高中数学抛物线练习(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1抛物线的定义:平面与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2
抛物线的图形和性质:
①顶点是焦点向准线所作垂线段中点。
⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、
准线是公切线。
⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样
的圆过定点F 、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:
4
抛物线
5一般情况归纳:
抛物线的定义:
例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义.
例2:斜率为1的直线l 经过抛物线y 2
=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.
分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.
解:如图8-3-1,y 2
=4x 的焦点为F (1,0),则l 的方程为y =x -1.
由⎩⎨⎧+==1
42x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则
()()()8262112121=+=++=+++='+'x x x x B B A A
点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。
例3:(1) 已知抛物线的标准方程是y 2
=10x ,求它的焦点坐标和准线方程;
(2) 已知抛物线的焦点是F (0,3)求它的标准方程;
(3) 已知抛物线方程为y =-mx 2
(m >0)求它的焦点坐标和准线方程; (4) 求经过P (-4,-2)点的抛物线的标准方程;
分析:这是为掌握抛物线四类标准方程而设计的基础题,解题时首先分清属哪类标准型,再录求P 值(注意p >0).特别是(3)题,要先化为标准形式:y m x 12
-
=,则m
p 1
2=.(4)题满足条件的抛物线有向左和向下开口的两条,因此有两解. 答案:(1) ⎪⎭⎫ ⎝⎛025
,F ,25-
=x .(2) x 2=12y (3) ⎪⎭⎫ ⎝
⎛-m F 410,,m y 41=
;(4) y 2=-x 或x 2
=-8y . 例4 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2); (2)焦点在直线x -2y -4=0上
分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论
解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0), ∵过点(-3,2), ∴4=-2p (-3)或9=2p ·2
∴p =
32或p =4
9 ∴所求的抛物线方程为y 2=-
34x 或x 2=29y ,前者的准线方程是x =31,后者的准线方程是y =-8
9 (2)令x =0得y =-2,令y =0得x =4, ∴抛物线的焦点为(4,0)或(0,-2)
当焦点为(4,0
,
∴p=8,此时抛物线方程y2
x;
焦点为(0,-2,
∴p=4,此时抛物线方程为x2=-8y
∴所求的抛物线的方程为y2=16x或x2=-8y,
对应的准线方程分别是x=-4,y=2
常用结论
①过抛物线y2=2px的焦点F的弦AB长的最小值为2p
②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2
③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2p,0)
例5:过抛物线y2=2px (p>0)的顶点O作弦OA⊥OB,与抛物线分别交于A(x1,y1),B(x2,y2)两点,求证:y1y2=-4p2.分析:由OA⊥OB,得到OA、OB斜率之积等于-1,从而得到x1、x2,y1、y2之间的关系.又A、B是抛物线上的点,故(x1,y1)、(x2,y2)满足抛物线方程.从这几个关系式可以得到y1、y2的值.
证:由OA⊥OB
y1y2=-x1x2
而y1y2≠0.所以y1y2=-4p2.
弦的问题
例1 A,B是抛物线y2=2px(p>0)上的两点,满足OA⊥OB(O为坐标原点)求证:(1)A,B两点的横坐标之积,纵坐标之积为定值;
(2)直线AB经过一个定点
(3)作OM⊥AB于M,求点M的轨迹方程
解:(1)设A(x1,y1), B(x2,y2), 则y12=2px1, y22=2px2,
∴y12y22=4p2x1x2,
∵OA⊥OB, ∴x1x2+y1y2=0,
由此即可解得:x1x2=4p2, y1y2=─4p2 (定值)
(2)直线AB的斜率
∴直线AB的方程为y─y1
即y(y1
+y2)─y1y2=2px, 由(1)可得直线AB过定点C(2p,0)
(3)解法1:设M(x,y), 由(2)知
(i),
又AB⊥OM, 故两直线的斜率之积为─1, = ─1(ii)
由(i),(ii)得x2─2px+y2=0 (x≠0)
解法2: 由OM⊥AB知点M的轨迹是以原点和点(2p,0)为直径的圆(除去原点)立即可求出
例2 定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求此时点M