上海中考计算题分类汇总

合集下载

上海市2021-2023三年中考数学真题分类汇编-02填空题(提升题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-02填空题(提升题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-02填空题(提升题)知识点分类一.因式分解-运用公式法(共1小题)1.(2023•上海)分解因式:n2﹣9= .二.根的判别式(共1小题)2.(2021•上海)若一元二次方程2x2﹣3x+c=0无实数根,则c的取值范围为 .三.高次方程(共1小题)3.(2022•上海)解方程组:的结果为 .四.解一元一次不等式(共1小题)4.(2021•上海)不等式2x﹣12<0的解集是 .五.一次函数图象上点的坐标特征(共1小题)5.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式 .六.一次函数的应用(共1小题)6.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 元.七.待定系数法求二次函数解析式(共1小题)7.(2023•上海)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是 .八.*平面向量(共1小题)8.(2023•上海)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示= .九.垂径定理的应用(共1小题)9.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 .(结果保留π)一十.切线的性质(共1小题)10.(2022•上海)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为 .一十一.圆与圆的位置关系(共1小题)11.(2023•上海)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA 延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E 半径r的取值范围是 .一十二.正多边形和圆(共2小题)12.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为 .13.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .一十三.相似三角形的判定与性质(共1小题)14.(2022•上海)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则= .一十四.概率公式(共1小题)15.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .一十五.列表法与树状图法(共1小题)16.(2022•上海)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为 .上海市2021-2023三年中考数学真题分类汇编-02填空题(提升题)知识点分类参考答案与试题解析一.因式分解-运用公式法(共1小题)1.(2023•上海)分解因式:n2﹣9= (n+3)(n﹣3) .【答案】(n+3)(n﹣3).【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).二.根的判别式(共1小题)2.(2021•上海)若一元二次方程2x2﹣3x+c=0无实数根,则c的取值范围为 c> .【答案】c>.【解答】解:∵一元二次方程2x2﹣3x+c=0无实数根,Δ=(﹣3)2﹣4×2×c<0,解得c>,∴c的取值范围是c>.故答案为:c>.三.高次方程(共1小题)3.(2022•上海)解方程组:的结果为 .【答案】.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.四.解一元一次不等式(共1小题)4.(2021•上海)不等式2x﹣12<0的解集是 x<6 .【答案】x<6.【解答】解:移项,得:2x<12,系数化为1,得:x<6,故答案为x<6.五.一次函数图象上点的坐标特征(共1小题)5.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式 y=﹣2x .【答案】见试题解答内容【解答】解:∵函数y=kx经过二、四象限,∴k<0.若函数y=kx经过(﹣1,1),则1=﹣k,即k=﹣1,故函数y=kx经过二、四象限,且函数不经过(﹣1,1)时,k<0且k≠﹣1,∴函数解析式为y=﹣2x,故答案为y=﹣2x.六.一次函数的应用(共1小题)6.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 k 元.【答案】k.【解答】解:设卖出的苹果数量y与售价x之间的函数关系式为y=mx+n,,解得:,∴y=﹣kx+7k,x=8时,y=﹣k×8+7k=k,∴现以8元卖出,挣得(8﹣5)×k=k,故答案为:k.七.待定系数法求二次函数解析式(共1小题)7.(2023•上海)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是 y=﹣x2+1(答案不唯一) .【答案】y=﹣x2+1(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).八.*平面向量(共1小题)8.(2023•上海)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示= ﹣ .【答案】﹣.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.九.垂径定理的应用(共1小题)9.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【答案】400π.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.一十.切线的性质(共1小题)10.(2022•上海)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为 2﹣ .【答案】2﹣.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC+S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.一十一.圆与圆的位置关系(共1小题)11.(2023•上海)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA 延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E 半径r的取值范围是 .【答案】.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2 或,画出函数y=3r2﹣14r﹣40 的大致图象如下:由函数图象可知,当y≤0时,,即不等式①的解集为,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.一十二.正多边形和圆(共2小题)12.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为 18 .【答案】18.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.13.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .【答案】.【解答】解:如图,∵△ABG≌△BCH,∴AG=BH,∵∠ABG=30°,∴BG=2AG,即BH+HG=2AG,∴HG=AG=1,∴中间正六边形的面积=6××12=,故答案为:.一十三.相似三角形的判定与性质(共1小题)14.(2022•上海)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则= 或 .【答案】或.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===;当DE与BC不平行时,DE=DE′,在三角形ABC中,∠A=30°,∠B=90°,∴∠C=∠DEE′=60°,∠B=∠ADE=90°.∴△DED′是等边三角形,∠A=∠ADE′=30°.∴DE=DE′=EE′,DE′=AE′.∴ED′=AE′=EC.∴=.故答案是:或.一十四.概率公式(共1小题)15.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .【答案】.【解答】解:∵共有9个数据,其中偶数有3个,∴从这些数据中选取一个数据,得到偶数的概率为=,故答案为:.一十五.列表法与树状图法(共1小题)16.(2022•上海)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为 .【答案】.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.。

上海市2021-2023三年中考数学真题分类汇编-02填空题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-02填空题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-02填空题(基础题)知识点分类一.算术平方根(共1小题)1.(2021•上海)已知=3,则x= .二.合并同类项(共1小题)2.(2022•上海)计算:3a﹣2a= .三.同底数幂的除法(共1小题)3.(2021•上海)计算:x7÷x2= .四.分式的加减法(共1小题)4.(2023•上海)化简:﹣的结果为 .五.根的判别式(共2小题)5.(2022•上海)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是 .6.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是 .六.一元二次方程的应用(共1小题)7.(2022•上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为 .七.无理方程(共1小题)8.(2023•上海)已知关于x的方程=2,则x= .八.函数值(共2小题)9.(2022•上海)已知f(x)=3x,则f(1)= .10.(2021•上海)已知f(x)=,那么f()= .九.一次函数的性质(共1小题)11.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线: .一十.反比例函数的性质(共1小题)12.(2023•上海)函数f(x)=的定义域为 .一十一.余角和补角(共1小题)13.(2021•上海)70°的余角是 .一十二.*平面向量(共1小题)14.(2022•上海)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则= .一十三.旋转的性质(共2小题)15.(2023•上海)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α= .16.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 .一十四.平行线分线段成比例(共1小题)17.(2021•上海)如图所示,已知在梯形ABCD中,AD∥BC,=,则= .一十五.频数(率)分布直方图(共1小题)18.(2022•上海)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是 .一十六.扇形统计图(共1小题)19.(2023•上海)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为 .一十七.概率公式(共1小题)20.(2023•上海)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为 .上海市2021-2023三年中考数学真题分类汇编-02填空题(基础题)知识点分类参考答案与试题解析一.算术平方根(共1小题)1.(2021•上海)已知=3,则x= 5 .【答案】5.【解答】解:∵=3,∴x+4=9∴x=5.故答案为:5.二.合并同类项(共1小题)2.(2022•上海)计算:3a﹣2a= a .【答案】见试题解答内容【解答】解:3a﹣2a=(3﹣2)a=a.三.同底数幂的除法(共1小题)3.(2021•上海)计算:x7÷x2= x5 .【答案】x5.【解答】解:x7÷x2=x7﹣2=x5,故答案为:x5.四.分式的加减法(共1小题)4.(2023•上海)化简:﹣的结果为 2 .【答案】2.【解答】解:原式===2,故答案为:2.五.根的判别式(共2小题)5.(2022•上海)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是 m<3 .【答案】m<3.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.6.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是 a>9 .【答案】a>9.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.六.一元二次方程的应用(共1小题)7.(2022•上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为 20% .【答案】20%.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.七.无理方程(共1小题)8.(2023•上海)已知关于x的方程=2,则x= 18 .【答案】18.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.八.函数值(共2小题)9.(2022•上海)已知f(x)=3x,则f(1)= 3 .【答案】3.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.10.(2021•上海)已知f(x)=,那么f()= .【答案】.【解答】解:由题意将x=代入函数表达式,则有:.故答案为:.九.一次函数的性质(共1小题)11.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线: y=﹣x+1(答案不唯一) .【答案】y=﹣x+1(答案不唯一).【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).一十.反比例函数的性质(共1小题)12.(2023•上海)函数f(x)=的定义域为 x≠23 .【答案】x≠23.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.一十一.余角和补角(共1小题)13.(2021•上海)70°的余角是 20° .【答案】20°.【解答】解:根据定义一个角是70°,则它的余角度数是90°﹣70°=20°,故答案为,20°.一十二.*平面向量(共1小题)14.(2022•上海)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则= ﹣2+ .【答案】﹣2+.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.一十三.旋转的性质(共2小题)15.(2023•上海)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α= .【答案】.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.16.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 2﹣≤d≤1 .【答案】2﹣≤d≤1.【解答】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=PA最小,如图①:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OE=1,∵OP=2,∴d=PE=1;如图②:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OA=,∵OP=2,∴d=PA=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.一十四.平行线分线段成比例(共1小题)17.(2021•上海)如图所示,已知在梯形ABCD中,AD∥BC,=,则= .【答案】.【解答】解:过D作DM⊥BC于M,过B作BN⊥AD于N,如图:∵AD∥BC,DM⊥BC,BN⊥AD,∴四边形BMDN是矩形,DM=BN,∵=,∴=,∴=,∵AD∥BC,∴==,∴=,∴=,故答案为:.一十五.频数(率)分布直方图(共1小题)18.(2022•上海)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是 88 .【答案】88.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.一十六.扇形统计图(共1小题)19.(2023•上海)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为 1500吨 .【答案】1500吨.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.一十七.概率公式(共1小题)20.(2023•上海)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为 .【答案】.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.。

上海六年级数学 中考最容易碰到的题

上海六年级数学 中考最容易碰到的题

上海六年级数学中考最容易碰到的题随着我国教育水平的不断提高,中考数学的题目也在不断变化。

尤其是上海六年级数学中考,其题目种类和难度更是让很多学生望而生畏。

在这篇文章中,我将就上海六年级数学中考最容易碰到的题目进行总结和分析,希望能够帮助同学们更好地备战中考。

一、选择题选择题一直是中考数学中比较容易的题型,上海六年级数学中考也不例外。

以下是一些常见的选择题类型:1.1 基础运算例如:计算24×36+48÷12的结果。

解析:这类题目主要考察学生对基础运算规则的掌握程度,要求学生能够正确理解运算符号的含义,按照运算优先级进行计算,得出正确的结果。

1.2 几何图形例如:下列图形中,哪一种是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL解析:学生需要通过观察几何图形的特点,判断出哪一种是等腰三角形。

这类题目需要对几何图形的性质和特点有清晰的认识和掌握。

1.3 逻辑推理例如:如果今天是星期四,那么两天后是星期几?A. 星期六B. 星期五C. 星期三D. 星期一解析:这类题目考察学生的逻辑推理能力,需要学生通过已知条件进行推理,得出正确的结论。

二、填空题填空题在上海六年级数学中考中也是比较常见的一类题目,主要考察学生的计算和推理能力。

2.1 简单运算例如:48 ÷ (12-4)=_______解析:这类题目主要考察学生对基础运算规则的掌握程度,要求学生能够正确计算出填空位置的数值。

2.2 数字推理例如:4, 9, 16, 25, _____解析:学生需要通过观察数字之间的关系,推断出填空位置应该填上什么数字。

这类题目考察学生的数字推理能力。

三、解答题解答题在上海六年级数学中考中也是比较重要的一环,主要考察学生的计算和分析能力。

3.1 数学问题例如:小明手中有一些苹果,如果分给小红3个,还剩下5个;分给小花5个,还剩下3个。

那么小明手中共有多少个苹果?解析:这类题目需要学生通过文字叙述的数学问题进行计算和分析,得出正确的答案。

上海初中数学题目考点

上海初中数学题目考点

上海初中数学题目考点篇一:上海市中考数学考点分析及分值分布上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。

大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。

试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。

二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。

外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。

上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。

2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。

2、统计的分值约占10% ,这与外地没有太大的区别。

3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。

三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。

(2)换元(化为整式方程),外地中考没有这一考点。

(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。

上海00~13历年中考数学试题考点分类梳理

上海00~13历年中考数学试题考点分类梳理

上海中考数学试题考点梳理第一单元 数与运算一、数的整除:数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。

二、实数:考点1、实数的有关概念 1.(2003) 8的平方根是 。

2.(2003)下列命题中正确的是( )(多项选择) (A)有限小数是有理数 (B )无限小数是无理数(C )数轴上的点与有理数一一对应 (D )数轴上的点与实数一一对应 3.(2005)在下列实数中,是无理数的为 ( ).A 、0B 、-3.5C 、2D 、94。

(2010)下列实数中,是无理数的为( )A 。

3。

14B 。

错误! C. 错误! D 。

错误!5.(2011•上海)下列分数中,能化为有限小数的是( )A .B .C .D .考点2、近似计算、科学记数法 1.(2000)中国的国土面积约为9600000平方千米,用科学记数法可表示为______平方千米. 2.(2003)上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮列车的平均速度用科学记数法表示约 米/分钟。

考点3、实数的运算1.(2000)计算:0(21)-=________. 2.(2001)计算:2·18= .3.(2003)如图,矩形内有两个相邻的正方形,面积分别是4和2,那么,阴影部分的面积为 。

4.(2005)计算:()()__________1212=-+ 5.(2006)计算:4=__________ 6.(2007)计算:2(3)=7。

(2010)计算:12131427(31)()231-+--++8. (2011•上海)计算:.9。

(2012)计算112-= . 10.(2012))11221231+32221-⎛⨯- -⎝⎭11。

(2013)计算011821()2π--+ .第二单元 方程与代数一、整式与分式: 考点4、整式的运算1.(2001)下列计算中,正确的是( ).A .a 3·a 2=a 6B .(a +b )(a -b )=a 2-b 2C .(a +b )2=a 2+b 2D .(a +b )(a -2b )=a 2-ab -2b 22.(2003)某公司今年5月份的纯利润是a 万元,如果每个月份纯利润的增长率都是x ,那么预计7月份的纯利润将达到 万元(用代数式表示)。

2019-2021年上海市数学中考题分类汇编——解答题(含答案)

2019-2021年上海市数学中考题分类汇编——解答题(含答案)

2019-2021年上海市数学中考题分类汇编——解答题一、解答题1.(上海市2021年中考数学真题)计算:&#ξΦ020;1129|12-+-2.(上海市2021年中考数学真题)解方程组:22340x y x y +=⎧⎨-=⎩3.(上海市2021年中考数学真题)已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.4.(上海市2021年中考数学真题)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.5.(上海市2021年中考数学真题)已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.6.(上海市2021年中考数学真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式; (2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC . ①若A 与Q 重合,求C 到抛物线对称轴的距离;①若C 落在抛物线上,求C 的坐标.7.(上海市2021年中考数学真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.8.(上海市2020年中考数学试题)计算:1327(12)﹣2+|3. 9.(上海市2020年中考数学试题)解不等式组:1076713x x x x >+⎧⎪+⎨-<⎪⎩10.(上海市2020年中考数学试题)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.11.(上海市2020年中考数学试题)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.12.(上海市2020年中考数学试题)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:①BEC ①①BCH ;(2)如果BE 2=AB •AE ,求证:AG =DF .13.(上海市2020年中考数学试题)在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC (3)如果抛物线y =ax 2+bx 的顶点D 位于①AOB 内,求a 的取值范围.14.(上海市2020年中考数学试题)如图,①ABC 中,AB =AC ,①O 是①ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:①BAC =2①ABD ;(2)当①BCD 是等腰三角形时,求①BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.15.(上海市20192318- 16.(上海市2019年中考数学试题)解分式方程:228122-=--x x x x. 17.(上海市2019年中考数学试题)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.18.(上海市2019年中考数学试题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.19.(上海市2019年中考数学试题)已知:如图,AB 、AC 是①O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交①O 于点E ,联结CD 并延长交①O 于点F.(1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.20.(上海市2019年中考数学试题)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;①平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.21.(上海市2019年中考数学试题)如图1,AD 、BD 分别是ABC 的内角①BAC 、①ABC 的平分线,过点A 作AE①AD ,交BD 的延长线于点E .(1)求证:12E C ∠=∠; (2)如图2,如果AE=AB ,且BD :DE=2:3,求BC :AB 的值;(3)如果①ABC 是锐角,且ABC 与ADE 相似,求①ABC 的度数,并直接写出ADE ABC SS 的值.参考答案:1.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+-(112-⨯=31=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩ 【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩, 由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y ,进一步整理为:32y y 或32y y , 解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可. 3.(1)6AC =;(2)310 【分析】(1)在Rt ①ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ①BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)①AC BD ⊥,4cos 5ABC ∠=①cos 45ABC BC AB ∠== ①AB =10①AC 6;(2)过点F 作FG ①BD ,①BF 为AD 边上的中线.①F 是AD 中点①FG ①BD ,AC BD ⊥①//FG AC①FG 是①ACD 的中位线①FG =1=2AC 3 CG=1=22CD ①在Rt ①BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.4.(1)36万部;(2)100MB /秒【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数; (2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒, 由题意可知:1000100019095x x-=- 解得:100x =检验:当100x =时,()950x x ⋅-≠①100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.5.(1)见解析;(2)见解析【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ①BC ,ON ①AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥; (2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM∥CN ,可证ACNM 是平行四边形,再由90AMN∠=︒可证四边形ACNM是矩形.【详解】证明:(1)连结,OM ON ,①M 、N 分别是CB 和AD 的中点,①OM ,ON 为弦心距,①OM ①BC ,ON ①AD , 90GMO GNO ∴∠=∠=︒, 在O 中,AB CD =, OM ON ∴=,在Rt △OMG 和Rt △ONG 中, OM ONOG OG =⎧⎨=⎩, ()Rt GOM Rt GON HL ∴∆∆≌, ①MG NG MGO NGO =∠=∠,, OG MN ∴⊥;(2)设OG 交MN 于E , ()Rt GOM Rt GON HL ∆∆≌, ①MG NG =,①GMN GNM ∠=∠,即CMN ANM ∠=∠, 1122CM CB AD AN ===,在①CMN 和①ANM 中 CM ANCMN ANM MN NM=⎧⎪∠=∠⎨⎪=⎩, CMN ANM ∴≌,,AM CN AMN CNM ∴=∠=∠, ①CN∥OG,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,①AM∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒,①四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.6.(1)21922y x =-+;(2)①1;①点C 的坐标是52,2⎛⎫- ⎪⎝⎭ 【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可; (2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;①根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】解:(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩ 解得19,22a c =-=. 所以抛物线的解析式是21922y x =-+. (2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .①ABC 是等腰直角三角形,①CBH 和CAH 也是等腰直角三角形,①2CH AH BH ===,①点C 到抛物线的对称轴的距离等于1.①如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩ ①直线PQ 的解析式为26y x =-+,设(,26)A m m -+,①26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+, 得2193(23)22m m -+=--+. 整理,得22730m m -+=.因式分解,得(21)(3)0m m --=. 解得12m =,或3m =(与点P 重合,舍去). 当12m =时,1523132,3322m m -=-=--+=-+=. 所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭. 【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.7.(1)①见解析;①23;(2)13【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值. (2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.①当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可. 【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠. 因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=. 所以2233AD m BC m ==. (2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x .已知3OE =,所以6AC =.在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+1x = 舍去负值).①如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=, 另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽. 所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+. 等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=. 将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.8.0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+2﹣4+32﹣4+3=0.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.9.2<x<5.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【详解】解:由题意知:1076713①②>+⎧⎪⎨+-<⎪⎩x xxx,解不等式①,移项得:3x>6,系数化为1得:x>2,解不等式①,去分母得:3x-3<x+7.移项得:2x<10,系数化为1得:x<5,①原不等式组的解集是2<x<5.故答案为:2<x<5.【点睛】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(1)39;(2)12.【分析】(1)过C作CE①AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到6CE,即可求出梯形的面积;(2) 过C作CH①BD于H,根据相似三角形的性质得到CH CDAD BD=,根据勾股定理得到10,6即可求解.【详解】解:(1)过C作CE①AB于E,如下图所示:①AB//DC,①DAB=90°,①①D=90°,①①A=①D=①AEC=90°,①四边形ADCE是矩形,①AD=CE,AE=CD=5,①BE=AB﹣AE=3.①BC①CE,①梯形ABCD的面积=12×(5+8)×6=39,故答案为:39.(2)过C作CH①BD于H,如下图所示:①CD//AB,①①CDB=①ABD.①①CHD=①A=90°,①①CDH①①DBA,①CH CD AD BD=,①BD,①5610CH=,①CH=3,①BH,①①DBC的正切值=CHBH=36=12.故答案为:12.【点睛】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.11.(1)504万元;(2)20%.【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【详解】解:(1)第七天的营业额是450×12%=54(万元),故这七天的总营业额是450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【点睛】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键.12.(1)证明见解析;(2)证明见解析.【分析】(1)先证明①CDF①①CBE,进而得到①DCF=①BCE,再由菱形对边CD//BH,得到①H=①DCF,进而①BCE=①H 即可求解.(2)由BE2=AB•AE,得到BEAB=AEEB,再利用AG//BC,平行线分线段成比例定理得到BEAB=AGBC,再结合已知条件即可求解.【详解】解:(1)①四边形ABCD是菱形,①CD=CB,①D=①B,CD//AB.①DF=BE,①①CDF①△CBE(SAS),①①DCF=①BCE.①CD//BH,①①H=①DCF,①①BCE=①H.且①B=①B,①①BEC①①BCH.(2)①BE2=AB•AE,①BEAB=AEEB,①AG//BC,①AEBE=AGBC,①BEAB=AGBC,①DF=BE,BC=AB,①BE=AG=DF,即AG=DF.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(1)(2)y=﹣14x2+52x;(3)﹣110<a<0.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,-12m+5),则|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=-10a,代入抛物线解析式中得出顶点D坐标为(5,-25a),即可得出结论.【详解】(1)针对于直线y=﹣12x+5,令x=0,y=5,①B(0,5),令y=0,则﹣12x+5=0,①x=10,①A(10,0),①AB(2)设点C(m,﹣12m+5).①B(0,5),①BC|m|.①BC|m①m=±2.①点C在线段AB上,①m=2,①C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得100100 424a ba b+=⎧⎨+=⎩,①1452ab⎧=-⎪⎪⎨⎪=⎪⎩,①抛物线y=﹣14x2+52x;(3)①点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,①b=﹣10a,①抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,①抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣12x+5中,得y=﹣12×5+5=52,①顶点D位于①AOB内,①0<﹣25a<52,①﹣110<a<0.【点睛】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14.(1)证明见解析;(2)①BCD的值为67.5°或72°;(3【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①若CD=CB,则①CBD=①CDB=3①ABD.①若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3) 如图3中,作AE//BC交BD的延长线于E.则23==AE ADBC DC,进而得到34==AO AEOH BH,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.【详解】解:(1)连接OA,如下图1所示:①AB=AC,①AB=AC,①OA①BC,①①BAO=①CAO.①OA=OB,①①ABD=①BAO,①①BAC=2①ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①AB=AC,①①ABC=①C,①①DBC=2①ABD.①①DBC+①C+①BDC=180°,①8①ABD=180°,①①C=3①ABD=67.5°.①若CD=CB,则①CBD=①CDB=3①ABD,①①C=4①ABD.①①DBC+①C+①CDB=180°,①10①ABD=180°,①①BCD=4①ABD=72°.①若DB=DC,则D与A重合,这种情形不存在.综上所述:①C的值为67.5°或72°.(3)如图3中,过A点作AE//BC交BD的延长线于E.则AEBC=ADDC=23,且BC=2BH,①AOOH=AEBH=43,设OB=OA=4a,OH=3a.则在Rt①ABH和Rt①OBH中,①BH2=AB2﹣AH2=OB2﹣OH2,①25 - 49a2=16a2﹣9a2,①a2=25 56,①BH①BC=2BH.【点睛】本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.15.-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.【详解】2318124-=-3.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.16.x=-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.【详解】去分母得2x2-8=x2-2x,移项、整理得x2+2x-8=0,解得:x1=2,x2=-4.经检验:x=2是增根,舍去;x=-4是原方程的根.①原方程的根是x=-4.【点睛】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.17.(1)122y x=+;(2)点C的坐标是(0,12-)【分析】(1)设一次函数解析式为y=kx+b(k=0),把A坐标代入即可解答(2)先求出点B坐标,设点C的坐标为(0,y),由AC=BC利用勾股定理求出y即可解答【详解】(1)设一次函数解析式为y=kx+b(k=0).一次函数的图像平行于直线12y x=,①12k=又①一次函数的图像经过点A(2,3),①1322b=⨯+,解得b=2.所以,所求一次函数的解析式是122y x=+(2)由y=122x+,令y=0,得号122x+=0,解得x=-4.①一次函数的图像与x轴的交点为B(-4,0).①点C在y轴上,.设点C的坐标为(0,y).由AC=BC y=1 2 -经检验:y=12-是原方程的根.①点C的坐标是(0,12 -)【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于利用勾股定理进行计算18.(1)点D′到BC的距离为()厘米;(2)E、E′两点的距离是【分析】(1)过点D′作D′H①BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,①DAD′=60°,利用矩形的性质可得出①AFD′=①BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,①EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE 可得出E、E′两点的距离.【详解】解:(1)过点D′作D′H①BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,①DAD′=60°.①四边形ABCD是矩形,①AD①BC,①①AFD′=①BHD′=90°.在Rt△AD′F中,又①CE=40厘米,DE=30厘米,①FH=DC=DE+CE=70厘米,①D′H=D′F+FH=()厘米.答:点D′到BC的距离为()厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,①EAE′=60°,①①AEE′是等边三角形,①EE′=AE.①四边形ABCD是矩形,①①ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,①AE=厘米.答:E、E′两点的距离是【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.19.(1)见解析;(2)见解析.【分析】(1)连接BC,根据垂直平分线的性质即可解答(2)连接OB,先求出①ABO①①ADB,再利用相似的性质,求出四边形ABDC的四边相等,即可解答【详解】(1)连接BC,在①O中,①AB=AC,①①ABC为等腰三角形又①AD经过圆心O,①AD垂直平分BC①BD=CD.(2)连接OB.①AB2=AO·AD,AB AD AO AB又①①BAO=①DAB,①①ABO①①ADB①①OBA =①BDA ①OA =OB , ①①OBA =①OAB. ①①OAB =①BDA ①AB =BD.又①AB =AC ,BD =CD , ①AB =AC =BD =CD. ①四边形ABDC 是菱形. 【点睛】此题考查垂直平分线的性质,三角形相似的判定与性质,菱形的判定,解题关键在于作辅助线20.(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ①新抛物线的表达式是y =(x +1)2-1. 【分析】 (1)10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;①新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y轴左侧,而点()1,1A -,点(),B m m ,则1m =-,即可求解. 【详解】 (l)10a =>,抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ①①新抛物线的顶点B 是其“不动点”,①设点B 的坐标为(m ,m) ①新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ①四边形OABC 是梯形, ①直线x =m 在y 轴左侧. ①BC 与OA 不平行①OC①AB.又①点A 的坐标为(1,一1),点B 的坐标为(m ,m),∴m =-1.①新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ①新抛物线的表达式是y =(x +1)2-1. 【点睛】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可. 21.(1)详见解析;(2)43;(3)①ABC=30°或者①ABC=45°,2ADE ABCS S =2ADE ABCSS=【分析】(1)先根据题意证明12BAD BAC ∠=∠以及12ABD ABC ∠=∠,再适当变形即可得到答案;(2)先根据角平分线的性质和直线平行的性质证明①BAF①①CAF ,再根据全等三角形的性质得到BF=CF ,再根据BD :DE=2:3,计算即可得到答案;(3)根据①ABC 与①ADE 相似,①DAE=90°,因此①ABC 中必有一个内角为90°,再根据①ABC 是锐角,得到①ABC≠90°,再分情况讨论即可得到答案; 【详解】(1)证明:如图1中,①AE①AD ,①①DAE=90°,①E=90°-①ADE , ①AD 平分①BAC , ①12BAD BAC ∠=∠ ,同理可得:12ABD ABC ∠=∠ ,①180ADE BAD DBA BAC ABC C ∠=∠+∠∠+∠=︒-∠,, 11()9022ADE ABC BAC C ∠=∠+∠=︒-∠ ,11909022E C C ∠=︒-︒-∠=∠().(2)解:延长AD 交BC 于点F .①AD 是①BAC 的平分线, ①①BAD=①CAD , ①AB=AE , ①①ABE=①E , BE 平分①ABC , ①①ABE=①EBC , ①①E=①CBE , ①AE①BC ,①①AFB=①EAD=90°,BF BDAE DE= ①①AFB=①AFC=90°, 在①BAF 和①CAF 中,BAD CAD AD ADAFB AFC ∠=∠⎧⎪=⎨⎪∠=∠⎩①①BAF①①CAF(ASA),①BF=CF (全等三角形对应边相等), ①BD :DE=2:3 ①23BF BD AE DE ==, ①43BC BF CF AE AE +==; (3) ①①ABC 与①ADE 相似,①DAE=90°, ①①ABC 中必有一个内角为90° ①①ABC 是锐角,①①ABC≠90°.①当①BAC=①DAE=90°时, ①12E C ∠=∠(由(1)知), ①①ABC+①C=90°, ①①ABC=30°, ①此时2ADE ABCS S=-①当①C=①DAE=90°时,1452E C ==︒∠∠,①①EDA=45°,①①ABC 与①ADE 相似, ①①ABC=45°,此时2ADE ABCS S=综上,①ABC=30°或者①ABC=45°,2ADE ABCS S=-2ADE ABCS S=【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质、全等三角形的判定与性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

上海01-12中考数学试题分类解析专题2:代数式和因式分解

上海01-12中考数学试题分类解析专题2:代数式和因式分解

2001-2012年上海市中考数学试题分类解析汇编(12专题)专题2:代数式和因式分解选择题1.(2001上海市3分)下列计算中,正确的是【 】.A .a3·a2=a6B .()()22a b a b a b +-=-C .(a +b )2=a2+b2D .()()22a b a 2b a ab 2b +-=--【答案】B ,D 。

【考点】同底数幂的乘法,平方差和完全平方公式,多项式乘多项式。

【分析】根据平方差和完全平方公式,同底数幂的乘法和多项式乘多项式法则计算作出判断:A 、应为a3•a2=a5,故本选项错误;B 、()()22a b a b a b +-=-,故本选项正确;C 、应为()222a b a 2ab b +=++,故本选项错误;D 、()()22a b a 2b a ab 2b +-=--,故本选项正确。

故选B ,D 。

2. (2001上海市3分)下列多项式中,能在实数范围内分解因式的是【 】.A .x2+4B .x2-2C .x2-x -1D .x2+x +1【答案】B ,C 。

【考点】实数范围内因式分解,一元二次方程根的判别式。

【分析】根据多项式特点结合公式特征选取答案:A .∵对于x2+4=0有△=0-16=-16<0,∴x2+4=0无实数根,即x2+4在实数范围内不可以分解因式;B .∵对于x2-2=0有△=0+8=8>0,∴x2-2=0有实数根,即x2-2在实数范围内可以分解因式;C .∵对于x2-x -1=0有△=1+4=5>0,∴x2-x -1=0有实数根,即x2-x -1在实数范围内可以分解因式;D .∵对于x2+x +1=0有△=1-4=-3<0,∴x2+x +1=0无实数根,即x2+x +1在实数范围内不可以分解因式。

故选B ,C 。

3.(上海市2002年3分)在下列各组根式中,是同类二次根式的是【 】(A )2和12;(B )2和21; (C )ab 4和3ab ;(D)1-a 和1+a .【答案】B ,C 。

上海中考九年级数学的复习知识点分类讲解试卷.doc

上海中考九年级数学的复习知识点分类讲解试卷.doc

九年级年级数学学科相似三角形知识点1:相似形1.图形的放大或缩小,称为图形的放缩运动.2.将一个图形放大或缩小后,就得到与它形状相同的图形. 3.形状相同的两个图形叫做相似的图形,即相似形.4.如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例.知识点2:比例线段1.一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作a :b (或ab),其中0b ≠.a 除以b 所得的商叫做a 与b 的比值.如果a :b 的比值等于k ,那么=a kb . 2.两条线段的长度的比叫做两条线段的比.3.如果:a b =:c d (或=a cb d),那么就说a b c d 、、、成比例.其中a 叫做第一比例项,b 叫做第二比例 项;c 叫做第三比例项;d 叫做第四比例项.4.在四条线段中,如果其中两条线段的比与另两条线段的比相等,那么这四条线段叫做成比例线段,简 称比例线段.5.如果比例的两个内项(或两个外项)相同,那么这个相同的项叫做比例中项.如:a b =:b c (:b a =:c b )时,b 叫做a 和c 的比例中项.a 、b 、c 满足:2b ac =.6.比例的基本性质:(1)如果=a cb d,那么=ad bc . (2)比例线段的比例式中,只要乘积形式不变,a b c d 、、、的位置可以灵活变化.若=a c b d ,则=a b c d 、b d a c =、c d a b =、b a d c =、c ad b=、=d c b a 、=b d a c . 【思考】判断命题“如果=ad bc ,那么=a cb d”是真命题还是假命题,为什么?7.合比性质:如果=a c b d ,那么++=a b c db d ; 如果=ac bd ,那么=a b c db d --; 如果=ac bd ,那么=++a cb a dc ; 如果=a c bd ,那么=a cb a dc --. 8.等比性质:如果==a c k bd ,那么+===+a c a ck b d b d(+0b d ≠);如果====a c e m b d f n L L ,那么++++=====++++a c e m a c e m k b d f n b d f nL L L L (++++0b d f n ≠L L ).9.如果点P 把线段AB 分割成AP 和PB (AP >PB )两段,其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割.点P 称为线段AB 的黄金分割点.AP 与AB 黄金分割数,它的近似值为0.618.知识点3:三角形一边的平行线1.三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.三角形一边的平行线性质定理推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形 的三边与原三角形的三边对应成比例.3.三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线 平行于三角形的第三边.4.三角形一边的平行线判定定理推论:如果一条直线截三角形的两边的延长线(这两边的延长线在第三AB CBBCCAADDEDEElll边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.【总结】三角形一边平行线的定理可以理解为两个基本图形:“A”字形与“8”字形.【注意】在运用判定定理时一定要是两边上的比才能得平行。

上海市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•上海)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?二.二次函数综合题(共2小题)2.(2022•上海)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B (0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.3.(2021•上海)已知抛物线y=ax2+c(a≠0)经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC.①当Q与A重合时,求C到抛物线对称轴的距离;②若C在抛物线上,求C的坐标.三.垂径定理(共1小题)4.(2023•上海)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.四.圆的综合题(共2小题)5.(2022•上海)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.6.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB 中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB 的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.五.相似三角形的判定与性质(共2小题)7.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.8.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q 在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.六.相似形综合题(共1小题)9.(2021•上海)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD或边AD于点E.(1)当点E在CD上,①求证:△DAC∽△OBC;②若BE⊥CD,求的值;(2)若DE=2,OE=3,求CD的长.七.解直角三角形(共1小题)10.(2021•上海)如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF 为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.八.解直角三角形的应用-仰角俯角问题(共1小题)11.(2022•上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.上海市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•上海)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900;(2)y=0.9x﹣0.27;(3)1.00.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.二.二次函数综合题(共2小题)2.(2022•上海)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B (0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.【答案】(1);(2)i.k≥2;ii..【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,∴S△OPB=×3|m|=3,∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=m,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2(舍),∴n=﹣3=3,∴P点的坐标为(2,3).3.(2021•上海)已知抛物线y=ax2+c(a≠0)经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC.①当Q与A重合时,求C到抛物线对称轴的距离;②若C在抛物线上,求C的坐标.【答案】(1)y=﹣x2+;(2)①1;②C(﹣2,).【解答】解:(1)P(3,0)、Q(1,4)代入y=ax2+c得:,解得,∴抛物线的解析式为:y=﹣x2+;(2)①过C作CH⊥AB于H,交y轴于G,如图:当A与Q(1,4)重合时,AB=4,GH=1,∵△ABC是等腰直角三角形,∴△ACH和△BCH也是等腰直角三角形,∴CH=AH=BH=AB=2,∴CG=CH﹣GH=1,而抛物线y=﹣x2+的对称轴是y轴(x=0),∴C到抛物线对称轴的距离是CG=1;②过C作CH⊥AB于H,如图:设直线PQ解析式为y=kx+b,将P(3,0)、Q(1,4)代入得:,解得,∴直线PQ为y=﹣2x+6,设A(m,﹣2m+6),则AB=|﹣2m+6|,∴CH=AH=BH=AB=|﹣m+3|,当﹣m+3≥0,y C=﹣m+3时,x C=﹣(﹣m+3﹣m)=2m﹣3,将C(2m﹣3,﹣m+3)代入y=﹣x2+得:﹣m+3=﹣(2m﹣3)2+,解得m=或m=3(与P重合,舍去),∴m=,2m﹣3=﹣2,﹣m+3=,∴C(﹣2,)当﹣m+3<0,y C=﹣m+3时,x C=m﹣(m﹣3)=3,C(3,﹣m+3),由P(3,0)可知m=3,此时A、B、C重合,舍去,∴C(﹣2,)三.垂径定理(共1小题)4.(2023•上海)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.【答案】(1)⊙O的半径为5;(2)∠BAC的正切值为.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.四.圆的综合题(共2小题)5.(2022•上海)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.【答案】(1)i.证明见解析;ii.;(2).【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:方法一:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.方法二:设EP=x,则AE=2x,CE=2x,∵AE=AF,BE=BF,∴AB垂直平分EF,∠AGF=90°,∴∠DCE=90°,延长AP交DC的延长线于点Q,则CQ=CD,∴EQ=ED=4x,由勾股定理得CD=2x,∠DEC=∠CEQ=45°,由DE=4x可得BE=2x,∴BP==x,∴AB:BC=2x:2x=.6.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB 中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB 的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.【答案】(1)证明见解答过程;(2)OB=1+;(3)的值为.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.五.相似三角形的判定与性质(共2小题)7.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.【答案】证明过程见解答.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.8.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q 在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【答案】(1)证明见解答过程;(2)证明见解答过程.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.六.相似形综合题(共1小题)9.(2021•上海)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD或边AD于点E.(1)当点E在CD上,①求证:△DAC∽△OBC;②若BE⊥CD,求的值;(2)若DE=2,OE=3,求CD的长.【答案】(1)①证明过程见解析;②;(2)CD的长为1+或3+.【解答】(1)①证明:如图1,∵AD=CD,∴∠DAC=∠DCA.∵AD∥BC,∴∠DAC=∠ACB.∵BO是Rt△ABC斜边AC上的中线,∴OB=OC,∴∠OBC=∠OCB,∴∠DAC=∠DCA=∠ACB=∠OBC,∴△DAC∽△OBC;②解:如图2,若BE⊥CD,在Rt△BCE中,∠OCE=∠OCB=∠EBC,∴∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,在Rt△DCH中,DC=2m,∴CH=m,∴BC=BH+CH=3m,∴;(2)①如图3,当点E在AD上时,∵AD∥BC,∴∠EAO=∠BCO,∠AEO=∠CBO,∵O是AC的中点,∴OA=OC,∴△AOE≌△COB(AAS),∴OB=OE,∴四边形ABCE是平行四边形,又∵∠ABC=90°,∴四边形ABCE是矩形.设AD=CD=x,∵DE=2,∴AE=x﹣2,∵OE=3,∴AC=6,在Rt△ACE和Rt△DCE中,CE2=AC2﹣AE2,CE2=CD2﹣DE2,∴62﹣(x﹣2)2=x2﹣22,解得x=1+,或x=1﹣(舍去).∴CD=1+.②如图4,当点E在CD上时,设AD=CD=x,则CE=x﹣2,设OB=OC=m,∵OE=3,∴EB=m+3,∵△DAC∽△OBC,∴,∴,∴.又∵∠EBC=∠OCE,∠BEC=∠OEC,∴△EOC∽△ECB,∴,∴,∴,∴m=,将m=代入,整理得,x2﹣6x﹣10=0,解得x=3+,或x=3﹣(舍去).∴CD=3+.综合以上可得CD的长为1+或3+.七.解直角三角形(共1小题)10.(2021•上海)如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.【答案】(1)6;(2).【解答】解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.八.解直角三角形的应用-仰角俯角问题(共1小题)11.(2022•上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.【答案】(1)(a tanα+b)米;(2)3.8米.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.。

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•上海)计算:+﹣()﹣2+|﹣3|.2.(2021•上海)计算:9+|1﹣|﹣2﹣1×.二.分数指数幂(共1小题)3.(2022•上海)计算:|﹣|﹣+﹣.三.高次方程(共1小题)4.(2021•上海)解方程组:.四.解一元一次不等式组(共2小题)5.(2022•上海)解关于x的不等式组:.6.(2023•上海)解不等式组:.五.反比例函数图象上点的坐标特征(共1小题)7.(2022•上海)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.六.二次函数图象与几何变换(共1小题)8.(2023•上海)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.七.圆的综合题(共1小题)9.(2021•上海)如图,在圆O中,弦AB等于弦CD,且相交于点P,其中E、F为AB、CD 中点.(1)证明:OP⊥EF;(2)连接AF、AC、CE,若AF∥OP,证明:四边形AFEC为矩形.八.扇形统计图(共1小题)10.(2021•上海)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•上海)计算:+﹣()﹣2+|﹣3|.【答案】﹣6.【解答】解:原式=2+﹣9+3﹣=2+﹣2﹣9+3﹣=﹣6.2.(2021•上海)计算:9+|1﹣|﹣2﹣1×.【答案】2.【解答】解:+|1﹣|﹣2﹣1×=3=2=2.二.分数指数幂(共1小题)3.(2022•上海)计算:|﹣|﹣+﹣.【答案】1.【解答】解:|﹣|﹣+﹣===1﹣.三.高次方程(共1小题)4.(2021•上海)解方程组:.【答案】.【解答】解:,由①得:y=3﹣x,把y=3﹣x代入②,得:x2﹣4(3﹣x)2=0,化简得:(x﹣2)(x﹣6)=0,解得:x1=2,x2=6.把x1=2,x2=6依次代入y=3﹣x得:y1=1,y2=﹣3,∴原方程组的解为.四.解一元一次不等式组(共2小题)5.(2022•上海)解关于x的不等式组:.【答案】不等式组的解集为:﹣2<x<﹣1.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.6.(2023•上海)解不等式组:.【答案】3<x<.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.五.反比例函数图象上点的坐标特征(共1小题)7.(2022•上海)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.【答案】(1)y=2x﹣1;(2).【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.六.二次函数图象与几何变换(共1小题)8.(2023•上海)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.【答案】(1)A(﹣8,0);(2),c=6;(3)抛物线N的函数解析式为:或.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.七.圆的综合题(共1小题)9.(2021•上海)如图,在圆O中,弦AB等于弦CD,且相交于点P,其中E、F为AB、CD 中点.(1)证明:OP⊥EF;(2)连接AF、AC、CE,若AF∥OP,证明:四边形AFEC为矩形.【答案】(1)(2)证明见解析部分.【解答】(1)证明:连接OP,EF,OE,OF,OB=OD.∵AE=EB,CF=FD,AB=CD,∴OE⊥AB,OF⊥CD,BE=DF,∴∠OEB=∠OFD=90°,∵OB=OD,∴Rt△OEB≌Rt△OFD(HL),∴OE=OF,∵∠OEP=∠OFP=90°,OP=OP,∴Rt△OPE≌Rt△OPF(HL),∴PE=PF,∵OE=OF,∴OP⊥EF.(2)证明:连接AC,设EF交OP于J.∵AB=CD,AE=EB,CF=DF,∴AE=CF,BE=DF,∵PE=PF,∴PA=PC,∵PE=PF,OE=OF,∴OP垂直平分线段EF,∴EJ=JF,∵OP∥AF,∴EP=PA,∴PC=PF,PA=PE,∴四边形AFEC是平行四边形,∵EA=CF,∴四边形AFEC是矩形.八.扇形统计图(共1小题)10.(2021•上海)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G 比4G要快190秒,求5G手机的下载速度.【答案】(1)三月份生产了36万部手机;(2)5G手机的下载速度是每秒100MB.【解答】解:(1)80×(1﹣30%﹣25%)=36(万部),答:三月份生产了36万部手机;(2)设5G手机的下载速度是每秒xMB.则4G手机的下载速度是每秒(x﹣95)MB.+190=,解得:x1=100,x2=﹣5(不合题意,舍去),经检验,x1=100是原方程的解,答:5G手机的下载速度是每秒100MB.。

上海中考数学复习专题训练精选试题及答案

上海中考数学复习专题训练精选试题及答案
A、 B、 C、 D、
4、可以与 合并的二次根式是( )
A、 B、 C、 D、
5、如果分式 中的 x 和 都扩大为原来的 2 倍,那么分式的值( )
A、扩大 2 倍B、扩大 4 倍C、不变D、缩小 2 倍
6、当 x<0 时,| -x|等于( )
A、0B、-2xC、2xD、-2x或0
三、计算:(每题 6 分,共 24 分)
4、某人骑摩托车从家里出发,若规定向东行驶为正,向西行驶为负,一天行驶记录如下:(单位:km)
-7,+4,+8,-3,+10,-3,-6,
问最后一次行驶结束离家里有多远?若每千米耗油0.28 升,则一天共耗油多少升?
5、已知实数 a、b 在数轴上的位置如图所示:
试化简: -|a+b|
五、(8分)若(2x+3)2和 互为相反数,求 x-y 的值。
二、选择题:(每题 4 分,共 24 分)
1、下列各数中是负数的是( )
A、-(-3)B、-(-3)2C、-(-2)3D、|-2|
2、在π,- , ,3.14, ,sin30°,0 各数中,无理数有( )
A、2 个B、3 个C、4 个D、5 个
3、绝对值大于 1 小于 4 的整数的和是( )
A、0B、5C、-5D、10
7、近似数0.020精确到____位,它有____个有效数字。
8、若 n 为自然数,那么(-1)2n+(-1)2n+1=____。
9、若实数 a、b 满足|a-2|+( b+ )2=0,则 ab=____。
10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。
11、已知一个矩形的长为3cm,宽为2cm,试估算它的对角线长为____。(结果保留两个有效数字)

2023上海中考数学25题大全

2023上海中考数学25题大全

2023上海中考数学25题大全1. 百分数1.1 百分数定义与换算百分数是指以100为基数的分数,通常用百分号(%)表示。

例如,75%表示75个百分点,等于75/100=0.75.1.2 计算百分数计算百分数的方法是:将所要表示的数除以基数,再乘以100,即可得到百分数的值。

例如,在一次数学测试中,小明得了80分,该次测试总分为100分,则小明的成绩百分数为80/100×100=80%。

2. 基本运算2.1 四则运算四则运算指的是加减乘除四种基本运算。

在解题时,我们需要根据实际情况选择适当的运算方法,进行计算。

2.2 运算性质运算性质是指运算中满足的一些基本规律,例如加法的交换律、结合律,乘法的分配律等。

掌握这些性质对于解决数学题目非常有帮助。

3. 代数式与方程3.1 代数式的定义代数式是由数与变量以及运算符号组成的式子,常用于表示数学关系和规律。

代数式可以进行各种运算。

3.2 方程及其解法方程是两个代数式相等的数学语句。

解方程的过程是确定未知数的值,使得方程成立。

解方程的方法有多种,例如加减消元法、配方法、因式分解法等。

4. 几何与图形4.1 基本几何概念基本几何概念包括点、线、面等概念,这些概念是几何学的基础。

4.2 图形的性质及计算图形的性质是指图形的基本特征和规律,例如直角三角形的性质、平行四边形的性质等。

在计算中,我们需要应用这些性质解决问题。

5. 统计与概率5.1 图表的读取与分析图表是统计数据的一种形式,例如条形图、折线图、饼图等。

我们需要通过阅读和分析图表来获取相关的信息。

5.2 概率的计算概率是指某一事件发生的可能性,可以用一个介于0和1之间的数来表示。

计算概率需要确定事件的样本空间和有利结果的个数。

总结:本篇文章针对2023上海中考数学试卷的25道题目,从百分数、基本运算、代数式与方程、几何与图形以及统计与概率等五个方面进行了全面的论述。

通过对各个知识点的解析和相关计算方法的介绍,旨在帮助考生更好地理解和掌握数学知识,提高解题能力。

上海市西初级中学中考数学期末规律问题算式变化类汇编

上海市西初级中学中考数学期末规律问题算式变化类汇编

上海市西初级中学中考数学期末规律问题算式变化类汇编一、规律问题算式变化类1.计算111111122334455667-----⨯⨯⨯⨯⨯⨯的结果为( ). A .67B .67-C .17-D .172.观察等式:1+2+22=23-1;1+2+22+23=24-1;1+2+22+23+24=25-1;若 1+2+22+…+29=210-1=m ,则用含 m 的式子表示 211+212+ …+218+219的结果是( ) A .m 2+ mB .m 2+m -2C .m 2-1D .m 2+ 2m3.按如图所示的程序计算,若1S a =,则2020S 的结果为( )A .aB .1a -C .11a- D .1aa-- 4.(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是( ) A .8B .6C .4D .25.一只跳蚤在数轴上从原点开始,第1次向右跳2个单位长度,第2次向左跳4个单位长度,第3次向右跳6个单位长度,第4次向左跳8个单位长度,⋯依此规律跳下去,当它第2019次落下时,落点表示的数是( ) A .2019B .2020C .-2020D .10106.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:3的差倒数是11132=--,1-的差倒数是111(1)2=--.已知12a =,2a 是1a 的整倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a 为( ) A .2B .1C .1-D .127.求22201412222++++⋅⋅⋅+的值,可令22201412222S =++++⋅⋅⋅+,则2342015222222S =++++⋅⋅⋅+,因此2015221S S -=-.仿照以上推理,计算出22201315555++++⋅⋅⋅+的值为( )A .201451- B .201551-C .2015514-D .2014514-8.请先在草稿纸上计算下列四个式子的值:①31;②331+2;③3331+2+3;④33331+2+3+4.观察计算的结果,由发现的规律得出33331+2+3++25的值为( ) A .351B .350C .325D .3009.若规定“!”是一种数学运算符号,且则的值为( ) A .B .99!C .9 900D .2!10.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( ) A .9B .10C .11D .1211.(问题背景)“整体替换法”是数学里的一种常用计算方法.利用式子的特征进行整体代换,往往能解决许多看似复杂的问题.(迁移运用)计算111211211212++++++++的值解:设原式x =,则可分析得:112x x=++根据上述方程解得:1313x -+=2313x --=而原式0>,故:原式13132x -+==(联系拓展)23456202222222+++++++=___________A .2121-B .2122-C .2221-D .2222-12.计算242(21)(21)(21)(21)n +++⋅⋅⋅+的值是( ) A .21n -B .221n -C .421n -D .2221n -13.观察式子:3211=,332212(12)3+=+=,33322123(123)6++=++=,3333221234(1234)10+++=+++=,,根据你发现的规律,计算3333335678910+++++的结果是( ) A .2925 B .2025 C .3225 D .262514.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n≥4)行从左向右数第(n-3)个数是(用含n 的代数式表示)( ). A .21n -B .22n -C .23n -D .24n -15.观察下列各式及其展开式:()2222a b a ab b +=++;()3322333a b a a b ab b +=+++;()4432234464a b a a b a b ab b +=++++;()544322345510105a b a a b a b a b ab b +=+++++…,请你猜想()11a b +的展开式第三项的系数是( ) A .36B .45C .55D .6616.已知11a x =-(1x ≠且2x ≠),2111a a =-,3211a a =-,…,111n n a a -=-,则2019a 等于( )A .21xx-- B .1x +C .1x -D .12x- 17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b )2=a 2+2ab+b 2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b )3=a 3+3a 2b+3ab 2+b 3展开式中各项的系数等等.根据上面的规律,请你猜想(a+b )7的展开式中所有系数的和是( ) A .2018B .512C .128D .6418.已知2221114834441004A ⎛⎫=⨯++⋯+⎪---⎝⎭,根据()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭,则与A 最接近的正整数是( ). A .18B .20C .24D .2519.已知整数1234,,,a a a a 满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+…依此类推,则2019a 的值为( )A .-1009B .-1008C .-2019D .-201820.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .721.观察下列各式及其展开式(a +b )2=a 2+2ab +b 2 (a +b )3=a 3+3a 2b +3ab 2+b 3 (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 (a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 ……请你猜想(2x ﹣1)8的展开式中含x 2项的系数是( ) A .224 B .180C .112D .4822.方程13153520052007x x x x++++=⨯的解是x =( )A .20062007 B .20072006 C .20071003D .1003200723.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( )A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-24.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23、33和43分别可以“分裂”成2个、3个和4个连续奇数的和,即23=3+5,33=7+9+11,43=13+15+17+19,…若1003也按照此规律来进行“分裂”,则1003“分裂”出的奇数中,最小的奇数是( ) A .9999 B .9910C .9901D .980125.计算:2222211111(1)(1)(1)...(1)(1)56799100-⨯-⨯-⨯⨯-⨯-的结果是( ) A .101200 B .101125C .101100D .1100【参考答案】***试卷处理标记,请不要删除一、规律问题算式变化类1.D【分析】将式子进行变形,然后计算即可.【详解】解:==【点睛】本题考查有理数的计算,关键在于进行变形.解析:D【分析】将式子进行变形,然后计算即可.【详解】解:111111 122334455667 -----⨯⨯⨯⨯⨯⨯=11111111111 1()()()()() 22334455667 -----------=1 7【点睛】本题考查有理数的计算,关键在于进行变形.2.C【分析】根据题意,先用m表示出2,然后将所求式子加上2,再减去2,然后利用乘法分配律即可求出结论.【详解】解:∵1+2+2+…+2=2-1=m∴2=m+1∴2+2+ …+2+2=2+解析:C【分析】根据题意,先用m表示出210,然后将所求式子加上210,再减去210,然后利用乘法分配律即可求出结论. 【详解】解:∵1+2+22+…+29=210-1=m ∴210=m +1 ∴211+212+ …+218+219 =210+211+212+ …+218+219-210 =210×(1+2+22+…+29)-210 =m (m +1)-(m +1) = m 2-1 故选C . 【点睛】此题考查的是有理数的乘方运算,掌握有理数乘方的意义是解决此题的关键.3.D 【分析】根据程序分别计算前几次输出的结果,从中找到规律,进一步探索第2020次得到的结果. 【详解】 解:由题意知, S1=a ,n=1时,S2=1-S1=1-a , n=2时,S3=, n=3解析:D 【分析】根据程序分别计算前几次输出的结果,从中找到规律,进一步探索第2020次得到的结果. 【详解】 解:由题意知, S 1=a ,n=1时,S 2=1-S 1=1-a ,n=2时,S 3=2111aS -, n=3时,S 4=1-S 3=1-11a -=a 1a﹣-, n=4时,S 5=41S =11a-, n=5时,S 6=1-S 5=1-(1-1a )=1a,n=6时,S 7=61=a S ; ……发现规律:每6个结果为一个循环, 所以2020÷6=336…4, 所以S 2020=S 4=-a1a-, 故选:D . 【点睛】本题考查了代数式的运算,解决此类题的关键是通过计算发现循环的规律,再进一步探索,注意规律的总结.4.B 【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字. 【详解】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1 =(22﹣1)•解析:B 【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字. 【详解】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1 =(22﹣1)•(22+1)•(24+1)…(216+1)+1 =(24﹣1)•(24+1)…(216+1)+1 =232﹣1+1 =232,∵21=2,22=4,23=8,24=16,25=32,…, ∴其结果个位数以2,4,8,6循环, ∵32÷4=8,∴原式计算结果的个位数字为6, 故选:B . 【点睛】本题主要考查了平方差公式的应用,准确计算是解题的关键.5.B 【分析】设向右跳动为正,向左跳动为负,根据题意把所有的数字相加即可得到结果; 【详解】解:设向右跳动为正,向左跳动为负, 由题意可得 , 故选:B . 【点睛】本题主要考查了有理数解析:B 【分析】设向右跳动为正,向左跳动为负,根据题意把所有的数字相加即可得到结果; 【详解】解:设向右跳动为正,向左跳动为负,由题意可得()()()()()2468403440364038++-+++-+⋯+-+()()()()246810122403440364038-+-+-+⋯+-+═20184038=-+ 2020=, 故选:B . 【点睛】本题主要考查了有理数的加减混合运算,准确计算是解题的关键.6.A 【分析】可根据差倒数的定义依次计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2020除以3,即可得出答案. 【详解】 解:已知, a1的差倒数; a2的差倒数; a3的差倒数; …解析:A 【分析】可根据差倒数的定义依次计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2020除以3,即可得出答案. 【详解】 解:已知12a =,a1的差倒数211 12a==--;a2的差倒数311 1(1)2a==--;a3的差倒数412112a==-;…依此类推,2020被3除,结果为2020=3×673+1,被3除余1,所以,a2020=a1=2.故选:A.【点睛】本题考查用代数式表示的新定义下,规律探索问题,关键是通过部分的有理数运算后,发现规律.7.D【分析】类比题目中所给的解题方法解答即可.【详解】设a=1+5+52+53+...+52013,则5a=5(1+5+52+53+ (52013)=5+52+53+…+52013+52014,解析:D【分析】类比题目中所给的解题方法解答即可.【详解】设a=1+5+52+53+…+52013,则5a=5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a-a=(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a=2014514-.故选:D.【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.8.C【分析】通过计算前面4个式子的值,得到规律为从1开始的几个连续整数的立方和的算术平方根等于这几个连续整数的和,然后利用此规律求解.【详解】①=1;②=3=1+2;③=6=1+2+3;解析:C【分析】通过计算前面4个式子的值,得到规律为从1开始的几个连续整数的立方和的算术平方根等于这几个连续整数的和,然后利用此规律求解.【详解】①31=1;②33=3=1+2;12③3331+2+3=6=1+2+3;④33331+2+3+4=10=1+2+3+4;∴33331+2+3++25=1+2+3+…+25=325.故选:C.【点睛】本题考查实数运算有关的规律问题,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.9.C【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴ =100×99="9" 900,故选C.解析:C【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.10.B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=313,n=1解析:B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(1)(2)2m m -+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B .考点:规律型.11.B【分析】根据题目呈现的“整体替换法”,令,,作差即可求解.【详解】解:设,,则,故选:B .【点睛】本题为新定义类型问题的考查,解题的关键是读懂题目中“整体替换法”的概念,应用到解题解析:B【分析】根据题目呈现的“整体替换法”,令220222S =+++,23212222S =+++,作差即可求解.【详解】解:设220222S =+++,23212222S =+++, 则21222S S S =-=-,故选:B .【点睛】本题为新定义类型问题的考查,解题的关键是读懂题目中“整体替换法”的概念,应用到解题当中. 12.C【解析】【分析】原式乘以变形的1,即(2-1),变形后,利用平方差公式计算即可得到结果.【详解】解:=(22-1)(22+1)(24+1)…(22n+1)=(24-1)(24+1)…解析:C【分析】原式乘以变形的1,即(2-1),变形后,利用平方差公式计算即可得到结果.【详解】解:242(21)(21)(21)(21)n +++⋅⋅⋅+=(22-1)(22+1)(24+1)…(22n +1)=(24-1)(24+1)…(22n +1),=(28-1)(28+1)…(22n +1),=(22n -1)(22n +1),=24n -1,故选C .【点睛】此题考查了平方差公式,熟练掌握平方差公式及巧添1=(2-1)是解本题的关键. 13.A【分析】根据题意找到规律:即可求解.【详解】∵,,,,…,,∴.【点睛】本题主要考查了有理数的混合运算,规律型-数字变化类.此题将求的值的问题运用规律转化为求的问解析:A【分析】 根据题意找到规律:2333321123(123)(1)2n n n n ⎡⎤++++=++++=+⎢⎥⎣⎦即可求解.∵3211=,332212(12)3+=+=,33322123(123)6++=++=,3333221234(1234)10+++=+++=,…,33332123123()n n ++++=++++, ∴3333335678910+++++ 33333333(12310)(1234)=++++-+++ 22(12310)(1234)=++++-+++221110(101)4(41)22⎡⎤⎡⎤=⨯⨯+-⨯⨯+⎢⎥⎢⎥⎣⎦⎣⎦225510=-2925=.【点睛】本题主要考查了有理数的混合运算,规律型-数字变化类.此题将求3333335678910+++++的值的问题运用规律转化为求33333333(12310)(1234)++++-+++的问题是解题的关键.14.C【分析】观察数阵排列,可发现各数的被开方数是从1开始的连续自然数,行数中的数字个数是行数的2倍,求出n-1行的数字个数,再加上从左向右的第n-3个数,就得到所求数的被开方数,再写成算术平方根的解析:C【分析】观察数阵排列,可发现各数的被开方数是从1开始的连续自然数,行数中的数字个数是行数的2倍,求出n-1行的数字个数,再加上从左向右的第n-3个数,就得到所求数的被开方数,再写成算术平方根的形式即可.【详解】由图中规律知,前(n-1)行的数据个数为2+4+6+…+2(n-1)=n (n-1),∴第n (n 是整数,且n≥4)行从左向右数第(n-3)个数的被开方数是:n (n-1)+n-3=n 2-3,∴第n (n 是整数,且n≥4)行从左向右数第(n-3故选:C .【点睛】本题考查了数字规律的知识;解题的关键是熟练掌握数字规律、二次根式的性质,从而完成求解.15.C【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出的展开式第三项的系数.【详解】解:依据规律可得到:第三项的系数为1,第三项解析:C【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出11()a b +的展开式第三项的系数.【详解】解:222()2a b a ab b +=+++=+++33223()33a b a a b ab b4322344()464a b a a b a b ab b +=++++554322345()510105a b a a b a b a b ab b +=+++++⋯⋯∴依据规律可得到:2()a b +第三项的系数为1,3()a b +第三项的系数为312=+,4()a b +第三项的系数为6123=++,⋯11()a b +第三项的系数为:10(101)123910552⨯++++⋯++==. 故选:C .【点睛】本题考查了数字规律型,理解题意,找到系数的规律是解题的关键. 16.A根据题中所给已知等式先求出前4个数,发现每3个数是一个循环,进而可得的值.【详解】解:∵(且),∴⋯⋯∵2019÷3=673∴==故选:A【点睛】本题考查了数字的解析:A【分析】根据题中所给已知等式先求出前4个数,发现每3个数是一个循环,进而可得2019a 的值.【详解】解:∵11a x =-(1x ≠且2x ≠), ∴2111111(1)2a a x x===---- 3211211112x a a x x-===----431112111a x x a x===----- ⋯⋯ ∵2019÷3=673∴2019a =3a =21x x-- 故选:A【点睛】本题考查了数字的变化规律,解决本题的关键是观察数字的变化寻找规律. 17.C【分析】仿照阅读材料中的方法将原式展开,求出系数之和即可.解:根据题意得:(a+b )7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系解析:C【分析】仿照阅读材料中的方法将原式展开,求出系数之和即可.【详解】解:根据题意得:(a +b )7=a 7+7a 6b +21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7, 系数之和为2×(1+7+21+35)=128,故选:C .【点睛】此题考查了完全平方公式,以及规律型:数字的变化类,弄清“杨辉三角”中系数的规律是解本题的关键.18.D【分析】根据公式的特点把A 进行变形化简,故可求解.【详解】∵∴=≈12×2.0435=24.522≈25故选:D .【点睛】此题主要考查数的规律计算,解题的关键是运用已知解析:D【分析】根据公式的特点把A 进行变形化简,故可求解.【详解】 ∵()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭∴2221114834441004A ⎛⎫=⨯++⋯+ ⎪---⎝⎭=111111111484323244242410021002⎡⎤⎛⎫⎛⎫⎛⎫⨯-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+-+-+⎝⎭⎝⎭⎝⎭⎣⎦ 1111111148145426498102⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-+⋯+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 111111111121......234598567102⎛⎫=⨯++++++----- ⎪⎝⎭ 111111112123499100101102⎛⎫=⨯+++---- ⎪⎝⎭≈12×2.0435=24.522≈25 故选:D .【点睛】此题主要考查数的规律计算,解题的关键是运用已知的运算公式变形求解.19.A【分析】根据条件求出前几个数的值, 再根据变化规律可得:是奇数时, 结果等于,是偶数时, 结果等于,然后把的值代入进行计算即可得解 .【详解】解:,,,,,,所以,是奇数时,,解析:A【分析】根据条件求出前几个数的值, 再根据变化规律可得:n 是奇数时, 结果等于1(1)2n --,n 是偶数时, 结果等于2n -,然后把n 的值代入进行计算即可得解 . 【详解】解:10a =, 211011a a =-+=-+=-,322121a a =-+=--+=-,433132a a =-+=--+=-,544242a a =-+=--+=-,⋯,所以,n 是奇数时,1(1)2n a n =--,n 是偶数时,2n n a =-, ∴20191(20191)10092a =--=-. 故选A .【点睛】此题主要考查了数字变化规律,先求出一部分数, 观察出n 为奇数与偶数时的结果的变化规律是解题的关键 .20.B【分析】利用题目给出的规律:把乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:=(2-1)×=22022-1,21解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.21.C【分析】观察数字规律,发现各组数据的首尾均为1,中间数字分别为上一组数据相邻两个数字之和,分别写出左边式子的指数分别为6,7,8 的等式右边各项的系数,结合括号内含x项的次数为2,即可得出答案解析:C【分析】观察数字规律,发现各组数据的首尾均为1,中间数字分别为上一组数据相邻两个数字之和,分别写出左边式子的指数分别为6,7,8 的等式右边各项的系数,结合括号内含x项的次数为2,即可得出答案.【详解】解:由所给四组式子的系数规律可得左边式子的指数分别为 6,7,8 的等式,右边各项的系数分别为:1,6,15,20,15,6,1;1,7,21,35,35,21,7,1;1,8,28,56,70,56,28,8,1;故含x2项的系数为:22×(﹣1)6×28=112.故选:C.【点睛】本题考查了二项式展开式中的系数规律问题,发现题中所列各式的系数规律是解题的关键.22.C【解析】∵,∴提取公因式,得,将方程变形,得,提取公因式,得,移项,合并同类项,得,系数化为1,得x=.故选C.解析:C【解析】 ∵13153520052007x x x x ++⋯+⨯= , ∴提取公因式,得 1111()13153520052007x ++⋯+⨯=, 将方程变形,得11111111[(1)()...()]123235220052007x -+-++-= , 提取公因式,得11111(1)1233520052007x -+-⋯+-=, 移项,合并同类项,得1(1)122007x -=, 系数化为1,得 x=20071003. 故选C. 23.C【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-① 解析:C【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值.【详解】解:设S = 1+2020+20202+20203+ (20202020)则2020S =2020+20202+20203+…+20202020+20202021②由②-①得:2019S =20202021-1 ∴2021202012019S -=. 故答案为:C .【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.24.C【分析】根据“23=3+5;33=7+9+l1;43=13+15+17+19”,归纳出m3“分裂”出的奇数中最小的奇数是m(m﹣1)+1,把m=100代入,计算求值即可.【详解】解:23=解析:C【分析】根据“23=3+5;33=7+9+l1;43=13+15+17+19”,归纳出m3“分裂”出的奇数中最小的奇数是m(m﹣1)+1,把m=100代入,计算求值即可.【详解】解:23=3+5;33=7+9+l1;43=13+15+17+19;∵3=2×1+1,7=3×2+1,13=4×3+1,∴m3“分裂”出的奇数中最小的奇数是m(m﹣1)+1,∴1003“分裂”出的奇数中最小的奇数是100×99+1=9901,故选:C.【点睛】本题考查了数字变换规律,有理数的乘方,观察数据特点,正确找出数字的变化规律是解题的关键.25.B【分析】先根据平方差公式把每个括号内的式子分解因式,进一步计算乘法即得答案.【详解】解:原式====.故选:B.【点睛】本题考查了多项式的因式分解和有理数的简便运算,属于常解析:B【分析】先根据平方差公式把每个括号内的式子分解因式,进一步计算乘法即得答案.【详解】解:原式=111111111111111111115566779999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=46576898100991015566779999100100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ =41015100⨯ =101125. 故选:B .【点睛】本题考查了多项式的因式分解和有理数的简便运算,属于常考题型,熟练掌握分解因式的方法是解题关键.。

上海市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

上海市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

上海市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.相反数(共1小题)1.(2022•上海)8的相反数是( )A .8B .C .﹣8D .二.同类项(共1小题)2.(2021•上海)下列单项式中,a 2b 3的同类项是( )A .a 3b 2B .3a 2b 3C .a 2bD .ab 3三.平方差公式(共1小题)3.(2022•上海)下列运算正确的是( )A .a 2+a 3=a 6B .(ab )2=ab 2C .(a +b )2=a 2+b 2D .(a +b )(a ﹣b )=a 2﹣b 2四.二次根式的性质与化简(共2小题)4.(2023•上海)下列运算正确的是( )A .a 5÷a 2=a 3B .a 3+a 3=a 6C .(a 3)2=a 5D .=a5.(2021•上海)下列实数中,有理数是( )A .B .C .D .五.换元法解分式方程(共1小题)6.(2023•上海)在分式方程+=5中,设=y ,可得到关于y 的整式方程为( )A .y 2+5y +5=0B .y 2﹣5y +5=0C .y 2+5y +1=0D .y 2﹣5y +1=0六.反比例函数的性质(共2小题)7.(2023•上海)下列函数中,函数值y 随x 的增大而减小的是( )A .y =6xB .y =﹣6xC .y =D .y =﹣8.(2022•上海)已知反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)七.二次函数图象与几何变换(共1小题)9.(2021•上海)将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是( )A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变八.矩形的判定(共1小题)10.(2023•上海)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是( )A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D九.梯形(共1小题)11.(2023•上海)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是( )A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误一十.*平面向量(共1小题)12.(2021•上海)如图,在平行四边形ABCD中,已知=,=,E为AB中点,则+=( )A.B.C.D.一十一.圆与圆的位置关系(共1小题)13.(2021•上海)如图,长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外一十二.命题与定理(共1小题)14.(2022•上海)下列说法正确的是( )A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题一十三.旋转对称图形(共1小题)15.(2022•上海)有一个正n边形旋转90°后与自身重合,则n的值可能为( )A.6B.9C.12D.15一十四.频数(率)分布直方图(共1小题)16.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A.2kg/包B.3kg/包C.4kg/包D.5kg/包一十五.折线统计图(共1小题)17.(2023•上海)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同一十六.方差(共1小题)18.(2022•上海)我们在外卖平台点单时会有点餐用的钱和外卖费6元,小明和小红分别计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )A.平均数B.中位数C.众数D.方差上海市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.相反数(共1小题)1.(2022•上海)8的相反数是( )A.8B.C.﹣8D.【答案】C【解答】解:8的相反数为:﹣8.故选:C.二.同类项(共1小题)2.(2021•上海)下列单项式中,a2b3的同类项是( )A.a3b2B.3a2b3C.a2b D.ab3【答案】B【解答】解:A、字母a、b的指数不相同,不是同类项,故本选项不符合题意;B、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C、字母b的指数不相同,不是同类项,故本选项不符合题意;D、相同字母a的指数不相同,不是同类项,故本选项不符合题意;故选:B.三.平方差公式(共1小题)3.(2022•上海)下列运算正确的是( )A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【答案】D【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.四.二次根式的性质与化简(共2小题)4.(2023•上海)下列运算正确的是( )A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a【答案】A【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.5.(2021•上海)下列实数中,有理数是( )A.B.C.D.【答案】C【解答】解:A.=,不是有理数,不合题意;B.=,不是有理数,不合题意;C.=,是有理数,符合题意;D.=,不是有理数,不合题意;故选:C.五.换元法解分式方程(共1小题)6.(2023•上海)在分式方程+=5中,设=y,可得到关于y的整式方程为( )A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0【答案】D【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.六.反比例函数的性质(共2小题)7.(2023•上海)下列函数中,函数值y随x的增大而减小的是( )A.y=6x B.y=﹣6x C.y=D.y=﹣【答案】B【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.8.(2022•上海)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为( )A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)【答案】B【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.七.二次函数图象与几何变换(共1小题)9.(2021•上海)将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是( )A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变【答案】D【解答】解:A、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,a不变,开口方向不变,故不符合题意.B、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,抛物线的开口方向不变,对称轴不变,则y随x的变化情况不变,故不符合题意.D、将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,与y轴的交点也向下平移两个单位,故符合题意.故选:D.八.矩形的判定(共1小题)10.(2023•上海)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是( )A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D【答案】C【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.九.梯形(共1小题)11.(2023•上海)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是( )A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误【答案】D【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.一十.*平面向量(共1小题)12.(2021•上海)如图,在平行四边形ABCD中,已知=,=,E为AB中点,则+=( )A.B.C.D.【答案】A【解答】解:∵=,E为AB中点,∴=,∵四边形ABCD是平行四边形,∴==,∴+=+=,故选:A.一十一.圆与圆的位置关系(共1小题)13.(2021•上海)如图,长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【答案】C【解答】解:两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:AB=R﹣1,∵AB=4,圆B半径为1,∴R=5,即圆A的半径等于5,∵AB=4,BC=AD=3,由勾股定理可知AC=5,∴AC=5=R,AD=3<R,∴点C在圆上,点D在圆内,故选:C.一十二.命题与定理(共1小题)14.(2022•上海)下列说法正确的是( )A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.一十三.旋转对称图形(共1小题)15.(2022•上海)有一个正n边形旋转90°后与自身重合,则n的值可能为( )A.6B.9C.12D.15【答案】C【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.一十四.频数(率)分布直方图(共1小题)16.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【解答】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.一十五.折线统计图(共1小题)17.(2023•上海)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同【答案】B【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.一十六.方差(共1小题)18.(2022•上海)我们在外卖平台点单时会有点餐用的钱和外卖费6元,小明和小红分别计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )A.平均数B.中位数C.众数D.方差【答案】D【解答】解:因为计算了点单的总额和不计算外卖费的总额,所以两种情况计算出的数据一样的是方差,故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB图中考计算题类型归纳整理压强部分一、固体的切割、叠放问题1、如图 1 所示,边长分别为 0.2 米和 0.1 米的实心正方体 A 、B 放置在水平地面上,ρA 为0.l×l03 千克/米 3, ρB 为 0.8×l03 千克/米 3。

求:(3) 小明和小华两位同学设想在正方体 A 、B 上部沿水平方向分别截去一定的厚度后,通过计算比较A 、B 剩余部分对地面压强的大小关系。

小明设想在 A 、B 的上部均截去 0.09 米 , 小华设想在 A 、B 的上部均截去 0.05 米,他们的计算过程及得出的结论分别如下表所示: 计算过程 结论 小明 P A =F A /S A =ρA gh A =0.l×103千克/米3×9.8牛/千克×(0.2米一0.09米)=107.8帕P B =F B /S B =ρB gh B =0.8×103千克/米3×9.8牛/千克×(0.1米一0.09米) =78.4帕P A >P B 小华 P A =F A /S A =ρA gh A =0.l×103千克/米3×9.8牛/千克×(0.2米一0.05米)=147帕 P B =F B /S B =ρB gh B =0.8×103千克/米3×9.8牛/千克×(0.1米一0.05米)=392帕P A <P B①请判断:就他们设想截去的厚度而言,小明的结论是 的,小华的结论是 的。

( 均选填“正确”或“错误”)②是否有可能存在某一厚度 h ,沿水平方向截去 h 后使 A 、B 剩余部分对地面的压强相等?若有可能,求出 h 的值;若没有可能,说明理由。

2、边长为0.1米和0.3米的甲、乙两正方体放在水平地面上,它们对水平地面的压强相等,已知甲的密度为2×103千克/米3。

③ 若在正方体甲、乙上沿水平方向分别切去厚度,h 甲′和h 乙′后,使甲、乙剩余部分对水平地面的压强依然相等,则h 甲′︰h 乙′=___________(只要求写出结果)3、如图11所示,边长分别为0.2米和0.1米的实心正方体A、B 放置在水平地面上,ρA为0.2×l03千克/米 3, ρB为 0.3×l03千克/米 3。

求:(3)为使A、B对水平地面的压强相等,小芳与小李讨论后认为将正方体A沿水平方向切下体积V1一块后叠放到正方体B上方,或将正方体A沿竖直方向切下体积V2一块后叠放到正方体B上方都可以达到目的,请求出V1与V2的之比。

4、放置在水平地面上的两个物体A和B均为实心长方体,它们长、宽、高如图11所示.物体A的密度为0.8×103kg/m3,物体B的质量为8kg.求:(3)在保持物体A、B原有放置方式的情况下,若沿竖直方向截取物体,并通过一定的方法使它们对水平地面的压强相等.下表中有两种方案,请判断这两种方案是否可行,若认为行,计算所截取的长度.内容判断(选填“行”或“不行”)方案一从A的右侧截取一部分长方体叠放在B的上表面方案二分别从A、B的右侧按相同比例截取一部分长方体,叠放在对方剩余部分的上表面计算截取的长度.二、液体中物体(液体)的加入、抽入(拿出)1、如图11所示,薄壁圆柱形容器甲和乙内分别盛有质量均为2千克的水和酒精。

甲的底面积为0.01米2,乙的底面积为0.016米2。

求: ⑶为了使水和酒精对各自容器底部的压强相等,小明和小红分别设计了不同的方法,如右表所示。

请判断,________同学的设计可行;并求该方法中所要求的体积V ’。

(酒精的密度为0.8×103千克/米3)2、如图所示,A 、B 是两个完全相同的薄壁柱形金属容器,质量为0.5千克,底面积为0.01米2,容器高50厘米,分别装有2×10-3米3的水和3.0×10-3米3的酒精(ρ酒精=0.8×103千克/米3)。

求:(3)是否有可能存在某一深度h ,两个容器中的液体在同时增大或减少同一深度h 后,使容器中的液体对底部的压强达到p 水>p 酒?若有可能请算出h 的范围,若没有可能,说明理由。

同学 所设计的方法小明 分别在甲、乙中倒入相同体积的水和酒精。

小红 分别在甲、乙中抽出相同体积的水和酒精。

甲乙图113、如图11所示,甲乙两薄壁柱形容器放在水平桌面上,它们的高度均为0.5米,底面积分别为1×10-2米2和2×10-2米2,容器中分别盛有质量相同的A 、B 两种液体,且两液面到容器底的距离都是0.1米。

已知B 液体的密度为0.8×103千克/米3。

求:① B 液体的质量② 若在A 、B 两液体中分别浸没甲球和乙球,使液体对容器底部的压强相等,请计算甲乙两球的体积之间须满足的关系及它们的取值范围。

三、物体浸入液体后,液体对容器底部压强问题:1、如图10所示,高H =0.2米、底面积S =4×10-3米2的圆柱形容器放在水平地面上,容器内盛有h =0.18米高的水。

⑶若将一个体积为1×10-4米3的均匀实心立方体物块轻轻浸入容器中的水中,实心物块的密度至少为____________时,水对容器底部的压强达到最大值;求出:最大压强值为多少?2、如图所示,放在水平桌面上两个完全相同的柱形金属容器A 、B ,每个容器质量为0.5千克,底面是边长为10厘米的正方形,高为60厘米,分别装有2千克的水和3.0×10-3米3的酒精(ρ酒精=0.8×10-3千克/米3)求:(3)若将两个完全相同的底面边长为8厘米高为50厘米的金属柱体分别放入A 、B 两个容器中,是否有可能使容器中的液体对底部的压强达到p 水>p 酒?若有可能请算出p 水和p 酒的值(无需写出具体的计算过程);若没有可能,通过计算说明理由。

图10Hh3、如图11所示,相同的圆柱形容器A 和B 放在水平地面上,容器的质量为1千克,两容器各盛有2千克的水、酒精(ρ酒精=0.8×103千克/米3)。

③ 现有质量相等的甲、乙两实心物块,若将甲浸没在水中、乙浸没在酒精中后,两液体均未溢出,且两液体各自对容器底部的压强相等,则甲、乙的密度之比ρ甲︰ρ乙=________________。

五、物体浸入液体后,容器对桌面压强问题:1、如图所示是一个重力不计的平底饮料杯放在水平桌面上,内盛重为3牛的水,水的深度为0.1米,杯内、外底面积均为0.002米2,求: ③ 现将重为0.2牛的小木块轻轻地放入水中,则杯对桌面压强变化的范围为 帕。

3、如图11(a )所示,底面积为2×10-2米2的薄壁轻质圆柱形容器放在水平地面上,容器内水的深度为0.1米。

③ 如图11(b )所示,将容器放在密度为ρ的正方形木板的中央,若木板的边长为l 、厚度为h ,且a 1<l <a 2,b 1<h <b 2,求木板对水平地面的最大压强和最小压强。

(请用ρ、a 1、a 2、b 1、b 2等表示)六、液体对容器底部与容器对桌面压强的比较问题图11A B水酒精(b )(a )图14hll1.水平地面上有一质量为1千克的薄壁圆柱形容器,容器内盛有体积为2×10-3米3的水,将一实心物块浸没于水中后(水不溢出),容器内水的深度为20厘米,求:③若已知物块浸没于水中后,容器对地面压强的增加量是水对容器底压强增加量的3倍,是否可以求出该物块的密度?若不能,说明理由;若能,请算出结果。

2.水平地面上有一个质量为1千克、底面积为1×10-2米2的薄壁圆柱形容器,容器内盛有体积为2×10-3米3的水。

③在容器和地面之间垫上一块上表面积为S木的轻质木板后,再将一密度为2×103千克/米3的实心物块投入在水中,浸没并静止在容器底部后水不溢出。

若物块静止后,相比未放物块时木板对地面压强的增加量为Δp木对地、水对容器底部压强的增加量为Δp水对容器,请通过计算比较它们的大小关系及其对应的轻质木板S木的取值范围。

电路部分题型I :范围问题一:求滑动变阻器范围找到“在电路安全工作的条件下”滑动变阻器的阻值变化范围,是解题的关键。

变阻器阻值最大:串联电路中滑动变阻器两端电压最大时对应的阻值(取决于电压表的量程)。

变阻器阻值最小:总电流最大时滑动变阻器对应的阻值(取决于电流表的量程、滑动变阻器允许通过的最大电流)。

注意:(1)在电表量程不确定的情况下,需讨论电表的量程。

(2)在考虑安全问题时,每个电表和用电器都必须考虑到,尤其是当两个电表示数同时增大时,一定要取先到最大值的电表的范围,即取满足要求的“最小范围”。

1. 在图所示的电路中,电源电压为6伏,滑动变阻器标有“10Ω 1A ”字样。

闭合电键S ,电流表的示数为0.5安,电压表的示数为2伏。

若电流表选用0~0.6安量程,电压表选用0~3伏量程。

在电路安全的条件下,滑动变阻器R 2连入电路中电阻变化的范围。

2. 在如图所示的电路中,电源电压保持不变。

电路中滑动变阻器上标有“20Ω 2A ”字样,电流表的量程为0~0.6安,电压表的量程为0~3伏,电阻R 1的阻值为4欧。

当滑片在滑动变阻器的最右端a 点时,闭合电键,电压表的示数为1.5伏,为了保证电路能正常工作及各电表不致损坏,滑动变阻器的取值范围。

3. 在图所示的电路中,电源电压保持不变。

电阻R 1的阻值为30欧,滑动变阻器R 2上标有“20Ω ,2A ”字样。

电流表A 1与电流表A 2都有“0~0.6A ”和“0~3A ”两个量程。

闭合电键S ,电流表A 1的示数变化了0.4安。

移动变阻器的滑片P ,使电流表A 1的变化量达到最大,求变阻器连入电路的最大值和最小值。

二:求电流、电压(电表)范围R 1PA 1R 2 A 2 S这类题型关键还是在“电路安全工作”的大前提下实现。

串联电路中滑动变阻器两端电压表示数最大:滑动变阻器阻止最大。

总电流最大:滑动变阻器阻值最小。

9. 在图所示的电路中,电源电压为12伏且保持不变,电阻R 1的阻值为10欧,滑动变阻器R 2上标有“50Ω 2Α”字样。

闭合电键S 后,电路中的电流为0.3安。

现有阻值分别为R 、2R 的定值电阻,最大阻值分别为4R 、10R 的滑动变阻器,请选择定值电阻、变阻器各一个分别替换R 1、R 2,要求:在移动变阻器滑片P 的过程中,定值电阻两端电压的变化量最大。

选择:阻值为_____________的定值电阻、最大阻值为_____________的滑动变阻器。

求出:定值电阻两端电压的最大变化量∆ U 1为_____________。

相关文档
最新文档