完整word版,人体机能 蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
神经干动作电位、兴奋传导速度和不应期测定实验报告
神经干动作电位、兴奋传导速度和不应期测定实验报告神经干动作电位、兴奋传导速度和不应期测定实验报告课程:机能实验基础医学院系临床班姓名学号组员:【实验目的】1.了解电生理仪器的使用。
2.观察蟾蜍坐骨神经动作电位的基本波形;学习神经干动作电位的记录方法以及潜伏期、幅值、时程的测量;3.学习神经干动作电位传导速度的测定方法。
加深理解神经兴奋传导的概念及意义。
4.了解神经干兴奋后兴奋性的改变。
学习测定不应期的方法。
【实验动物】牛蛙【实验结果】图一神经干动作电位观察到一个先升后降的双相动作电位波形(有刺激伪迹)。
时程为4ms,潜伏期为,最大幅度为,(当刺激强度为时)。
图二神经干兴奋传导速度测定每个电极间距25mm,时间约为,速度测定为s图三神经的不应期测定(按时间顺序,从上到下、从左到右排列)【实验讨论】神经动作电位的观察神经细胞产生兴奋的客观标志是神经细胞的动作电位。
当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。
处于兴奋部位的膜外电位低于静息部位,当动作电位通过后,兴奋部位的膜外电位又恢复到静息水平,用电生理学方法可以引导并记录到此电位变化过程。
将一对引导电极置于神经干表面,当神经冲动通过时,两电极之间将产生一短暂的电位变化过程,即为神经干动作电位。
神经干动作电位是复合动作电位,可沿细胞膜做不衰减的传导,它的幅度在一定范围内与刺激强度成正比。
由于引导方式不同,记录到的神经干动作电位有双相和单相之分,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。
在神经干左端给与电刺激后,则产生一个向右传导的冲动(负电位),当冲动传导1电极(负电极)下方时,此处电位较2处低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,规定负波向上)。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
神经干动作电位、传导速度以及不应期的测定
不应期
S1
S2
t t1
t2
方法和步骤
➢ 急性动物实验制备蟾蜍 坐骨神经干标本 ▪ 分离坐骨神经干标本, 任氏液保持标本湿润
观察项目
• 记录随刺激强度增强而改变的双向复合动作电位。 • 测量动作电位的传导速度。 • 交换神经干两端的方向,观察复合动作电位变化,原理? • 夹伤神经干观察复合动作电位变化。 • 不应期观测。
区域测量 刺激伪迹
观察项目:动作电位传导的双向性
• 将神经干标本放置方向倒换 • 记录数据 :双相动作电位波形有无变化
双相动作电位幅度有无变化
观察项目:动作电位传导的速度
最大刺 激强度
观察项目:不应期
• 刺激器参数设置 • 细电压 • 双刺激 • 间隔减小 • 程控
实验目的
❖分离蟾蜍的坐骨神经,细胞外记录坐骨神 经干的单相和双相复合动作电位;
❖测定动作电位在神经干上的传导速度 ❖不应期的观察
实验原理-1
❖ 神经细胞(纤维)受到有效刺激(阈刺激,阈上刺激) 后,产生了动作电位,即兴奋,它是“全或无”的;
❖ 神经干由许多不同的神经细胞组成,众多神经细胞动作 电位的组合即形成复合动作电位;
• 动作电位传导速度=( r1-r2 )/ (t2 - t1)
0
实验原理-3
• 在两记录电极间夹伤神经干,双相动作电位变单相动作电 位;在两记录电极前夹伤神经干,动作电位消失;
0
实验原理——4
• 神经干动作电位不应期的观察 • 条件刺激(S1):引起神经兴奋。 • 测试刺激(S2):在前一兴奋过程的不同时相
❖ 复合动作电位能在神经干表面传导,顺序通过两根引导 电极,被记录到双向复合动作电位。
神经干复合动作电位以及其传导速度和兴奋不应期的测定
神经干复合动作电位以及其传导速度和兴奋不应期的测定一目的要求1. 观察蛙坐骨神经复合动作电位的基本波形,并了解其产生的基本原理2. 学习测定蛙离体神经干上神经冲动传导速度的方法和原理3. 学习测定神经兴奋不应期的基本原理和方法二基本原理神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
如果在离体神经干的一段施加刺激,从另一端引导传来的神兴奋冲动,可以记录出双相电位,加入在引导的两个电极之间将神经干麻醉或损伤,阻断其兴奋传导能力,这时候记录出的动作电位就成为单相电位。
神经细胞的动作电位是以全或无的方式产生的。
但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增加而增大的。
如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为m,在两引导点分别引导出的动作电位的时相差为s。
即可按照公式v=m/s来计算出兴奋的传导速度。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下为35-40 m/s。
神经每兴奋一次极其在兴奋以后的回复过程中,其兴奋性都要经历一次周期性的变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期4个时期。
为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激引起神经兴奋,然后在前一兴奋及其恢复过程不同时相再施加一个测试性刺激,用于检查神经的兴奋阈值和所引起的动作电位的幅度,以判定神经兴奋性的变化。
三实验材料蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒,任氏液四实验步骤1反射时和反射弧的测定(1) 制备脊蛙(2) 悬挂支架测定反射时2神经干动作电位的测定(1) 坐骨神经标本的制作(2) 连接poewrlab通道,神经屏蔽盒(3) 打开scope软件设置(4) 刺激记录双相动作电位(5) 损伤神经测定单相动作电位五实验结果与分析(一) 反应时测定(单位:秒)(二) 反射弧分析(三) 神经干动作电位记录图 ?双相电位untitled : Page 24SmVVmsDelay:180ms Ch3Dural:20ms Range:2mv Ampl:6.00vCh2 Range:2vTime Base 200HZ Sample:256Time:1S ?单相电位untitled : Page 25S21mV-1-2210V-1-2msDelay:180ms Ch3Dural:20ms Range:2mvAmpl:6.00v Ch2Range:2vTime Base 200HZSample:256Time:1S神经干是由许多粗细不同的神经纤维组成。
人体机能实验报告
实验报告小组成员:王雅玲2011210087王兴桦2011210086王伟2011210085吴向东2011210091吴厚桦2011210089熊超玉2011210096吴启宗2011210090神经干动作电位的引导、传导速度和兴奋不应期的测定一、实验结果:动作电位的引导:动作电位的传导速度:兴奋不应期的测定:二、数据处理:1.电位的引导:潜伏期:0.6ms时程:1.9ms幅值:9.30mv2.传导速度(潜峰法):两个动作电位波峰间的时间差(t2-t1):12.24ms两对引导电极间的距离(s2-s1):2.5cmV=(s2-s1)/(v2-v1)=2.5/12.24(cm/ms)≈2.04m/s3.兴奋不应期时间:由图可知:绝对不应期:1.25ms有效不应期:3.80ms相对不应期=有效不应期-绝对不应期=(3.80-1.25)ms=2.55ms三、实验结论:1.引导的动作电位的潜伏期为0.6ms,时程为1.9ms幅值为9.30mv。
2.神经干动作电位的传导速度为2.04m/s。
3.神经干动作电位的有效不应期时间为3.80ms,其中绝对不应期时间为1.25ms,相对不应期时间为2.55ms。
四、实验讨论:1.为什么这次实验动作电位的引导的动作电位是双相的?答:当膜在外正内负的极化状态下爆发动作电位时,兴奋膜上的动作电位呈现外负内正的去极化状态,这样兴奋部位和邻近静息电位产生了电位差。
当兴奋传到第一根引导电极的时候膜外为负电位,相应第二根引导电极处膜电位为正,此时两根引导电极之间产生了一个正电位差,经过放大器放大,出现一个正的动作电位;当兴奋传到第二根引导电极时,膜外电位为负,第一根电极膜处电位恢复到0,此时产生了一个负的电位差,同理产生了一个负的动作电位,故为双相动作电位。
2.动作电位在传导过程中无衰减现象的意义?答:为了保证信息的完整性。
3.通常所记录的双相动作电位的第一相和第二相何以在波形、幅值上不对称?在什么情况下可以记录到对称的双相动作电位?答:(1)由于神经干由各种神经纤维混合而成,在一对引导电极下的神经纤维的数量和种类均不同,当产生动作电位时每一引导电极下参与动作电位的形成的数量及总类也均不同,故第一相和第二相在波形、幅值上不对称。
{最新文档}蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
{最新文档}蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定一、蟾蜍坐骨神经干动作电位引导及传导速度测定实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。
熟悉仪器设备的操作。
实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。
1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。
2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。
实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。
2.连接仪器,引导动作电位波形。
3.剪裁编辑图形,计算传导速度。
实验结果:1.(见图)2.计算S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s分析讨论:1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。
而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。
如果采用潜峰法测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。
2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度.实验结论:本实验中测出神经干动作电位的传导速度为33m/s。
由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。
人体机能 蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定
人体机能蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定神经干双向动作电位的引导传导速度及不应期的测定2022222681宋利婷组员:2022222702曾惜 2022222709张芮 2022222698杨袁虹一、实验对象:蟾蜍二、实验目的:观察蟾蜍坐骨神经动作电位的根本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
三、实验内容图一:阈刺激和最大刺激强度的测定由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度到达1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大〔适〕刺激强度为1.4V.图二:潜伏期波幅时程及速度的测定由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为 2.84ms ,波幅为 2.72mV,输入刺激电极到第一个引导电极间距离s =1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s图三:潜峰法测量速度如图是通过测量两个通道的动作电位波峰间的时间差,为〔 t1-t2〕,测量并输入两对引导电极间的距离为〔s2-s1〕,s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s图四:绝对不应期和相对不应期的测定由上图可知当刺激间隔为4.3mS时,第二个刺激引起的动作电位幅度刚好开始降低,的第二个刺激已经落入第一次兴奋的相对不应期,当刺激间隔为1.6mS时,第二个动作电位完全消失,几次是第二个刺激落入第一个刺激的绝对不应期期。
生理实验报告!
生理实验报告!蟾蜍坐骨神经干动作电位的引导、传导速度和兴奋不应期的测定【实验目的】1. 观察蟾蜍坐骨神经动作电位的基本波形,加深理解兴奋传导的概念,理解可兴奋性在兴奋过程中的变化过程;2. 进一步掌握坐骨神经—腓神经标本的制备方法与引导动作电位的方法;3. 进一步熟悉实验室里仪器设备的操作。
【实验原理】1. 神经干动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息部位,当动作电位通过后,兴奋处的膜外电位又恢复到静息时的水平。
神经干兴奋过程所发生的这种膜电位变化称神经复合动作单位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极,可记录到两个相反的电位偏转波形,称为双向动作电位;2. 神经纤维兴奋的标志是产生一个可传播的动作电位。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。
在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度;3. 神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,及绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才可恢复。
为了测定神经干在兴奋过程中的兴奋性变化,可用双刺激法检查刺激引起的兴奋阙值和电位变化,即可观察到神经组织兴奋性的变化过程。
【实验对象】蟾蜍【实验器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液(林格液)等。
【实验步骤】制备蟾蜍坐骨神经-腓神经标本,并放入神经屏蔽盒内;(一)双相动作电位1.打开BL-410?实验项目?神经肌肉实验?神经干动作电位引导?记录出双相动作电位;2.由小到大改变刺激强度,记录阈强度和最大刺激强度;3.观察双相动作电位波形,测量最适刺激强度时的潜伏期、时程和波幅; (二)引导出最大刺激强度时的动作电位波形1.BL-410仪器操作:实验项目?神经肌肉实验?神经干动作电位传导速度测定?输入两电极之间的距离分别用潜伏期法和潜峰法测量其传导速度;2.潜伏期法:测量第一个通道动作电位潜伏期的时间(t),输入刺激电极到第一个引导电极间的距离(S),屏幕右上角显示传导速度和根据速度的公式计算传导速度:v=S/t;3.潜峰法:测量两个通道电位的动作电位的波峰间的时间差,为(t2-t1),测量并输入两对引导电极间的距离为(S2-S1),屏幕右上角显示传导速度和用公式计算传导速度:v=(S2-S1)/(t2-t1)。
机能实验-神经干复合动作电位及其传导速度与兴奋不应期的测定-
实验原理2
单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
下一页
单相动作电位(Monophasic Action Potential)
下一页
实验步骤2
连接实验装置
Central end Peripheral end
返回
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t 3.观察不应期条件:双刺激(串数2) 时间间隔↓ 4.观察单向动作电位
返回
模拟结果
1.双相动作电位(Biphasic Action Potential)
返回
双相动作电位曲线
下一页
模拟结果
2.单相动作电位(Monophasic Action Potential): 阻断或损伤引导电极1和2之间的神经干组织。
单相动作电位
下一页
模拟结果
3.动作电位幅值与刺激强度之间的关系。
下一页
模拟结果
4. 传导速度测定
传导速度测定 υ=
SAC Δt
下一页
模拟结果
5. 不应期测定
两个记录电极之间的神经损伤后,动作电位有何变 化?为什么?
当两个刺激脉冲的时间间隔逐渐缩短时,第二个动 作电位如何变化?为什么?
返回
总结讨论、结论
神经干受刺激后,以膜外记录方式可记录 到一个双相动作电位(简单描述其特点), 在两个引导电极间损伤神经其动作电位变 为单相 所测得的动作电位传导的速度及绝对不应 期、相对不应期的时程。
【2017年整理】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定
人体机能学实验报告姓名张立鑫2010221460 专业临床二系年级2010级班次4班赵文韬2010221470 日期2011年9月14日郑维金2010221473钟原2010221475【实验名称】蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定【实验目的】加深理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。
熟悉仪器设备的操作。
【实验对象】蟾蜍【实验药品和器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
【实验步骤及方法】(详见书P57.P58)1.坐骨神经—腓神经标本的制备。
2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。
3.仪器连接。
4.BL-410的操作。
【实验结果】1.神经干动作电位的引导2.坐骨神经干动作电位传导速度V=(S2-S1)/(t2-t1)实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。
计算得到传导速度V=26.7m/s3.二次刺激在兴奋周期之后相对不应期受到二次刺激绝对不应期受到二次刺激二次刺激没有出现相应的动作电位。
【实验结论】实验测得两对引导电极之间的距离为1.6cm,两个通道的动作电位波峰间的时间差为0.60ms。
计算得到传导速度V=26.7m/s【讨论与分析】1.神经干不能太干也不能太湿,剥离完整后在任氏液体中稳定15分钟左右,取出用滤纸吸干周围的任氏液。
2.神经干放置在引导电极上时,尽量拉直,不能使它下垂或斜向放置,以免影响神经干长度测量准确性。
3.神经干要尽可能长,两个引导电极之间的距离越远,测量的传导速度就越准确。
运动与健康题目:体育锻炼对运动系统的影响指导老师:欧阳靜仁班级:热能092班姓名:林灿雄学号:200910814223摘要:这篇文章通过对人体运动系统组成的介绍,以及体育锻炼对运动系统的作用和影响的一点点描述,给平时不重视锻炼的人说明了体育锻炼的好处,希望能够有更多的人重视体育锻炼。
蟾蜍坐骨神经干动作电位的引导 (自动保存的)
蟾蜍坐骨神经干动作电位的引导、传导速度和兴奋性不应期的测定一、实验目的1、熟悉仪器设备的操作。
2、掌握神经干动作电位的引导及传导速度的测定方法。
3、测定神经干不应期,理解可兴奋组织的兴奋性在兴奋过程中的变化过程。
二、实验原理1、将两个引导电极置于神经干表面时,动作电位将先后通过两个电极引导处,可记录到电位偏转波形。
2、在示波器上测量动作电位传导一定距离所耗费的时间,可计算出兴奋的传导速度。
3、神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,即绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才逐渐恢复。
可先给一个条件刺激以引起兴奋,然后再用另一检验性刺激在前一兴奋的不同时相给予刺激,检查神经对检验性刺激反应的兴奋阈值以及所引起的动作程度,即可观察到神经组织兴奋性的变化过程。
三、实验对象:蟾蜍。
四、实验器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏夜等。
五、实验步骤1、制备蟾蜍坐骨神经干标本(1)脊髓捣毁法处死蟾蜍,剪除躯干上部和内脏,注意勿损伤到坐骨神经,仅留下下后肢、骶骨、脊柱和坐骨神经。
(2)剥皮:握住脊柱断面(不要触碰神经),剥掉蟾蜍的皮肤。
(3)游离坐骨神经:沿脊柱一侧用玻璃探针分离坐骨神经,将其结扎并剪断。
再将坐骨神经大腿部分从坐骨神经沟中游离出来,将坐骨神经一直游离到腘窝处。
(4)游离腓神经,在此过程中动作要轻,切勿损伤神经。
2、仪器连接。
3、实验观察。
六、实验结果1、测量阈值。
能引起动作电位的最小刺激强度,称为刺激的阈值。
由实验统计可知,该坐骨神经干的阈值为0.300V,但是,该图中的波形不是怎么稳定,这可能与实验样本制作的质量有关。
2、(1)(2)(3)(4)图(1)为潜峰法测得的神经干动作电位的传导速度,两个通道的动作电位波峰的时间差为t2-t1=0.6ms,两对引导电极间的距离为S2-S1=1.8cm.屏幕上显示的传导速度为28.3m/s,利用公式计算的传导速度v=(S2-S1)/(t2-t1)=30m/s.图(2)为双相动作电位图。
实验一神经干动作电位的引导,兴奋传导速度及不应期的测定
神经干动作电位、传导速度及不应期的测定【目的和原理】神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。
在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。
本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。
神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。
其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。
神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。
本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。
掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。
【实验对象】蟾蜍或蛙。
【实验器材和药品】蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。
【实验步骤】1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。
2.连接装置(见图8-1-1)。
3.准备仪器:(1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。
调节延迟使动作电位的图像位于示波器荧光屏的中央。
(2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。
4.观察项目:图8-1-1 神经干动作电位引导装置图(1)测量单、双相动作电位的潜伏期、时程和振幅,填入下表:(2)测算动作电位的传导速度:V=S/△t (米/秒)式中:S为R1到R3的神经干长度,以米为单位。
t为上、下线动作电位起点的时间差,以秒为单位。
蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
神经干双向动作电位的引导传导速度及不应期的测定组员:陈良鹏肖瑶伍思静袁果曼罗冰清实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
实验对象:蟾蜍实验药品和器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
实验原理:1、神经动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息电位;当动作电位通过后,兴奋处的膜外电位又恢复到静息时水平。
神经干兴奋过程所发生的膜电位变化称神经复合动作电位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极处,可记录到两个相反的电位偏转波形,称为双向动作电位。
2、神经纤维兴奋的标志是产生一个可传播的动作电位。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。
在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度。
3、神经与肌肉等可兴奋组织兴奋性在一次兴奋过程中可发生系列变化,即绝对不应期相对不应期超常期和低常期,组织的兴奋性才逐渐恢复。
为了测定神经干在兴奋过程中的兴奋性变化,可先给一个条件刺激以引起神经兴奋,然后再用另一检验性刺激,检查神经对检验性刺激反应的兴奋阈值以及所引起的动作电位(AP)幅度,即可观察到神经组织兴奋性的变化过程。
在本次实验中,主要观察的是不应期的变化,而非整个兴奋性的周期性变化。
实验对象:蟾蜍实验步骤及方法:1.坐骨神经—腓神经标本的制备。
2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。
3.仪器连接。
4.BL-410的操作。
实验内容:1、刺激坐骨神经时诱发产生的动作电位由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.32ms,时程t1为 1.92ms ,波幅为11.08mV。
机能实验-神经干复合动作电位及其传导速度和兴奋不应期的测定-
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位 有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电 位。动作电位可沿神经纤维传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。 如果将两个引导电极分别置于正常的神经干表面(细胞外记录),当神经干兴奋从一端向另一端 传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转波形,此即神经干的动作 电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位 是用细胞外记录法记录到的已兴奋部位和未兴奋部位的电位差。
2.神经损伤后为什么会出现肌肉萎缩?
神经除能使所支配的组织在功能上发生变化以外,神经末梢还经常释放某些营养因子,持续地调整所支 配组织的内在代谢活动,影响其持久性的结构、生化和生理变化。这一作用称为神经的营养作用。当神 经受损后,其所支配的肌肉内糖原合成减慢,蛋白质分解加速,肌肉就会逐渐萎缩。
检流计 细胞外引导电极
兴奋区
损伤区
实验原理3 动作电位传导速度的测定
Measurement of Conduction Velocity of AP
Δt 传导速度测定 υ= SAC
Δt
实验原理4
不应期的测定
神经组织在接受一次刺激产生兴奋后,其兴奋性 将会发生规律性的变化,依次经过绝对不应期、相 对不应期、超常期和低常期,然后回到正常水平。
神经实验2神经干动作电位传导速度和不应期测定
神经实验2神经干动作电位传导速度和不应期测定实验2 神经干动作电位的引导神经干动作电位的传导速度和不应期测定一、实验目的1、学习蟾蜍坐骨神经标本的制备方法2、观察神经干动作电位的波形,学习神经兴奋传导速度的测定方法,观察神经干在一次兴奋后兴奋性的变化。
3、学习生物信号采集分析系统。
二、实验原理可兴奋组织如神经纤维在受刺激而兴奋时,细胞膜电位将发生一系列短暂的变化。
由安静状态下的膜外正膜内负的静息电位变为兴奋状态下的膜外负膜内正的去极化状态。
因此,在膜外兴奋区相对于未兴奋区来说电位为负。
这种电位差所产生的局部电流又引起邻近未兴奋区的去极化,使兴奋沿细胞膜传向整个细胞,而原来的兴奋区的膜电位又恢复到膜外正膜内负的静息水平。
这种可传播的、短暂的膜电位变化称之为动作电位。
可兴奋组织在一次兴奋之后,其兴奋性要经历一个规律的时相变化,依次是绝对不应期、相对不应期、超常期和低常期,然后才恢复到正常的兴奋性水平。
本实验旨在观察动作电位的基本波形、潜伏期、幅值及时程,观察不同刺激强度对神经干动作电位波形的影响。
了解神经兴奋传导速度测定的基本原理和方法,以及神经兴奋后兴奋性变化的规律。
三、实验器材蟾蜍常用手术器械、蛙板、铜锌弓电极、毁髓针、玻璃解剖针、神经屏蔽盒、电极、蛙钉、任氏液、烧杯、培养皿、生物信号采集分析系统。
四、实验步骤1、坐骨神经干的制备双毁髓,制备下肢标本,制备坐骨神经标本。
2、连接实验装置将分离好的坐骨神经干标本放在神经屏蔽盒内的电极上,中枢端置于刺激电极,末梢端置于引导电极。
3、实验项目打开生物信号采集分析系统,进入实验模块:依次选择“神经干动作电位的引导”、“神经干兴奋传导速度的测定”、“神经干兴奋不应期测定”。
选择适当参数,进行实验。
(1)阈刺激和最大刺激先将刺激强度设为零,再逐渐增大,直至出现动作电位时(此时的刺激强度即为阈强度);逐渐增大至动作电位幅度达到最大值为止,该强度的刺激为最大刺激(记下该强度值)。
人体机能_蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜 2011222709张芮 2011222698杨袁虹一、实验对象:蟾蜍二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
三、实验内容图一:阈刺激和最大刺激强度的测定由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V.图二:潜伏期波幅时程及速度的测定由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为 2.84ms ,波幅为 2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s图三:潜峰法测量速度如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s图四:绝对不应期和相对不应期的测定由上图可知当刺激间隔为4.3mS时,第二个刺激引起的动作电位幅度刚好开始降低,的第二个刺激已经落入第一次兴奋的相对不应期,当刺激间隔为1.6mS时,第二个动作电位完全消失,几次是第二个刺激落入第一个刺激的绝对不应期期。
相对不应期=总不应期-绝对不应期=4.3ms-1.6ms=2.7ms四、实验讨论1、为什么在一定范围内,用电刺激神经,动作电位随刺激强度增大而增大,并没有出现“全或无”的现象?答:一根神经纤维在受到阈值以上刺激产生动作电位不随着刺激强度增大而增大,但是坐骨神经干是有许多神经纤维组成的,在受到阈值以上刺激时,由于引起不同数目神经纤维产生动作电位,但是每个神经对刺激的兴奋性,随着刺激强度增大,神经纤维产生动作电位的数目也越多,动作电位的幅度也就越大,当全部神经纤维都产生动作电位时,动作电位的幅度就不会增大了.故在一定范围内,坐骨神经干动作电位的幅度为何随着刺激强度增大而增大.2、为什么兴奋上神经上出现单向传导?答:因为在一个神经纤维细胞上,当某点受到刺激时,形成产生动作电位,形成局部电流,双向传导,当电流传导到两个神经纤维细胞相接触的部位,即神经突触时,但是兴奋只能从突触前膜穿到突触后膜,所以兴奋上神经上是单向传导的。
蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定
蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定【实验目的】:1. 熟悉两栖类动物的手术实验操作2. 学习制备蟾蜍坐骨神经干标本3. 掌握测定神经干动作电位传导速度的方法4. 掌握兴奋性不应期的测定方法【实验对象】: 蟾蜍【实验结果】:1.潜伏期概念: 潜伏期是指从刺激开始到神经干产生动作电位前伪迹所用的一段时间. 如图1,潜伏期为0.64ms.2.时程概念: 时程是指从神经干产生动作电位到恢复原状的一段时间。
如图2,时程为2.02ms.3.幅值概念: 幅值是指从波峰到波谷的数值。
如图3可知: 幅值=6.48-(-4.96)=11.44mv.4.神经干动作电位的传导速度潜伏期是指从刺激开始到神经干产生动作电位前伪迹所用的一段时间.故一通路的潜伏期t=0.58ms.做实验时记录的输入刺激的电极到第一个引导电极间的距离s=0.8cm. 所以传导速度v=s/t=13.79m/s.5.总不应期概念:总不应期是指当两个刺激的间隔逐渐缩短时,第二个刺激引起的动作电位的幅度刚好开始降低时,两个刺激的间隔时间即为总不应期,如图5,总不应期t1=19.00ms.6。
绝对不应期概念:绝对不应期是指在组织受到刺激发生兴奋后的一个较短的时间内,无论给予多么强大的刺激,都不能产生新的兴奋的时期。
如图6,即为绝对不应期t2=1.00ms.7。
相对不应期概念:相对不应期是指,在绝对不应期之后,神经干所产生的动作电位有所恢复,用较强的刺激可使神经干产生新的兴奋,这一时期即为相对不应期。
所以,相对不应期=总不应期—绝对不应期,即,相对不应期t3=19.00—1.00=18.00ms.。
机能实验神经干复合动作电位及其传导速度和兴奋不应期的测定
实验原理2 单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
医学PPT
下一7 页
单相动作电位(Monophasic Action Potential)
医学PPT
下1一3 页
实验步骤2
连接实验装置 Central end
Peripheral end
医学PPT
返回 14
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t
3.观察不应期条件:双刺激(串数2) 时间间隔↓
4.观察单向动作电位
医学PPT
返回
15
模拟结果
1.双相动作电位(Biphasic Action Potential)
实验目的
1.学习神经干标本的制备。
2.观察坐骨神经干的单相、双相动作电位、双 向性传导并测定其传导速度。
3.观察机械损伤对神经兴奋和传导的影响
4.学习绝对不应期和相对不应期的测定方法
5.了解蛙类坐骨神经干产生动作电位后其兴奋性 的规律性变化
医学PPT
返回 12
实验步骤1
制备蟾蜍坐骨神经干标本:
1:破坏脑和脊髓 2:去除头、上肢和内脏 3:剥去皮肤 4:清洗手和器械 5 :分离两腿 6:分离坐骨神经
相反的电位波形,称双相动作电位。
医学PPT
下一4 页
实验原理1 双相动作电位 (Biphasic Action Potential)
细胞外引导电极
检流计
兴奋区
医学PPT
实验三动作电位传导速度和不应期测定
浙江大学实验报告课程名称:生理学实验实验项目:实验三蛙类坐骨神经动作电位传导速度和不应期的测定实验日期:2016年10月日(周)姓名学号班级:第组,同组者:实验地点:紫金港生物实验中心311[目的]1、测定蛙类坐骨神经的绝对不应期和相对不应期,并了解其测定原理。
2、测定蛙类坐骨神经兴奋的传导速度并了解其原理。
[原理]1、神经在一次兴奋的过程中,其兴奋性也发生一个周期性的变化,而后才恢复正常。
兴奋性的周期变化,依次包括绝对不应期、相对不应期、超常期和低常期4个时期。
为了测定坐骨神经在—次兴奋后兴奋性的周期变化,首先要给神经施加一个条件刺激(S1)引起神经兴奋,然后再用一个测试性刺激(S2),在前一兴奋过程的不同时相给以刺激,用以检查神经的兴奋阈值以及所引起的动作电位的幅值,以判定神经兴奋性的变化。
当刺激间隔时间长于25 ms时,S1和S2分别所引起动作电位的幅值大小基本相同。
随着S2距离S1逐渐接近,发现S2所引起的第二个动作电位幅值开始减小时即为落入相对不应期。
再逐渐使S2向S1靠近,第二个动作电位的幅值则继续减小。
最后可因S2落在第一个动作电位的绝对不应期内而完全消失。
2、神经干受到有效刺激兴奋以后,产生的动作电位以脉冲的形式按一定的速度向远处扩布传导。
不同类型的神经纤维其传导兴奋的速度是各不相同的。
总体说来,直径粗的纤维传导速度快,直径相同的纤维有髓纤维比无髓纤维传导快。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3--29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下大约为35--40 m/s。
测定神经纤维上兴奋的传导速度(v)时,在远离刺激点的不同距离处分别引导其动作电位,两引导点之间的距离为s,在两引导点分别引导出的动作电位的时相差为t。
再按照下面的公式来计算其传导速度:v=s/t。
[实验材料]蛙常用手术器械蛙板任氏液培养皿烧杯神经屏蔽盒Medlab生物信号采集系统[实验流程]剥制神经干标本→调试仪器设置实验参数→神经干动作电位传导速度的测定→神经干兴奋不应期的测定[实验步骤]一、蛙坐骨神经干标本制备1.毁蛙脑脊髓,去躯干上部及内脏和皮肤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜2011222709张芮2011222698杨袁虹
一、实验对象:蟾蜍
二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
三、实验内容
图一:阈刺激和最大刺激强度的测定
由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,
逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V.
图二:潜伏期波幅时程及速度的测定
由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为2.84ms ,波幅为2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s
图三:潜峰法测量速度
如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s
图四:绝对不应期和相对不应期的测定
由上图可知当刺激间隔为4.3mS时,第二个刺激引起的动作电位幅度刚好开始降低,的第二个刺激已经落入第一次兴奋的相对不应期,当刺激间隔为1.6mS时,第二个动作电位完全消失,几次是第二个刺激落入第一个刺激的绝对不应期期。
相对不应期=总不应期-绝对不应期=4.3ms-1.6ms=2.7ms
四、实验讨论
1、为什么在一定范围内,用电刺激神经,动作电位随刺激强度
增大而增大,并没有出现“全或无”的现象?
答:一根神经纤维在受到阈值以上刺激产生动作电位不随着刺激强度增大而增大,但是坐骨神经干是有许多神经纤维组成的,在受到阈值以上刺激时,由于引起不同数目神经纤维产生动作电位,但是每个神经对刺激的兴奋性,随着刺激强度增大,神经纤维产生动作电位的数目也越多,动作电位的幅度也就越大,当全部神经纤维都产生动作电位时,动作电位的幅度就不会增大了.故在一定范围内,坐骨神经干动作电位的幅度为何随着刺激强度增大而增大.
2、为什么兴奋上神经上出现单向传导?
答:因为在一个神经纤维细胞上,当某点受到刺激时,形成产生动作电位,形成局部电流,双向传导,当电流传导到两个神经纤维细胞相接触的部位,即神经突触时,但是兴奋只能从突触前膜穿到突触后膜,所以兴奋上神经上是单向传导的。