(1)一个月内,小明体重增加2千克,小华体重减少一千克,小强体重没变化,写出他们这个月的体重增长值(减少值呢)?(小组讨论,代
表发言,教师点评)
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%
法国减少2.4%,英国减少3.5%
意大利增长0.2%,中国增长7.5%
写出这些国家2001年商品进出口总额的增长率。
(学生独立思考,教师点评)(3)一潜水艇所在高度为-50米,一条鲨鱼在潜水艇上方10米处,鲨鱼所在的高度是多少?
(4)向北走-20米所表示的意思是什么?
(5)某银行职员在一天内经办了五笔业务:取出10000元,存进25000元,取出5000元,存进8000元。
求该职员在一天内使银行变化了多少元?
(6)在一次数学竞赛中,成绩在120分以上为优秀120分到119分为合格,100分以下的不合格。
老师将他班上的十位竞赛成绩简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名?
(7)判断下列各题:
①正数就是自然数
②既不是正数也不是负数的数不存在
③带正号的数为正数带负号的数为负数
④零是最小的整数
⑤-a是负数
练习:见书本P6(独立完成,教师巡视,适时指导,得出结论)
五、布置作业,当堂反馈
见书本P7 《当堂反馈》。