机能实验学 神经干动作电位
神经干动作电位、兴奋传导速度和不应期测定实验报告
神经干动作电位、兴奋传导速度和不应期测定实验报告课程:机能实验基础医学院系临床班姓名学号组员:【实验目的】1.了解电生理仪器的使用。
2.观察蟾蜍坐骨神经动作电位的基本波形;学习神经干动作电位的记录方法以及潜伏期、幅值、时程的测量;3.学习神经干动作电位传导速度的测定方法。
加深理解神经兴奋传导的概念及意义。
4.了解神经干兴奋后兴奋性的改变。
学习测定不应期的方法。
【实验动物】牛蛙【实验结果】图一神经干动作电位观察到一个先升后降的双相动作电位波形(有刺激伪迹)。
时程为4ms,潜伏期为0.6ms,最大幅度为5.5V,(当刺激强度为1.0V时)。
图二神经干兴奋传导速度测定每个电极间距25mm,时间约为1.37ms,速度测定为18.2m/s图三神经的不应期测定(按时间顺序,从上到下、从左到右排列)【实验讨论】神经动作电位的观察神经细胞产生兴奋的客观标志是神经细胞的动作电位。
当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。
处于兴奋部位的膜外电位低于静息部位,当动作电位通过后,兴奋部位的膜外电位又恢复到静息水平,用电生理学方法可以引导并记录到此电位变化过程。
将一对引导电极置于神经干表面,当神经冲动通过时,两电极之间将产生一短暂的电位变化过程,即为神经干动作电位。
神经干动作电位是复合动作电位,可沿细胞膜做不衰减的传导,它的幅度在一定范围内与刺激强度成正比。
由于引导方式不同,记录到的神经干动作电位有双相和单相之分,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。
在神经干左端给与电刺激后,则产生一个向右传导的冲动(负电位),当冲动传导1电极(负电极)下方时,此处电位较2处低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,规定负波向上)。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
机能实验学 神经干动作电位的引导及其传导速度的测定
实验原理
细心观察、认真分析、科学总结
Experiment is father of science
双相动作电位形成的示意图(引导电极间距小于兴奋 区域长度时)
ห้องสมุดไป่ตู้冲动
电R位1RRR- 111坐--- 标,越往上负值越大
R1-
动动 R之 冲动 当1作作后动电作某电电,过位电一位位后R比位时2传未,R电继刻到2传恢位低续RR1到复继越1传R,,静2续多导电R无息下,,1位电波降负兴相位形,向奋等低R波区,1于幅上域波R值升继2形,越,续图负高出平回向现移到波正,基产相R线生1波R处2电位差RR开1R+1RR+1+始11++ 缩小,波形开始向下
神经干动作电位的引导及其传导速度的测定
实验内容
细心观察、认真分析、科学总结
Experiment is father of science
1. 实验目的与原理 2. 实验材料 3. 实验方法 4. 注意事项
实验目的
细心观察、认真分析、科学总结
Experiment is father of science
神经干双相动作电位与单根神经纤维的动作电位是不一样的! 两者既有联系,又有区别。
动作电位的引导
动作电位是神经细胞兴奋的客观标志,当神经纤维或 神经干受到有效刺激时,必然会产生可传导的动作电位, 也称为神经冲动。由于神经干动作电位是许多单根神经 纤维动作电位的复合,所以它的特征不同于单根神经纤 维的动作电位。本实验采用离体细胞外记录法,记录神 经干兴奋时两个记录电极之间的电位变化。
++++++++++++++
实验8神经干动作电位
兴奋性和动作电位的传导。
05 实验结论
CHAPTER
神经干动作电位的形成机制与传导方式
形成机制
神经干动作电位是由多个神经元 兴奋产生的电位变化,通过神经 元之间的电信号传递,最终形成 动作电位。
传导方式
神经干动作电位通过神经元之间 的突触连接传递,通过电信号的 传递,使兴奋在神经元之间传递 ,最终传导至整个神经干。
学习神经干动作电位的实验方法
01
学习如何使用电生理仪器记录神经干动作电位,包 括电极放置、信号放大、滤波等操作。
02
学习如何处理实验数据,包括数据采集、整理、分 析和解释等步骤。
03
了解实验过程中的注意事项和操作规范,以保证实 验结果的准确性和可靠性。
分析神经干动作电位的特点
01 分析神经干动作电位的波形特征,包括幅度、时 程、阈值等参数。
VS
影响因素
神经干动作电位的传导速度受到多种因素 的影响,包括神经元的直径、髓鞘的完整 性、温度等。这些因素通过影响神经元的 电导性和兴奋性来影响动作电位的传导速 度。
神经干动作电位的影响因素分析
01
刺激强度和频率
实验结果表明,神经干动作电位的产生和传导受到刺激强度和频率的影
响。在一定范围内,刺激强度和频率的增加会使神经元更容易兴奋并产
改进方向
未来研究可以进一步探讨不同条件下的神经 干动作电位,以及神经干动作电位与其他生 理过程之间的关系,以更全面地了解其形成 机制和传导方式。
谢谢
THANKS
数据处理与分析
对记录的神经干动作电位数据进行处理,如滤波、降噪等。
分析处理后的数据,如测量峰电位、阈电位等参数,并计算神经干的动作 电位传导速度。
根据实验结果,得出结论并分析可能的原因。
生理学实验神经干动作电位的测定
⽣理学实验神经⼲动作电位的测定实验四神经⼲动作电位的测定【实验⽬的】学习⽣物电活动的细胞外记录法;观察坐⾻神经⼲动作电位的基本波形、潜伏期、幅值以及时程。
【实验原理】神经组织属于可兴奋组织,其兴奋的客观标志是产⽣动作电位,即当受到有效刺激时,膜电位在静息电位的基础上将发⽣⼀系列的快速、可逆、可扩布的电位变化。
动作电位可以沿着神经纤维传导。
在神经细胞外表⾯,已兴奋的部位带负电,未兴奋的部位带正电。
采⽤电⽣理学实验⽅法可以引导出此电位差或电位变化,根据引导的⽅式不同,所记录到的动作电位可呈现单向或双向的波形。
由于坐⾻神经⼲是由许多神经纤维组成的,所以其产⽣的动作电位是众多神经纤维动作电位的叠加,即为⼀个复合动作电位。
这些神经纤维的兴奋性是不同的,所以在⼀定范围内增⼤刺激强度可以使电位幅度增⼤。
这和单⼀细胞产⽣的动作电位是有区别的。
本实验所引导出的动作电位即为坐⾻神经⼲的复合动作电位。
【实验对象】蛙或蟾蜍。
【实验材料】两栖类⼿术器械 1 套、滴管、BL-410⽣物机能实验系统、神经屏蔽盒、刺激电极、接收电极、任⽒液。
【实验步骤】1.制备坐⾻神经⼲标本坐⾻神经⼲标本的制备⽅法与制备坐⾻神经-腓肠肌标本相似。
⾸先按照制备坐⾻神经- 腓肠肌标本的⽅法分离坐⾻神经,当游离⾄膝关节处时,在腓肠肌两侧找到胫神经和腓神经,任选其⼀剪断,然后分离留下的⼀⽀直⾄⾜趾并剪断。
保留与坐⾻神经相连的⼀⼩段脊柱,其余组织均剪除。
此时,即制成了坐⾻神经⼲标本。
将标本浸于任⽒液中,待其兴奋性稳定后开始实验。
2.接标本与实验仪器1)棉球沾任⽒液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电(图 4-1 屏蔽盒)极端(即 0刻度端),其神经部分横搭在各个电极上。
2)取出 BL-410 ⽣物机能实验系统专⽤刺激电极,将其插头插在与主机“刺激”插⼝中,另⼀端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接⼝上。
红⾊接正极,⿊⾊接负极。
机能学实验2
机能学实验2蟾蜍坐骨神经动作电位的引导、神经干动作电位传导速度和兴奋性不应期的测定实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法;加深理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法;通过测定神经干不应期,理解可兴奋组织的兴奋性在兴奋过程中的变化过程;熟悉仪器设备的操作方法。
实验原理:神经干动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息部位,当动作电位通过后,兴奋处的膜外电位又恢复到静息时水平。
神经干兴奋过程所发生的这种膜电位变化称神经复合动作电位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极处,可记录到两个相反的电位偏转波形,称为双向动作电位。
产生一个可传播的动作电位是神经纤维兴奋的标志。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态;在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度。
神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,即绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才逐渐恢复。
实验对象:蟾蜍。
实验器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
实验步骤及结果记录:1、制备蟾蜍坐骨神经-腓神经标本(1)、取一只新鲜蟾蜍,洗净,用断髓法处死;(2)、剪除躯干上部及内脏,剥去皮肤,将标本置于盛有任氏液的烧杯中;(3)、游离坐骨神经:将标本仰卧位固定于分离蛙板上,沿脊柱两侧用玻璃分针分离一侧坐骨神经,在靠近脊柱处穿线、结扎并剪断。
轻轻提起结扎线,逐一剪去神经分支,游离坐骨神经后将蛙俯卧固定于蛙板上。
沿坐骨神经沟分离坐骨神经的大腿部分,用玻璃分针将腹部的坐骨神经小心,手执结扎线,剪断坐骨神经的所有分支一直游离至膝关节处。
(4)、游离腓神经,完成坐骨神经-腓神经标本制备:在膝关节处找到坐骨神经分支——胫、腓神经,剪断胫神经,沿腓肠肌内侧游离腓神经至踝关节处,用线结扎,在结扎远端剪断腓神经。
《神经干动作电位》课件
探索新的实验动物模型和实验方法,有助于更深入地研究 神经干动作电位的产生和调控机制,为神经系统疾病的治 疗提供新的思路和方法。
THANKS
感谢观看
03
神经干动作电位的记录与测量
记录方法
01
02
03
电极放置
将电极放置在神经干表面 或插入神经组织中,以记 录动作电位。
信号放大
使用放大器对记录到的微 弱电信号进行放大,以便 后续处理和分析。
滤波处理
通过滤波器去除噪声和其 他干扰信号,提高记录信 号的纯度。
测量参数
幅度
动作电位的最大值或最小 值,反映电位的强度。
神经元膜电位主要由细胞内外离子分布的不均衡所产生,例 如,细胞内的钾离子浓度相对较高,而细胞外的钠离子浓度 相对较高。这种不均衡的离子分布使得细胞膜具有一个内负 外正的电位差。
神经元膜电位的维持
神经元膜电位的维持主要依赖于钠钾泵的活动。钠钾泵是一 种跨膜蛋白,能够将钠离子和钾离子逆浓度差转运,从而维 持细胞内外离子分布的不均衡,进而维持神经元膜电位。
毒理学研究
神经干动作电位的变化可以作为某些有毒物质对神经 系统影响的评价指标,为毒理学研究提供依据。
06
未来研究方向与展望
神经干动作电位相关机制的深入研究
深入研究神经干动作电位的产生机制 ,包括其产生、传播和调控的分子和 细胞机制,有助于深入理解神经系统 的功能和疾病发生机制。
探索神经干动作电位在神经系统中的 信号传递和信息处理作用,有助于揭 示神经系统的工作原理和功能。
异常的神经干动作电位可以作为某些神经疾 病的诊断指标,如多发性硬化、神经根病变 等。
生理学实验 神经干动作电位的测定
实验四 神经干动作电位的测定【实验目的】学习生物电活动的细胞外记录法;观察坐骨神经干动作电位的基本波形、潜伏期、幅值 以及时程。
【实验原理】神经组织属于可兴奋组织,其兴奋的客观标志是产生动作电位,即当受到有效刺激时, 膜电位在静息电位的基础上将发生一系列的快速、可逆、可扩布的电位变化。
动作电位可以沿着神经纤维传导。
在神经细胞外表面,已兴奋的部位带负电,未兴奋的 部位带正电。
采用电生理学实验方法可以引导出此电位差或电位变化, 根据引导的方式不同, 所记录到的动作电位可呈现单向或双向的波形。
由于坐骨神经干是由许多神经纤维组成的, 所以其产生的动作电位是众多神经纤维动作 电位的叠加,即为一个复合动作电位。
这些神经纤维的兴奋性是不同的,所以在一定范围内 增大刺激强度可以使电位幅度增大。
这和单一细胞产生的动作电位是有区别的。
本实验所引 导出的动作电位即为坐骨神经干的复合动作电位。
【实验对象】蛙或蟾蜍。
【实验材料】两栖类手术器械 1 套、滴管、BL410生物机能实验系统、神经屏蔽盒、刺激电极、接 收电极、任氏液。
【实验步骤】1. 制备坐骨神经干标本坐骨神经干标本的制备方法与制备坐骨神经腓肠肌标本相似。
首先按照制备坐骨神经 腓肠肌标本的方法分离坐骨神经, 当游离至膝关节处时, 在腓肠肌两侧找到胫神经和腓神经, 任选其一剪断,然后分离留下的一支直至足趾并剪断。
保留与坐骨神经相连的一小段脊柱, 其余组织均剪除。
此时,即制成了坐骨神经干标本。
将标本浸于任氏液中,待其兴奋性稳定 后开始实验。
2.接标本与实验仪器1)棉球沾任氏液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电(图 4-1 屏蔽盒)极端(即 0刻度端),其神经部分横搭在各个电极上。
2)取出 BL410 生物机能实验系统专用刺激电极,将其插头插在与主机“刺激”插口 中, 另一端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接口上。
神经干动作电位实验报告
神经⼲动作电位实验报告神经⼲动作电位实验报Experimental report of neUhtstem action potential告Intern ship report实验报告⼀、实验⽬的:1. 学习蛙坐⾻神经⼲标本的制备2. 观察坐⾻神经⼲的双相动作电位波形,并测定最⼤刺激强度3. 测定坐⾻神经⼲双相动作电位的传导速度4. 学习绝对不应期和相对不应期的测定⽅法5. 观察机械损伤或局⿇药对神经兴奋和传导的影响⼆、实验材料1. 实验对象:⽜蛙2. 实验药品和器材:任⽒液,2%普鲁卡因,各种带USB接⼝或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪⼑,眼科剪,眼科镊,培养⽫,烧杯,滴管,蛙毁髓探针,BL-420N 系统三、主要⽅法和步骤:1. 捣毁脑脊髓2. 分离坐⾻神经3. 安放引导电极4. 安放刺激电极5. 启动试验系统6. 观察记录7. 保存8. 编辑输出四、实验结果和讨论1. 观察神经⼲双相动作电位引导(单通道,单刺激)如图,观察到⼀个双相动作电位波形。
Pm 驴:i SQOQOKi 2.0 ms 7 射¥也00z 时间⼀—j .................... : .................. 频率:最⼤值-...... ' ........ ' ......... [ ........ ;...... [协⼩值:-15 --20 _oo: oo. m兀卫EQ创2. 神经⼲双相动作电位传导速度测定(双通道,单刺激)kUUUChz L.U ns ZlT m¥ii J.ttmzj .................. ■:- I2? 1. WV1 I ----------- 14 I I 4 I I IooTio mo oa nr iins on oo oru oom coe co nr no⽇on m nn oo oo ni2 DO on rtu OO CIJ ri^oo oc OIA(1) 选择“神经⾻骼肌实验”⼀“…传导速度测定”(2) 改变单刺激强度(3) 传导速度=传导距离(R1--R2-)/传导时间(t 2-t 1)如图所⽰,两个波峰之间的传导时间△ t = (t 2-t 1) = 0.66ms实验中,我们设定在引导电极1和3之间的距离△ R = (R 1--R2-) = 1cm故传导速度v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/s1 OOY-ID释: 最⼤ii;■⼩值:平均值:嶂赠但?⾯租BJ祠;最知宜.环值:平均值:⽽租3. 神经⼲双相动作电位不应期观察-1B - -20 _I OOV, 4丐砂 |110:00.614 O0:0tJ.fil3 00:00.S22 CiO:OO.S2S 00:00.S30⼆黒 HL LJ倒 UJ S3时间:最⼤值; 最⼩值- 平均値删值时间:[Q1D |CO.QL. 3H g DI 3耨 OD Cd 00 W 3好 0⼝⽫ 11T 0Q D3 驀 1 OO.QJI 3R M :0i S? QIXQ1,諮孝 00:01.^7由上图可知,当刺激间隔时间为 4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。
机能实验神经干复合动作电位及其传导速和兴奋不应期的测定
【实验目的与原理】
本实验的目的是学习蛙类坐骨神经干动作电位的记录方并观察几种因素对 动作电位波形的影响,测定神经干动作电位传导速度与不应期,并观察神经干 动作电位的兴奋性变化以及损伤后波形的改变。
当前第5页\共有30页\编于星期五\9点
单根神经纤维动作电位具有两个主要特征:(一)“全或无”特性,即动作电位幅度不随 刺激强度和传导距离而改变.引起动作电位产生的刺激需要有一定强度,刺激达不到阈强 度,动作电位就不出现;刺激强度达到阈值后就引发动作电位,而且动作电位的幅度也就 达到最大值,再继续加大刺激强度,动作电位的幅度不会随刺激的加强而增加;(二)可扩 布性,即动作电位产生后并不局限于受刺激部位,而是迅速向周围扩布,直至整个细胞膜都 依次产生动作电位.因形成的动作电位幅值比静息电位到达阈电位值要大数倍,所以,其扩 布非常安全,且呈非衰减性扩布,即动作电位的幅度、传播速度和波形不随传导距离远近 而改变.动作电位幅度不随刺激强度和传导距离而改变的原因主要是其幅度大小接近于K+ 平衡电位与Na+平衡电位之和,以及同一细胞各部位膜内外Na+、K+浓差都相同的原故.
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电位。动作电位可沿神经纤维 传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。如果将两个引导电极分别置于正常的神经干表面 (细胞外记录),当神经干兴奋从一端向另一端传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转 波形,此即神经干的动作电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位是用细胞外记录法记录 到的已兴奋部位和未兴奋部位的电位差。
山东大学人体机能学报告之蟾蜍神经干
山东大学人体机能学实验报告【实验名称】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定【实验目的】加深理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。
熟悉仪器设备的操作。
【实验对象】蟾蜍【实验药品和器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
【实验步骤及方法】(详见书P57.P58)1.坐骨神经—腓神经标本的制备。
2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。
3.仪器连接。
4.BL-410的操作。
【实验结果】1.神经干动作电位的引导2.坐骨神经干动作电位传导速度V=(S2-S1)/(t2-t1)实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。
计算得到传导速度V=26.7m/s3.二次刺激在兴奋周期之后相对不应期受到二次刺激绝对不应期受到二次刺激二次刺激没有出现相应的动作电位。
【实验结论】实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。
计算得到传导速度V=26.7m/s【讨论与分析】1.神经干不能太干也不能太湿,剥离完整后在任氏液体中稳定15分钟左右,取出用滤纸吸干周围的任氏液。
2.神经干放置在引导电极上时,尽量拉直,不能使它下垂或斜向放置,以免影响神经干长度测量准确性。
3.神经干要尽可能长,两个引导电极之间的距离越远,测量的传导速度就越准确。
一、实验目的要求1.学习蟾蜍坐骨神经干标本的制备方法。
2.观察蛙坐骨神经干复合动作电位的波形,并了解其产生的基本原理。
二、实验原理1、神经干受到有效刺激后,可以产生动作电位,在另一端可以引导出双相的动作电位,如果在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相动作电位。
2、坐骨神经干是以由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。
复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。
神经干动作电位的观测实验报告
实验四、神经干动作电位的观测实验报告实验名称:神经干动作电位的观测一、实验目的1、观察蛙坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。
2、学习测定蛙或蟾蜍离体神经干上神经冲动传导速度的方法和原理。
3、学习测定神经干兴奋不应期的基本原理和方法。
二、实验原理神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
如果在离体神经干的一端施加刺激,从另一端引导传来的兴奋冲动,可以记录出双相动作电位;假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,这时候记录出的动作电位就称为单相动作电位。
神经细胞的动作电位是以“全或无”的方式发生的。
但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增大而增大的。
如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为 m,在两引导点分别引导出的动作电位的时相差为 s。
即可按照公式 u= m/s 来计算兴奋的传导速度(conduction velocity,CV)。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为 3~29 um,其中直径最粗的有髓纤维为 A 类纤维,传导速度在正常室温下为 35~40m/s。
神经每兴奋一次及其在兴奋以后的恢复过程中,其兴奋性都要经历一次周期性变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期 4 个时期。
为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激(conditioning stimulus,S1)引起神经兴奋,然后在前一兴奋及其恢复过程的不同时相再施加一个测试性刺激(test stimulus,S2),用以检查神经的兴奋阈值以及所引起的动作电位的幅值,以判定神经兴奋性的变化。
当刺激间隔时间长于 25ms 时,S1 和 S2 分别所引起动作电位的幅值大小基本相同。
当 S2 距离 S1 接近 20ms 左右时,发现 S2 所弓引起的第二个动作电位幅值开始减小。
人体机能_蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜 2011222709张芮 2011222698杨袁虹一、实验对象:蟾蜍二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
三、实验内容图一:阈刺激和最大刺激强度的测定由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V.图二:潜伏期波幅时程及速度的测定由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为 2.84ms ,波幅为 2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s图三:潜峰法测量速度如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s图四:绝对不应期和相对不应期的测定由上图可知当刺激间隔为4.3mS时,第二个刺激引起的动作电位幅度刚好开始降低,的第二个刺激已经落入第一次兴奋的相对不应期,当刺激间隔为1.6mS时,第二个动作电位完全消失,几次是第二个刺激落入第一个刺激的绝对不应期期。
相对不应期=总不应期-绝对不应期=4.3ms-1.6ms=2.7ms四、实验讨论1、为什么在一定范围内,用电刺激神经,动作电位随刺激强度增大而增大,并没有出现“全或无”的现象?答:一根神经纤维在受到阈值以上刺激产生动作电位不随着刺激强度增大而增大,但是坐骨神经干是有许多神经纤维组成的,在受到阈值以上刺激时,由于引起不同数目神经纤维产生动作电位,但是每个神经对刺激的兴奋性,随着刺激强度增大,神经纤维产生动作电位的数目也越多,动作电位的幅度也就越大,当全部神经纤维都产生动作电位时,动作电位的幅度就不会增大了.故在一定范围内,坐骨神经干动作电位的幅度为何随着刺激强度增大而增大.2、为什么兴奋上神经上出现单向传导?答:因为在一个神经纤维细胞上,当某点受到刺激时,形成产生动作电位,形成局部电流,双向传导,当电流传导到两个神经纤维细胞相接触的部位,即神经突触时,但是兴奋只能从突触前膜穿到突触后膜,所以兴奋上神经上是单向传导的。
机能实验
为什么神经干动作电位波形随着刺激强度而增加,达到一定幅度就不再增加?这是否与单根纤维动作电位“全”或“无”相矛盾,为什么?答:(1)给予刺激达到个别细胞阈强度,则个别细胞产生动作电位,随着刺激强度增加,产生动作电位的细胞数量增加,波形增大,当所有细胞都兴奋产生动作电位后,波形就不在增大。
(2)不矛盾。
因为神经干是由许多单一神经纤维组成的,每个神经纤维的兴奋性、阈值以及产生动作电位的幅度不一样,当给予神经干一个电刺激时,刺激强度的不同会引起一个到多个纤维同时兴奋,记录电极会把多个动作电位同时记录下来,因此他反应的是综合电位变化。
下述因素对尿量有何影响?分析其影响机制。
1)静注垂体后叶素2)静注大量生理盐水3)静注速尿4)静注20%葡萄糖答:(1)静注垂体后叶素:主要含ADH,提高远曲小管和集合管上皮细胞对水的通透性,水重吸收增加,尿液浓缩,尿量减少(2)静注大量生理盐水:血浆胶体渗透压减小,有效滤过压增加,肾小球滤过率增加;血容量增加,血压上升,容量感受器与压力感受器兴奋,ADH分泌减少,尿量增加。
(3)速尿作用于髓袢升支粗段,与氯离子竞争Na+ -K+-2CL-共同转运体的氯离子作用部位,使氯化钠重吸收减少,抑制肾对尿浓缩和稀释功能,引起大量水排泄,故尿量升高。
(4)20%葡萄糖:血糖超过肾糖阈,肾小管液渗透压升高,对抗肾小管对水的重吸收,故尿量增多,又称为渗透性利尿。
离体蛙心实验中,试分析下列实验因素对蛙心的影响及影响机理1)0.65Nacl 2ml2)2%CaCl2 1-2滴3)1%KCl 1-2滴答:(1) 加0.65%氯化钠,心肌收缩力下降,心率下降, 0.65%氯化钠是两栖类动物血浆等渗液,但缺乏钾离子,钙离子等,心肌细胞终末池不发达,贮钙能力差,心肌收缩则更多依赖外源性钙离子,钙离子减少.(2) 加钙离子,心肌收缩力增加,心率增加,钙离子浓度增加,平台期钙离子内流增加,心肌兴奋,收缩耦联增加,心肌收缩力增加;静脉窦自律细胞4期自动去极增加,自律性增加,心率增加(3) 加钾离子,心肌收缩力下降,心率下降,血钾离子增加,细胞内外差距减小,静息电位绝对值减小,减小到-55或-60毫伏,快钠通道失活,兴奋性下降;竞争性抑制钙离子内流,钙离子延缓,心肌兴奋,收缩耦联增加,心肌收缩力增加.试述下列各实验的结果,并分析结果产生的机理1)心血管活动的神经体液调节实验中,刺激迷走神经外周端;2)尿生成试验中,刺激迷走神经外周端。
机能实验神经干复合动作电位及其传导速度和兴奋不应期的测定
实验原理2 单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
医学PPT
下一7 页
单相动作电位(Monophasic Action Potential)
医学PPT
下1一3 页
实验步骤2
连接实验装置 Central end
Peripheral end
医学PPT
返回 14
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t
3.观察不应期条件:双刺激(串数2) 时间间隔↓
4.观察单向动作电位
医学PPT
返回
15
模拟结果
1.双相动作电位(Biphasic Action Potential)
实验目的
1.学习神经干标本的制备。
2.观察坐骨神经干的单相、双相动作电位、双 向性传导并测定其传导速度。
3.观察机械损伤对神经兴奋和传导的影响
4.学习绝对不应期和相对不应期的测定方法
5.了解蛙类坐骨神经干产生动作电位后其兴奋性 的规律性变化
医学PPT
返回 12
实验步骤1
制备蟾蜍坐骨神经干标本:
1:破坏脑和脊髓 2:去除头、上肢和内脏 3:剥去皮肤 4:清洗手和器械 5 :分离两腿 6:分离坐骨神经
相反的电位波形,称双相动作电位。
医学PPT
下一4 页
实验原理1 双相动作电位 (Biphasic Action Potential)
细胞外引导电极
检流计
兴奋区
医学PPT
【机能实验】神经干动作电位
3.测定传导速度(自动/手动)
(1)V=S/t(m/s)
(2)AP1与AP2的波峰的时差 r1点与r3点间的距离
20
S1 S2
S(cm)
r1 r2
r3 r4
21
4.检测兴奋性周期变化
• 绝对不应期 ∞
0
• 相对不应期 阈上
• 超常期
阈下
• 低常期
阈上
22
最大刺激强度
保持刺激强度和波宽不变
υ= S R1- R2- / Δt 计算出AP的传导速度。
+-
R1- R1 +
R2- R2 +
Central end
S R1- R2-
Peripheral end
υ=
S R1- R2-
Δt
Δt
10
2.5 测定单相动作电位 (monophasic action potential,MAP) 用镊子 夹伤对1对引导电极间的神经 干,然后用1.0V电压,波宽 0.1ms的单个方波激刺激神经 干中枢端,测定末梢端MAP振 幅和时程。
蛙离体神经干生物电信 号与兴奋性检测
1
RM-6240生物信号采集系统
2
1.材料和方法 (Materials and methods ) 1.2药品(drug) 任氏液
每升任氏液含 NaCl 6.5 g、KCl 0.14 g、CaCl2 0.12 g,、NaHCO3 0.20 g、NaH2PO4 0.01 g。
S+ S- E R1 - R1+ R2- R2+
刺激 电极
引导 电极
引导 电极
神经干标本盒
S+、S-刺激电极,E接地电极 ,r1- 、r1+和r2- 、r2+引导电 极,
神经干动作电位电生理实验
(2)测定神经干动作电位的不应期(正常情况)
刺激强度1=刺激强度2,脉冲宽度=0.1ms, 脉冲间隔从10ms开始逐渐减小至2左右
(3)绘制刺激强度—时间曲线
脉冲宽度从0.1开始逐渐增大,刺激强度1逐渐减小
(4)给药:
2%普鲁卡因→动作电位传导速度 利多卡因→动作电位不应期
实验结果的书写
V=20m/s
图1 神经干动作电位传导速度的测定 由图测得动作电位传导速度为20m/s
注意事项
标本尽可能游离得长些 分离神经时避免牵拉、损伤和干燥 神经毋倒置、扭曲,松紧适中 防短路(标本盒内不加任氏液,用棉球给药时溶液 量要少) 标本盒屏蔽,抗干扰(盖上盖子) 观察时间不宜过长(以免兴奋性发生改变) 刺激的波宽设置不宜过大(避免刺激伪迹过大)
功能学科教学实验
张 威
东1-103 54237310 wzhang@
神经干动作电位电生理实验
[原理] (一)神经干动作电位的特点
1. 复合电位,细胞外记录 2. 不完全符合“全”或“无”原则 3. 双向电位
(二)神经干动作电位记录方法
接地
刺激 引导 引导 1 2
(三) 神经干动作电位传导速度的测定
(一个刺激,两对引导电极) L (m/s) V= T2-T1
L
T1 T2 刺激伪迹
(四)神经干AP不应期的测定
(前后两个刺激,一对引导电极)
逐渐缩小两个刺激间的脉冲间隔
图2 神经干动作电位不应期测定
由图可测得 绝对不应期(ARP)=2ms, 相对不应期(RRP)=3ms ARP RRP
(四)绘制刺激时间-强度曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姚伟 医学院生理研究所
实验目的
• 掌握蛙类坐骨神经干单项及双相动作电位的记录 方法,了解电生理学试验研究方法。
• 掌握神经干动作电位的基本波形、潜伏期、幅值 和时程。
• 掌握神经兴奋的传导速度和不应期测量方法。
理论概述
① 安静时—— 静息电位 ② 受刺激时— 动作电位
理论概述
【实验内容和实验步骤】
(三)讨论
1.刺激伪迹是如何产生的? 2.记录神经干动作电位时,常在神经中枢端给予刺激,
而在外周端引导动作电位,为什么?
【实验内容和实验步骤】
(一)实验步骤
1、手术 (1)破坏蛙的脑和脊髓。 (2)剪除躯干上部及内脏。 (3)破皮及分离下肢。 (4)制备坐骨神经和腓神经标本
【实验内容和实验步骤】
2、仪器连接。
【实验内容和实验步骤】 (二)观察项目
1. 双相动作电位的波形特点、测定潜伏期、幅值及时程。 2. 测定阈强度和最大刺激强度。 3. 测定不应期。 4.测定神经干动作电位传到速度。