解析高考数学二次函数题型
高考数学中的二次函数问题解析

高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。
二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。
在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。
一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。
二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。
a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。
二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。
由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。
需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。
三、二次函数的最值问题另一个常见的二次函数问题是求取最值。
通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。
根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。
此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。
高考数学中的二次函数与相关题型分析

高考数学中的二次函数与相关题型分析高考数学是考生们最为担心的科目之一,而其中涉及到的二次函数和相关题型更是让人头疼。
二次函数是高中数学的重点和难点,因此在备战高考时务必要重视和复习。
本文将着重分析高考数学中的二次函数和相关题型,并介绍备考中的一些技巧和方法。
一、二次函数的基本概念二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c都是实数,且a ≠ 0。
二次函数的图像为一个开口向上或向下的抛物线。
二次函数的一些基本概念包括:1. 零点:指函数图象与 x 轴的交点,也就是方程 ax^2 + bx + c= 0 的解。
2. 判别式:指二次方程 ax^2 + bx + c = 0 的 b^2-4ac 部分,用于判断此方程的解的数量和类型。
3. 对称轴:指函数图象中抛物线的对称轴,其方程为x = -b/2a。
4. 单调性和极值:指函数图象的凹凸性和最值点。
二、高考中的二次函数题型在高考数学中,二次函数的考察主要分为以下几个方面:1. 二次函数的图像及性质该题型主要考查二次函数的开口方向、顶点坐标、对称轴等性质,需要通过化式子、配方法、求导等方法计算。
例如:已知二次函数 f(x) = 2x^2 - 4x + 1,求出它的零点、对称轴和顶点坐标。
2. 二次函数的解析式以及单调性和极值该题型主要考查对二次函数解析式的把握和对单调性和极值的理解,需要通过求导、解方程等方法计算。
例如:已知二次函数 f(x) = x^2 - 2x + 3,求出它的解析式和单调性和极值。
3. 二次函数与其他函数的关系该题型主要考查二次函数与指数函数、对数函数、三角函数等其他函数的关系,需要掌握函数的基本性质和变换。
例如:已知二次函数 y = x^2 + 2x + 1 和指数函数 y = e^x,求出它们的交点坐标。
4. 实际问题中的二次函数该题型主要考查将二次函数应用于实际问题中的能力,需要理解问题背景和建立模型。
高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。
浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第2节二次函数习题(含解析)

第2节 二次函数考试要求 1.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题;2.能解决一元二次方程根的分布问题;3.能解决二次函数的最值问题.知 识 梳 理1.二次函数表达式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x +h )2+k (其中a ≠0,顶点坐标为(-h ,k )).(3)零点式:y =a (x -x 1)(x -x 2)(其中a ≠0,x 1,x 2是二次函数的图象与x 轴的两个交点的横坐标).2.二次函数y =ax 2+bx +c 的图象和性质3.二次函数的最值问题二次函数的最值问题主要有三种类型:“轴定区间定”“轴动区间定”“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:4.一元二次方程根的分布设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,相应的二次函数为f(x)=ax2+bx+c(a≠0),方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是等价条件)表一:(两根与k的大小比较)表二:(根在区间上的分布)若两根有且仅有一根在(m ,n )内,则需分三种情况讨论:①当Δ=0时,由Δ=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去;②当f (m )=0或f (n )=0,方程有一根为m 或n ,可以求出另外一根,从而检验另一根是否在区间(m ,n )内;③当f (m )·f (n )<0时,则两根有且仅有一根在(m ,n )内. [常用结论与易错提醒]不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0. (2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果二次函数f (x )的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为f (x )=(x -1)2-1.( )(2)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是⎝ ⎛⎭⎪⎫120,+∞.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )答案 (1)√ (2)√ (3)× (4)×2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A.5 B.-5 C.6D.-6解析 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.答案 C3.若方程x 2+(m +2)x +m +5=0只有负根,则m 的取值范围是( ) A.[4,+∞) B.(-5,-4] C.[-5,-4]D.(-5,-2)解析 由题意得⎩⎪⎨⎪⎧Δ=(m +2)2-4×(m +5)≥0,x 1+x 2=-(m +2)<0,x 1x 2=m +5>0,解得m ≥4.答案 A4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( ) A.[0,1] B.[1,2] C.(1,2]D.(1,2)解析 画出函数y =x 2-2x +3的图象(如图),由题意知1≤m ≤2.答案 B5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是 .解析 令f (x )=x 2+(m -2)x +2m -1.由题意得 ⎩⎪⎨⎪⎧f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0, 解得12<m <23.答案 ⎝ ⎛⎭⎪⎫12,23 6.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是 ,且函数f (x )恒过点 .解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2.由函数的解析式易得,函数f (x )恒过定点(0,2). 答案 (-∞,-2] (0,2)考点一 二次函数的解析式 【例1】 求下列函数的解析式:(1)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8;(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ). 解 (1)法一(利用一般式解题): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式解题): 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴二次函数图象的对称轴为x =2+(-1)2=12,∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式解题):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7. (2)∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象在x 轴上截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又∵f (x )的图象过点(4,3),∴3a =3,∴a =1. ∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.规律方法 用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式,选法如下:【训练1】 若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )= .解析 由f (x )是偶函数知f (x )的图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],∴2a 2=4,故f (x )=-2x 2+4.答案 -2x 2+4考点二 二次函数的图象与性质【例2】 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).(3)由-4≤|x |≤6,得-6≤x ≤6,当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0, 其图象如图所示,∴f (|x |)在[-6,6]上的单调区间有[-6,-1),[-1,0),[0,1),[1,6]. 规律方法 解决二次函数图象与性质问题时要注意:(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论; (2)要注意数形结合思想的应用.【训练2】 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)若函数f (x )=ax 2+2x +3在区间[-4,6]上是单调递增函数,则实数a 的取值范围是W.解析 (1)由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B 知f (0)=c >0, 所以ab >0,所以对称轴x =-b2a<0,B 错误.(2)由题意可知f ′(x )=2ax +2≥0在[-4,6]上恒成立, 所以⎩⎪⎨⎪⎧f ′(-4)=-8a +2≥0,f ′(6)=12a +2≥0,所以-16≤a ≤14.答案 (1)D (2)⎣⎢⎡⎦⎥⎤-16,14考点三 二次函数的最值【例3-1】 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.【例3-2】 将例3-1改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a , (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5;(2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.规律方法 研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.【训练3】 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.考点四 一元二次方程根的分布 多维探究角度1 两根在同一区间【例4-1】 若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求实数m 的取值范围. 解 线段AB 的方程为x 3+y3=1(x ∈[0,3]), 即y =3-x (x ∈[0,3]),由题意得方程组:⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1, 消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎥⎤3,103.角度2 两根在不同区间【例4-2】 求实数m 的取值范围,使关于x 的方程x 2+2(m -1)x +2m +6=0. (1)一根大于1,另一根小于1; (2)两根α,β满足0<a <1<β<4; (3)至少有一个正根.解 令f (x )=x 2+2(m -1)x +2m +6, (1)由题意得f (1)=4m +5<0,解得m <-54.即实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-54. (2)⎩⎪⎨⎪⎧f (0)=2m +6>0,f (1)=4m +5<0,f (4)=10m +14>0,解得⎩⎪⎨⎪⎧m >-3,m <-54,m >-75,所以-75<m <-54.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-75,-54.(3)当方程有两个正根时,⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)>0,f (0)=2m +6>0,-2(m -1)>0, 解得-3<m <-1.当方程有一个正根一个负根时,f (0)=2m +6<0,解得m <-3. 当方程有一个根为零时,f (0)=2m +6=0,解得m =-3, 此时f (x )=x 2-8x ,另一根为8,满足题意. 综上可得,实数m 的取值范围是(-∞,-1). 角度3 在区间(m ,n )内有且只有一个实根【例4-3】 已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得(1)⎩⎪⎨⎪⎧m >0,Δ=(-2)2-4m >0,无解.f (0)<0, (2)⎩⎪⎨⎪⎧m <0,Δ=(-2)2-4m >0,解得m <0.f (0)>0,(3)⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0. 解得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}.规律方法 利用二次函数图象解决方程根的分布的一般步骤: (1)设出对应的二次函数;(2)利用二次函数的图象和性质列出等价不等式(组); (3)解不等式(组)求得参数的范围.【训练4】 (1)已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.(2)若关于x 的方程x 2+2(m -1)x +2m +6=0有且只有一根在区间(0,3)内,求实数m 的取值范围.解 (1)令f (x )=(m +2)x 2-(2m +4)x +(3m +3).由题意可知(m +2)·f (1)<0, 即(m +2)(2m +1)<0,所以-2<m <-12.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. (2)令f (x )=x 2+2(m -1)x +2m +6,①⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)=0,0<-(m -1)<3, 解得⎩⎪⎨⎪⎧m =-1或m =5,-2<m <1,所以m =-1.②f (0)·f (3)=(2m +6)(8m +9)<0, 解得-3<m <-98.③f (0)=2m +6=0,即m =-3时,f (x )=x 2-8x ,另一根为8∉(0,3),所以舍去; ④f (3)=8m +9=0,即m =-98时,f (x )=x 2-174x +154,另一根为54∈(0,3),满足条件.综上可得,-3<m ≤-98或m =-1.所以实数m 的取值范围是⎝⎛⎦⎥⎤-3,-98∪{-1}.基础巩固题组一、选择题1.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0D.a <0,2a +b =0解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.答案 A2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]解析 f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2. 答案 D3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2D.-2解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 B4.已知函数f (x )=x 2-2ax +b (a ,b ∈R ),记f (x )在[a -b ,a +b ]上的最大值为M ,最小值为m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 无关,且与b 无关 C.与a 有关,但与b 无关D.与a 无关,但与b 有关解析 函数f (x )=x 2-2ax +b =(x -a )2-a 2+b ,所以f (x )的对称轴为x =a 且开口向上,因为区间[a -b ,a +b ]也关于x =a 对称,所以m =f (a )=b -a 2,M =f (a -b )=f (a +b )=b 2-a 2+b ,所以M -m =b 2,故选D. 答案 D5.(2019·嘉兴检测)若f (x )=x 2+bx +c 在(m -1,m +1)内有两个不同的零点,则f (m -1)和f (m +1)( ) A.都大于1 B.都小于1 C.至少有一个大于1D.至少有一个小于1解析 设函数f (x )=x 2+bx +c 的两个零点为x 1,x 2,则f (x )=(x -x 1)(x -x 2),因为函数f (x )=x 2+bx +c 的两个零点在(m -1,m +1)内,所以f (m -1)>0,f (m +1)>0,又因为f (m-1)f (m +1)=(m -1-x 1)(m -1-x 2)·(m +1-x 1)(m +1-x 2)=[-(m -1-x 1)(m +1-x 1)]·[-(m -1-x 2)(m +1-x 2)]<[-(m -1-x 1)+(m +1-x 1)]24·[-(m -1-x 2)+(m +1-x 2)]24=1,所以f (m-1)和f (m +1)至少有一个小于1,故选D. 答案 D6.若函数f (x )=x 2+kx +m 在[a ,b ]上的值域为[n ,n +1],则b -a ( ) A.既有最大值,也有最小值 B.有最大值但无最小值 C.无最大值但有最小值D.既无最大值,也无最小值解析 取k =m =n =0,f (x )=x 2,由图象可知,显然b -a 不存在最小值.∵f (a )=a 2+ka +m ,f (b )=b 2+kb +m ,f ⎝ ⎛⎭⎪⎫a +b 2=⎝ ⎛⎭⎪⎫a +b 22+k ⎝ ⎛⎭⎪⎫a +b 2+m ,∴(b -a )22=f (a )+f (b )-2f ⎝ ⎛⎭⎪⎫a +b 2≤n +1+n +1-2n =2,∴b -a ≤2,当b =2-k 2,a =-2+k2时,b -a 取得最大值为2,故选B. 答案 B7.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集不可能是( ) A.{1,2} B.{1,4} C.{1,2,3,4}D.{1,4,16,64}解析 ∵f (x )=ax 2+bx +c (a ≠0)的对称轴为x =-b2a .设方程m [f (x )]2+nf (x )+p =0的解为f 1(x ),f 2(x ),则必有f 1(x )=y 1=ax 2+bx +c ,f 2(x )=y 2=ax 2+bx +c ,那么从图象上看y =y 1,y =y 2是平行x 轴的两条直线,它们与f (x )有交点, 由对称性,方程y 1=ax 2+bx +c =0的两个解x 1,x 2应关于对称轴x =-b2a 对称,即x 1+x 2=-ba ,同理方程y 2=ax 2+bx +c =0的两个解x 3,x 4也关于对称轴x =-b2a对称, 即x 3+x 4=-b a,在C 中,可以找到对称轴直线x =2.5,也就是1,4为一个方程的根,2,3为一个方程的根,而在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎样分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能. 答案 D9.(2019·衢州二中二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( )A.165B.145C.16D.4 解析 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l 的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165,故选A. 答案 A 二、填空题10.已知b ,c ∈R ,函数y =x 2+2bx +c 在区间(1,5)上有两个不同的零点,则f (1)+f (5)的取值范围是 .解析 设f (x )的两个零点为x 1,x 2,不妨设1<x 1<x 2<5,则f (1)>f (x 1)=0,f (5)>f (x 2)=0,所以f (1)+f (5)>0.另一方面f (x )=(x -x 1)·(x -x 2),所以f (1)+f (5)=(1-x 1)·(1-x 2)+(5-x 1)(5-x 2)=2x 1x 2-6(x 1+x 2)+26<2x 1x 2-12x 1x 2+26=2(x 1x 2-3)2+8<2(25-3)2+8=16,所以f (1)+f (5)的取值范围是(0,16).答案 (0,16)11.已知f (x )=⎩⎪⎨⎪⎧x 2(x ≥t ),x (x <t ),若存在实数t ,使函数y =f (x )-a 有两个零点,则t 的取值范围是 .解析 由题意知函数f (x )在定义域上不单调,如图,当t =0或t ≥1时,f (x )在R 上均单调递增,当t <0时,在(-∞,t )上f (x )单调递增,且f (x )<0,在(t ,0)上f (x )单调递减,且f (x )>0,在(0,+∞)上f (x )单调递增,且f (x )>0.故要使得函数y =f (x )-a 有两个零点,则t 的取值范围为(-∞,0)∪(0,1).答案 (-∞,0)∪(0,1)12.(2019·诸暨统考)已知a ,b 都是正数,a 2b +ab 2+ab +a +b =3,则2ab +a +b 的最小值等于 .解析 设2ab +a +b =t ,则t >0,且3=ab (a +b )+ab +a +b =ab (t -2ab )+t -ab ,故关于ab 的二次方程2(ab )2+(1-t )ab +3-t =0的解为正数,所以⎩⎪⎨⎪⎧Δ=(1-t )2-8(3-t )≥0,t -12>0,3-t 2>0,解得42-3≤t <3,即2ab +a +b 的最小值等于42-3.答案 42-313.已知f (x +1)=x 2-5x +4. (1)f (x )的解析式为 ;(2)当x ∈[0,5]时,f (x )的最大值和最小值分别是 . 解析 (1)f (x +1)=x 2-5x +4,令x +1=t ,则x =t -1, ∴f (t )=(t -1)2-5(t -1)+4=t 2-7t +10,∴f (x )=x 2-7x +10.(2)∵f (x )=x 2-7x +10,其图象开口向上,对称轴为x =72,72∈[0,5],∴f (x )min =f ⎝ ⎛⎭⎪⎫72=-94, 又f (0)=10,f (5)=0.∴f (x )的最大值为10,最小值为-94.答案 (1)x 2-7x +10 (2)10,-9414.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .解析 若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2.综上可知1<x <4,所以不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.答案 (1,4) (1,3]∪(4,+∞)能力提升题组15.(2019·杭州质检)设函数f (x )=x 2+ax +b (a ,b ∈R ),记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值( ) A.若M =13,则N =3B.若M =12,则N =3C.若M =2,则N =3D.若M =3,则N =3解析 由题意得|f (1)|=|1+a +b |≤M ⇒|a +b |≤M +1,|f (-1)|=|1-a +b |≤M ⇒|a -b |≤M +1.|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,则易知N ≤M +1,则选项A ,B 不符合题意;当a =2,b =-1时,M =2,N =3,则选项C 符合题意;当a =2,b =-2时,M =3,N =4,则选项D不符合题意,故选C. 答案 C16.(2019·丽水测试)已知函数f (x )=x 2+ax +b ,集合A ={x |f (x )≤0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪f (f (x ))≤54,若A =B ≠∅,则实数a 的取值范围是( )A.[5,5]B.[-1,5]C.[5,3]D.[-1,3]解析 设集合B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n },其中m ,n 为方程f (x )=54的两个根,因为A =B ≠∅,所以n =0且m ≤f (x )min ,Δ=a 2-4b ≥0,于是f (n )=f (0)=b =54,则由a 2-4b =a 2-5≥0得a ≤-5或a ≥5,令t =f (x )≤0,则由f (f (x ))≤54得f (t )≤54,即t 2+at +54≤54,解得-a ≤t ≤0,所以B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n }={x |-a ≤f (x )≤0},解得m =-a ,所以-a ≤f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎝ ⎛⎭⎪⎫-a 22+a ·⎝ ⎛⎭⎪⎫-a 2+54,解得-1≤a ≤5.综上所述,实数a 的取值范围为[5,5],故选A. 答案 A17.已知二次函数f (x )=ax 2+bx (|b |≤2|a |),定义f 1(x )=max{f (t )|-1≤t ≤x ≤1},f 2(x )=min{f (t )|-1≤t ≤x ≤1},其中max{a ,b }表示a ,b 中的较大者,min{a ,b }表示a ,b 中的较小者,下列命题正确的是( ) A.若f 1(-1)=f 1(1),则f (-1)>f (1) B.若f 2(-1)=f 2(1),则f (-1)>f (1) C.若f 2(1)=f 1(-1),则f 1(-1)<f 1(1) D.若f 2(1)=f 1(-1),则f 2(-1)>f 2(1)解析 对于A ,若f 1(-1)=f 1(1),则f (-1)为f (x )在[-1,1]上的最大值,∴f (-1)>f (1)或f (-1)=f (1),故A 错误;对于B ,若f 2(-1)=f 2(1),则f (-1)为f (x )在[-1,1]上的最小值,∴f (-1)<f (1)或f (-1)=f (1),故B 错误;对于C ,若f 2(1)=f 1(-1),则f (-1)为f (x )在[-1,1]上的最小值,而f 1(-1)=f (-1),f 1(1)表示f (x )在[-1,1]上的最大值,∴f 1(-1)<f 1(1),故C 正确;对于D ,若f 2(1)=f 1(-1),由新定义可得f 1(-1)=f 2(-1),则f 2(1)=f 2(-1),故D 错误,综上所述,故选C. 答案 C18.(2019·绍兴适应性考试)已知a >0,函数f (x )=|x 2+|x -a |-3|在[-1,1]上的最大值是2,则a = .解析 由题意知f (0)≤2,即有||a |-3|≤2,又∵a >0,∴||a |-3|≤2⇒|a -3|≤2⇒1≤a≤5.又∵x ∈[-1,1],∴f (x )=|x 2-x -3+a |≤2,设t =x 2-x -3,则t ∈⎣⎢⎡⎦⎥⎤-134,-1,则原问题等价于t ∈⎣⎢⎡⎦⎥⎤-134,-1时,|t +a |=|t -(-a )|的最大值为2,∴a =3或a =54. 答案 3或5419.已知方程x 2+bx +c =0在(0,2)上有两个不同的解,则c 2+2(b +2)c 的取值范围是 .解析 设方程x 2+bx +c =0在(0,2)上的两个根为α,β,α≠β,则f (x )=x 2+bx +c =(x -α)(x -β),0<α<2且0<β<2,所以c 2+2(b +2)c =f (0)·f (2)=αβ(2-α)(2-β)≤⎣⎢⎡⎦⎥⎤α+(2-α)22⎣⎢⎡⎦⎥⎤β+(2-β)22=1,又0<α<2且0<β<2,所以αβ(2-α)(2-β)>0,所以c 2+2(b +2)c 的取值范围是(0,1]. 答案 (0,1]20.已知函数f (x )=ax +3+|2x 2+(4-a )x -1|的最小值为2,则a = .解析 令g (x )=2x 2+(4-a )x -1=0,Δ=(4-a )2+8>0,则g (x )=0有两个不相等的实数根,不妨设为x 1,x 2(x 1<x 2),则x 1=a -4-(4-a )2+84,x 2=a -4+(4-a )2+84,当x ∈[x 1,x 2]时,f (x )=ax +3-[2x 2+(4-a )x -1]=-2x 2+(2a -4)x +4,当x ∈(-∞,x 1)∪(x 2,+∞)时,f (x )=ax +3+[2x 2+(4-a )x -1]=2(x +1)2≥0,因为f (x )的最小值为2,则f (x )min =min{f (x 1),f (x 2)},即ax 1+3=2或ax 2+3=2,解得a =12.答案 12。
2021届高三数学之函数与导数(文理通用)专题07 二次函数综合问题

专题07 二次函数综合问题一.考情分析二次函数2(0)y ax bx c a =++≠是初中函数的主角,所蕴含的函数性质丰富,千变万化,但又是基础的基础,万变不离宗。
所以二次函数也是高中学习的重要基础.与其他知识交汇的最值问题以及恒成立问题是目前高考中最基础的两个考试方向。
复合函数也越来越重要。
所以二次函数的学习,都显示的特别重要。
二.经验分享1.二次函数解析式的三种形式:①一般式方程:y =ax 2+bx +c (a ≠0).②顶点式方程:y =a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). ③零点式方程:y =a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.2.二次函数的图象和性质 解析式y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象对称性函数的图象关于x =-b2a对称最值当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;函数取最小值y =244ac b a-.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a;函数取最大值y =244ac b a-.3.恒成立问题①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或00a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
三、题型分析(一)二次函数之恒成立与存在性问题例1 已知函数().222m mx x x f -+-=(1)若不等式()mx x f -≥在R 上恒成立,求实数m 的取值范围;(2)记(){},10,≤≤==x x f y y A 且[),,∞+⊆0A 求实数m 的最大值。
高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项.【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确.令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()(24g t t t t =-=--,1x >时,函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系.【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件.故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得((02b f f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解.【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02b f >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <,则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以((02bf f >,所以必要性成立;反之,设(02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<,此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件.故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________.【答案】1<a ≤2.【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果.【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21a a >⎧⎨⎩…,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞-【解析】∵不等式220ax x a ++<对任意x ∈R恒成立,∴函数22y ax x a =++的图象始终在x 轴下方,∴20440a a <⎧⎨∆=-<⎩,解得1a <-,故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可.【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+.故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果.【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数,若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞,故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________.【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值.【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++当232x =时,12max134x x -=.故答案为:134.10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围.【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k=,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0ff x …恒成立,则实数m 的范围是( )A.3,3⎡--+⎣B.1,3⎡--+⎣C .[]3,1-D.3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+,(2)1m =-恒成立,符合题意;(3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--.综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取练提升()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =-- ,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解,取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=,其他m 的取值,方程均无解,则m 的取值范围是{}4.故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________.【答案】2a <或3a >.【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->V 且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a <【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点,因为函数()g x 的对称轴为122a x =<,所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <.故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________.【答案】12-【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解.【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈,当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为()1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-;当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤,所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=,因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1-【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值.【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-,当sin a x <时,211()(sin 4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+;由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-;当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+;由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-;当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭,∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增;11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1.故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2.【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值.【详解】解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()minM h x h x - (2)(),2xh x x R x =∈+当0()0x h x ==当10()2x h x x x≠=+,令2()g x x x=+,当0,()x g x >…,当x =取等号,当0,()x g x <≤-当x =取等号,()(,)g x ∴∈-∞-⋃+∞()(0)h x x ⎡⎫⎛∈⋃≠⎪ ⎢⎪ ⎣⎭⎝综上,()h x ⎡∈⎢⎣M ⎛∴= ⎝…min M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈.(1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围;(2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值.【答案】(1)[)1,+∞;(2)45.【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+--⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求.【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =.①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+;②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增,()0f b = ,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b +=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭,设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭,由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =.所以,当115x =,21x =时,2244a b b +-取最小值45.9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出,(Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2.当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9;当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1;故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54.令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩,解得m ≤﹣52或m ≥52.10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=.(1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞.【解析】(1)由二次函数的性质知()f x 在()0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式;(2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可.【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在()0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==,∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈,∴222221814(44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦,∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值练真题( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )=x ―4,x ≥λx 2―4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得x ≥2x ―4<0 或x <2x 2―4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x ―4>0,此时f (x )=x 2―4x +3=0,x =1,3,即在(―∞,λ)上有两个零点;当λ≤4时,f (x )=x ―4=0,x =4,由f (x )=x 2―4x +3在(―∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x = 时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=,整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=,整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩,其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++--原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数()g x 的图象,同时绘制函数y a =的图象如图所示,考查临界条件,结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;【答案】(1)()2h x x =;【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =.故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2a x =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++.当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-.当10t -≤≤时,222222t t t b t t --≤≤++,由于22202tt--≤<+和2302t tt--≤<+,所以30b-≤<.综上可知,b的取值范围是[3,9--.。
如何解决高考数学中的二次函数题

如何解决高考数学中的二次函数题高考数学中,二次函数题是考试中常见且重要的一类题型。
它涉及到二次函数的性质及应用,要求学生运用相关的知识和技巧来解答问题。
本文将就如何解决高考数学中的二次函数题进行探讨。
一、了解基本概念在解决二次函数题前,首先需要对二次函数的基本概念和性质进行了解。
二次函数一般写作y=ax²+bx+c(a≠0),其中a、b、c为常数,且a代表抛物线开口的方向(正负决定开口向上或向下),b代表抛物线的位置(正负决定抛物线在y轴的左右位置),c代表抛物线与y轴的交点。
了解这些基本概念可以帮助我们建立起对二次函数的直观认识。
二、掌握二次函数的性质解决二次函数题的关键是熟练掌握二次函数的性质,包括顶点坐标、对称轴、零点等。
顶点坐标可以通过公式x=-b/2a和y=-△/(4a)来求得,其中△=b²-4ac称为判别式,它可以帮助我们判断二次函数的根的情况。
对称轴是与二次函数图像关于垂直纸面对称的直线,其方程为x=-b/2a。
掌握了这些性质后,我们可以更加准确地分析二次函数的图像以及函数的变化趋势。
三、熟练掌握解二次方程的方法解决二次函数题中,经常需要求解二次方程的根。
为了高效解题,我们需要熟练掌握解二次方程的方法。
一般而言,可以利用因式分解、配方法或求根公式等方法来求解二次方程。
具体使用哪种方法,可以根据题目的要求和具体情况来判断,但无论使用何种方法,需要确保结果的准确性和合理性。
四、结合实际问题进行练习在解决高考数学中的二次函数题时,我们也需要了解二次函数的应用场景和实际问题。
通过结合实际问题进行练习,可以提高我们对二次函数的理解和运用能力。
例如,我们可以通过模拟实际情境,解决与二次函数相关的最值问题、交点问题、面积问题等。
这样的练习能够增加我们对二次函数的应用能力,提高解题的准确性和高效性。
五、多做真题和模拟题为了更好地应对高考数学中的二次函数题,我们需要进行大量的真题和模拟题练习。
2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。
高考数学常考压轴题及答案:二次函数

高考数学常考压轴题及答案:二次函数1500字二次函数是高考数学中的重要内容之一。
在高考中,常常会涉及到二次函数的基本概念、性质以及与其他知识点的联合运用。
本文将介绍高考数学中常考的二次函数压轴题及其答案,希望能对广大考生备战高考有所帮助。
1. 求二次函数 y = ax^2 + bx + c 的顶点坐标。
答案:二次函数 y = ax^2 + bx + c 的顶点坐标可以通过求导或者利用平移公式来求解。
求导法可以通过将二次函数转化为一次函数来求解,即 y' = 2ax + b,令y' = 0,解得 x = -b / (2a),代入原函数可得 y = c - b^2 / (4a)。
利用平移公式可以将二次函数表示为 y = a(x - h)^2 + k 的形式,其中 (h, k) 就是顶点坐标。
2. 已知二次函数 y = ax^2 + bx + c 过点 (1, 2) 和 (2, 3),求二次函数的解析式。
答案:由已知条件可得:2 = a + b + c (1)3 = 4a + 2b + c (2)由 (1) 式减去2倍的 (2) 式,得 -1 = -6a - 3b,即 6a + 3b = 1 (3)由 (1) 式减去 (2) 式,得 -1 = -3a - b,即 3a + b = 1 (4)解方程组 (3) 和 (4) 可得 a = 1/3,b = 2/3。
将 a 和 b 的值代入 (1) 式,可得 c =5/3。
所以二次函数的解析式为 y = (1/3)x^2 + (2/3)x + 5/3。
3. 设某个二次函数的图像过点 (1, 3) 和 (2, 7),与 y 轴交于点 A,与 x 轴交于点 B 和C,求 B、C 的坐标。
答案:已知二次函数过点 (1, 3) 和 (2, 7),可以得到两个方程:3 = a + b + c (1)7 = 4a + 2b + c (2)由 (2) 式减去4倍的 (1) 式,得 1 = -2a - b,即 2a + b = -1 (3)解方程组 (1) 和 (3) 可得 a = 1,b = -3。
2022版新高考数学总复习真题专题--二次函数与幂函数(解析版)

2022版新高考数学总复习--§2.3 二次函数与幂函数— 五年高考 —考点1 二次函数1.(2019浙江,16,4分)已知a ∈R ,函数f (x )=ax 3-x.若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是 . 答案432.(2019上海春,10,5分)如图,正方形OABC 的边长为a (a >1),函数y =3x 2的图象交AB 于点Q ,函数y =x -12的图象交BC 于点P ,则当|AQ |+|CP |最小时,a 的值为 .答案 √33.(2018天津文,14,5分)已知a ∈R ,函数f (x )={x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意x ∈[-3,+∞), f (x )≤|x |恒成立,则a 的取值范围是 . 答案 [18,2]4.(2018天津理,14,5分)已知a >0,函数f (x )={x 2+2ax +a ,x ≤0,-x 2+2ax -2a , x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是 . 答案 (4,8)考点2 幂函数1.(2019上海春,13,5分)下列函数中,值域为[0,+∞)的是 ( ) A.y =2xB.y =x 12C.y =tan xD.y =cos x答案 B2.(2018上海,7,5分)已知α∈-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .答案 -1以下为教师用书专用(2016课标Ⅲ文,7,5分)已知a =243,b =323,c =2513,则 ( )A.b <a <cB.a <b <cC.b <c <aD.c <a <b答案 A a =243=423,c =2513=523,而函数y =x 23在(0,+∞)上单调递增,所以323<423<523,即b <a <c ,故选A . 评析 本题主要考查幂函数的性质,属中档题.— 三年模拟 — A 组 考点基础题组考点1 二次函数1.(2021江苏南京秦淮中学开学考,3)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c.若f (0)=f (4)>f (1),则 ( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0 D.a <0,2a +b =0 答案 A2.(2021广东深圳一模,13)已知函数的图象关于y 轴对称,且与直线y =x 相切,则满足上述条件的二次函数可以为f (x )= . 答案 x 2+14(答案不唯一)3.(2020湖南炎陵一中仿真考试)已知f (x )=√1-x2为奇函数,则g (x )=x 2+ax +b 的单调递增区间为 . 答案 (-12,+∞)考点2 幂函数1.(2021河北唐山二模,3)不等式(12)x≤√x 的解集是 ()A.[0,12]B.[12,+∞) C.[0,√22] D.[√22,+∞)答案 B2.(2020湘赣皖十五校第一次联考)设a =ln 12,b =-5-12,c =lo g 132,则 ( )A.c <b <aB.a <c <bC.c <a <bD.b <a <c 答案 B3.(2020广东揭阳三中第一次月考,7)如图的曲线是幂函数y =x n在第一象限内的图象.已知n 分别取±2,±12四个值,与曲线C 1,C 2,C 3,C 4相应的n 依次为 ( )A.2,12,-12,-2B.2,12,-2,-12 C.-12,-2,2,12 D.-2,-12,12,2 答案 A4.(2021上海松江一模,10)从以下七个函数:y =x ,y =1x ,y =x 2,y =2x,y =log 2x ,y =sin x ,y =cos x 中选取两个函数记为f (x )和g (x ),构成函数F (x )=f (x )+g (x ),若F (x )的图象如图所示,则F (x )= .答案 2x+sin xB 组 综合应用题组时间:50分钟 分值:60分一、单项选择题(每小题5分,共20分)1.(2020湖北武汉3月质量检测)已知a =0.80.4,b =0.40.8,c =log 84,则 ( )A.b <a <cB.a <c <bC.c <a <bD.b <c <a答案 D2.(2020百校联盟普通高中教育教学质量监测,7)已知函数f (x )=lo g 12(x 2-ax +a )在(12,+∞)上为减函数,则实数a 的取值范围是 ( )A.(-∞,1]B.[-12,1]C.(-12,1]D.(-12,+∞) 答案 B3.(2020辽宁葫芦岛兴城高级中学模拟)已知函数g (x )是R 上的奇函数.当x <0时,g (x )=-ln (1-x ),且f (x )={-x 2,x ≤0,g (x ),x >0.若f (2-x 2)>f (x ),则实数x 的取值范围为 ( )A.(-1,2)B.(1,2)C.(-2,-1)D.(-2,1) 答案 D4.(2021河北石家庄一模,8)若f (x )的图象上存在两点A ,B 关于原点对称,则点对[A ,B ]称为函数f (x )的“友情点对”(点对[A ,B ]与[B ,A ]视为同一个“友情点对”).若f (x )={x 3e x,x≥0,ax 2,x <0恰有两个“友情点对”,则实数a 的取值范围是 ( )A.(-1e ,0) B.(0,1e )C.(0,1)D.(-1,0) 答案 A二、多项选择题(共5分)5.(2021辽宁百校联盟质检,9)下列函数中,在区间(2,4)上是减函数的是 ( )A.y =(13)x B.y =log 2(x 2+3x )C.y =1x -2 D.y =cos x 答案 AC三、填空题(每小题5分,共10分)6.(2021上海黄浦一模,12)已知a 、b ∈R ,函数f (x )=x 2+ax +b +|x 2-ax -b |(x ∈R ),若函数f (x )的最小值为2b 2,则实数b 的取值范围是 . 答案 [0,1]7.(2020上海复兴高级中学期中,12)对于问题:当x >0时,均有[(a -1)x -1](x 2-ax -1)≥0,求实数 a 的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集; 乙:研究函数y =[(a -1)x -1](x 2-ax -1);丙:分别研究两个函数y 1=(a -1)x -1与y 2=x 2-ax -1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出正确的答案为 . 答案 32四、解答题(共25分)8.(2021江苏南通海门一中期末,21)已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1. (1)求a ,b 的值;(2)若存在x ∈[3,4],使g (x )<2m 2-tm +7对任意的t ∈[0,5]都成立,求m 的取值范围;(3)设f (x )=g (x )x,若不等式f (2x )-k ·2x ≥0在x ∈[-1,1]上有解,求实数k 的取值范围.解析 (1)g (x )=ax 2-2ax +1+b =a (x -1)2+1+b -a. ∵a >0,∴g (x )在[2,3]上单调递增,∴{g (2)=1,g (3)=4⇒{1+b =1,9a -6a +1+b =4⇒{a =1,b =0.(2)由(1)得g (x )=x 2-2x +1,∵存在x ∈[3,4],使g (x )<2m 2-tm +7对任意的t ∈[0,5]都成立, ∴g (x )min =g (3)=4<2m 2-tm +7对任意的t ∈[0,5]都成立,即-mt +2m 2+3>0对任意的t ∈[0,5]都成立,其中t 看作自变量,m 看作参数,所以{2m 2+3>0,-5m +2m 2+3>0,解得m ∈(-∞,1)∪(32,+∞). (3)由(1)得f (x )=g (x )x =x 2-2x+1x =x +1x -2, ∴f (2x)-k ·2x=2x+12x -2-k ·2x≥0,令2x=t (12≤t ≤2),则不等式可化为k ≤1+1t2-2t ,∵不等式f (2x)-k ·2x≥0在x ∈[-1,1]上有解,∴k ≤(1+1t 2-2t )max ,又∵1+1t 2-2t =(1t-1)2, 12≤t ≤2⇒12≤1t ≤2,∴(1+1t2-2t )max =1, ∴k ≤1,即实数k 的取值范围是(-∞,1].思路分析 (1)利用二次函数的性质,即可求出a ,b 的值;(2)题目可转化为2m 2-tm +7>g (x )min =g (3)对任意的t ∈[0,5]都成立,再利用变换主元的方法,把t 看作自变量,m 看作参数,即可求解.(3)由(1)得出了函数解析式,令2x=t (12≤t ≤2),再分离参数k ,即可求解.9.(2020山西平遥中学第一次月考,18)已知二次函数f (x )满足f (x )=f (-4-x ), f (0)=3,若x 1,x 2是f (x )的两个零点,且|x 1-x 2|=2. (1)求f (x )的解析式;(2)若x >0,求g (x )=xf (x )的最大值. 解析 (1)∵二次函数满足f (x )=f (-4-x ), ∴f (x )的图象的对称轴为直线x =-2,∵x 1,x 2是f (x )的两个零点,且|x 1-x 2|=2, ∴{x 1=-3,x 2=-1或{x 1=-1,x 2=-3. 设f (x )=a (x +3)(x +1)(a ≠0). 由f (0)=3a =3得a =1, ∴f (x )=x 2+4x +3.(2)由(1)得g (x )=xf (x )=xx 2+4x+3=1x+3x +4(x >0),∵x >0,∴1x+3x +4≤14+2√3=1-√32,当且仅当x =3x ,即x =√3时等号成立. ∴g (x )的最大值是1-√32.— 一年原创 —1.(2021 5·3原创题)2020年,新型冠状病毒肺炎在全球蔓延,防控形势异常严峻,佩戴口罩成为最基础最必要的防护,正因为如此,口罩一度脱销,成了年度最紧俏商品.为了解决口罩供应问题,某地区甲、乙两个口罩生产厂家不断扩大生产规模.已知2月份甲、乙厂家均月产口罩a 万个,此后甲厂产量逐月增加,并且增加量都是m (m >0)万个,乙厂产量也是逐月增加的,并且每月增加的百分率都是x.若2020年8月份两厂的产量也相同,则关于5月份的产量,下列说法正确的是 ( )A.5月份甲厂产量高于乙厂B.5月份甲厂产量低于乙厂C.5月份甲、乙两厂产量相同D.5月甲、乙两厂产量多少不能比较 答案 A2.(多选题)(2021 5·3原创题)若函数y =x 2-4x -4在区间[0,a )上既有最大值又有最小值,则正整数a 的值可能是 ( )A.2B.3C.4D.5 答案 BC3.(2021 5·3原创题)已知函数f (x )=ax 2-12x -34(a >0),且f (12)≥-1516.(1)是否存在实数a ,使得f (x )最小值的最大值是-1?若存在,求出a 的值;若不存在,请说明理由; (2)在(1)的条件下,证明对于任意区间长度是2的闭区间上,总存在两点x 1,x 2,使|f (x 1)-f (x 2)|≥14恒成立. 解析 (1)因为f (x )=ax2-12x -34=a (x -14a )2-(34+116a ),a >0,所以f (x )min =-34-116a ,有-34-116a ≤-1,解得a ≤14,由f (12)=a 4-14-34≥-1516,解得a ≥14,所以a =14.(2)证明:由(1)知,a =14, f (x )=14(x -1)2-1,设任意长度为2的闭区间为[t -1,t +1].当t ≥1时, f (x )=14(x -1)2-1在[t ,t +1]上单调递增,则f (t +1)=14t 2-1, f (t )=14t 2-12t -34,令x 1=t ,x 2=t +1,则|f (x 1)-f (x 2)|=f (t +1)-f (t )=12t -14≥14.当t <1时, f (x )=14(x -1)2-1在[t -1,t ]上单调递减,则f (t -1)=14t 2-t , f (t )=14t 2-12t -34,令x 1=t -1,x 2=t ,则|f (x 1)-f (x 2)|=f (t -1)-f (t )=34-12t >14.综上所述,对于任意区间长度是2的闭区间上,总存在两点x 1,x 2,使|f (x 1)-f (x 2)|≥14恒成立.。
高考数学一轮复习---二次函数知识点与题型

高考数学一轮复习---二次函数知识点与题型一、基础知识1.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象与性质二次函数系数的特征:(1)二次函数y=ax2+bx+c(a≠0)中,系数a的正负决定图象的开口方向及开口大小;(2)-b2a的值决定图象对称轴的位置;(3)c的取值决定图象与y轴的交点;(4)b2-4ac的正负决定图象与x轴的交点个数.(-∞,+∞)(-∞,+∞)二、常用结论1.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0,且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0,且Δ<0”.2.二次函数在闭区间上的最值设二次函数f(x)=ax2+bx+c(a>0),闭区间为[m,n].(1)当-b2a≤m时,最小值为f(m),最大值为f(n);(2)当m <-b 2a ≤m +n2时,最小值为)2(ab f -,最大值为f (n ); (3)当m +n 2<-b2a ≤n 时,最小值为)2(a b f -,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).三、考点解析考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同. 例、已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 跟踪训练1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________. 考点二 二次函数的图象与性质 考法(一) 二次函数图象的识别例、若一次函数y =ax +b 的图象经过第二、三、四象限,则二次函数y =ax 2+bx 的图象只可能是( )考法(二) 二次函数的单调性与最值问题例、(1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.(2)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________. [解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题. 2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题例、(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解题技法]由不等式恒成立求参数取值范围的思路及关键:(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .跟踪训练1.已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( ) A.54 B .1或54 C .-1或54 D .-5或54课后作业1.已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( ) A .2,4 B .-2,4 C .2,-4 D .-2,-4 2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1 D .-2 3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞) D .(-∞,-6)6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________. 7.已知二次函数y =f (x )的顶点坐标为⎪⎭⎫⎝⎛-49,23,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.8.y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________. 9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.提高训练1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34 D .1 3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.。
备战高考数学复习考点知识与题型讲解12---二次函数、幂函数

备战高考数学复习考点知识与题型讲解第12讲二次函数、幂函数考向预测核心素养二次函数一般与其他知识综合考查,幂函数的考查以图象、性质为主,题型一般为选择题、填空题,中档难度.直观想象、逻辑推理、数学抽象一、知识梳理1.常见的五种幂函数的图象2.幂函数y=xα的性质(1)幂函数在(0,+∞)上都有定义;(2)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(3)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.3.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 4.二次函数的图象和性质解析式f (x )=ax 2+bx+c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 RR值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于直线x =-b2a对称 常用结论1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限; (2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0;若在(0,+∞)上单调递减,则α<0.二、教材衍化1.(人A 必修第一册P 58T 6改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎪⎫0,120B.⎝ ⎛⎭⎪⎫-∞,-120C.⎝ ⎛⎭⎪⎫120,+∞ D.⎝⎛⎭⎪⎫-120,0 解析:选C.由题意知⎩⎨⎧a >0,Δ<0,即⎩⎨⎧a >0,1-20a <0,解得a >120. 2.(人A 必修第一册P 91练习T 1改编)已知幂函数f (x )=kx α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.解析:因为函数f (x )=kx α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32.答案:32一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)y =2x 12是幂函数.( )(2)根据二次函数的两个零点就可以确定函数的解析式.( )(3)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值是4ac -b24a.( )答案:(1)× (2)× (3)× 二、易错纠偏1.(二次函数性质不明致误)已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( )A .[3,+∞) B.(-∞,3] C .(-∞,-3)D.(-∞,-3]解析:选D.函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧,所以-2a ≥6,解得a ≤-3,故选D.2.(二次函数图象特征不清致误)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”)解析:f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,所以m ∈(0,1),所以m -1<0,所以f (m -1)>0.答案:>3.(幂函数概念不清致误)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上单调递减.解析:设y =f (x )=x α,因为图象过点⎝⎛⎭⎪⎫2,22,代入解析式得α=-12,则y =x -12,由性质可知函数y =x -12在(0,+∞)上单调递减.答案:y=x-12(0,+∞)考点一幂函数的图象及性质(自主练透)复习指导:通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x 12的图象,了解它们的变化情况.1.已知点⎝⎛⎭⎪⎫33,3在幂函数f(x)的图象上,则f(x)是( )A.奇函数 B.偶函数C.定义域内的减函数 D.定义域内的增函数解析:选A.设f(x)=xα,由已知得⎝⎛⎭⎪⎫33α=3,解得α=-1,因此f(x)=x-1,易知该函数为奇函数.2.(链接常用结论2)已知函数f(x)=(m2-m-1)·x m2-2m-3是幂函数,且在(0,+∞)上单调递减,则实数m=( )A.2 B.-1C.4D.2或-1解析:选A.由题意知m2-m-1=1,解得m=-1或m=2,当m=-1时,m2-2m-3=0,则f(x)在(0,+∞)上为常数,不合题意.当m=2时,m2-2m-3=-3,则f(x)=x-3在(0,+∞)上单调递减,符合题意.所以m=2.3.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一平面直角坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >a B.a >b >c >d C .d >c >a >bD.a >b >d >c解析:选B.由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.4.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)的图象经过点(2,2),则m =________,满足条件f (2-a )>f (a -1)的实数a 的取值范围为________.解析:因为f (x )的图象过点(2,2),所以2=2(m 2+m )-1,所以m 2+m =2,又m ∈N *,所以m =1.即f (x )=x 12,其定义域为{x |x ≥0},且在定义域上函数为增函数, 所以由f (2-a )>f (a -1)得0≤a -1<2-a ,解得1≤a <32.答案:1 1≤a <32幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.考点二 二次函数的解析式(综合研析)复习指导:理解二次函数的定义,能够根据已知条件求二次函数的解析式.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【解】 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎨⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7.求二次函数解析式的策略|跟踪训练|已知二次函数f (x )的图象经过点(4,3),在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以y =f (x )的图象关于x =2对称.又y=f(x)的图象在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1,2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图象上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图象和性质(多维探究)复习指导:理解二次函数的定义,能够根据二次函数的图象讨论性质,从数形结合的观点研究和二次函数有关的问题.角度1 二次函数的图象(1)(多选)(2022·济南月考)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象过点A(-3,0),对称轴为x=-1,则( )A.b2>4ac B.2a-b=1C.a-b+c=0 D.5a<b(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则( )A.f(m+1)≥0 B.f(m+1)≤0C.f(m+1)>0 D.f(m+1)<0【解析】(1)因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,A正确;对称轴为x=-1,即-b2a=-1,2a-b=0,B错误;结合图象,当x=-1时,y>0,即a-b+c>0,C错误;由对称轴为x=-1知,b=2a.根据抛物线开口向下,知a<0,所以5a<2a,即5a<b,D正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图象如图所示.由f(m)<0,得-1<m<0,所以m+1>0,所以f(m+1)>f(0)>0.【答案】(1)AD (2)C识别二次函数图象应学会“三看”角度2 二次函数的单调性与最值(1)若函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a 的取值范围是( )A.[-3,0) B.(-∞,-3]C.[-2,0] D.[-3,0](2)若函数f (x )=ax 2+2ax +1在区间[1,2]上有最大值4,则a 的值为________. 【解析】 (1)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意; 当a ≠0时,f (x )的对称轴为x =3-a2a, 由f (x )在[-1,+∞)上单调递减,知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (2)f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[1,2]上的值为常数1,不符合题意,舍去; ②当a >0时,函数f (x )在区间[1,2]上单调递增,最大值为f (2)=8a +1=4,解得a =38;③当a <0时,函数f (x )在区间[1,2]上单调递减,最大值为f (1)=3a +1=4,解得a =1,不符合题意,舍去.综上可知,a 的值为38.【答案】 (1)D (2)38若本例(1)中函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),则a =________.解析:由题意知f (x )必为二次函数且a <0, 又3-a 2a =-1,所以a =-3. 答案:-3(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.|跟踪训练|1.已知函数f (x )=ax 2+bx +c ,若a >b >c ,且a +b +c =0,则函数f (x )的图象可能是( )解析:选D.由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除A ,C ;又f (0)=c <0,排除B ,故选D.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤74,4,则m 的取值范围为( )A .(0,4] B.⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎦⎥⎤32,3 D.⎣⎢⎡⎭⎪⎫32,+∞ 解析:选C.y =x 2-3x +4=⎝ ⎛⎭⎪⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎢⎡⎦⎥⎤74,4,根据二次函数图象的对称性知32≤m ≤3.3.(多选)(2022·邯郸九校联盟期中)若函数f (x )=x |x -a |在[0,2]上的最大值为2,则a 的取值可以为( )A .1 B.3 C.2 2D.42-4解析:选AC.若a ≤0时,f (x )在[0,2]上单调递增,f (x )max =f (2)=2|2-a |=2,解得a =1(舍去)或a =3(舍去). 若a >0时,f (x )=⎩⎨⎧-x (x -a ),x ≤a ,x (x -a ),x >a ,当a2>2即a >4时,f (x )max =f (2)=-2(2-a )=2,解得a =3(舍去). 当x >a 时,令f (x )=f ⎝ ⎛⎭⎪⎫a 2,解得x =(2+1)a 2(负值舍去).当a2≤2≤(2+1)a 2即4(2-1)≤a ≤4时,f (x )max =f ⎝ ⎛⎭⎪⎫a 2=a24=2,解得a =2 2. 当2>(2+1)a2即a <4(2-1)时,f (x )max =f (2)=2(2-a )=2.解得a =1.[A 基础达标]1.若幂函数的图象经过点⎝⎛⎭⎪⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B.[0,+∞) C .(-∞,+∞)D.(-∞,0)解析:选D.设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).2.若幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A.1或3 B.1C.3D.2解析:选B.由题意得m2-4m+4=1,m2-6m+8>0,解得m=1.3.(2022·潍坊模拟)已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则( )A.a>0,4a+b=0 B.a<0,4a+b=0C.a>0,2a+b=0 D.a<0,2a+b=0解析:选A.由f(0)=f(4),得f(x)=ax2+bx+c图象的对称轴为x=-b2a=2,所以4a+b=0,又f(0)>f(1),f(4)>f(1),所以f(x)先减后增,于是a>0.4.(多选)(2022·淄博模拟)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的可能是( ) A.f(-1) B.f(1)C.f(2)D.f(5)解析:选ACD.因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).5.已知幂函数f(x)=(n2+2n-2)x n2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( )A.-3 B.1C.2D.1或2解析:选B.由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意.6.(多选)由于被墨水污染,一道数学题仅能见到如下文字:“已知二次函数y =ax 2+bx +c 的图象过点(1,0),…,求证:这个二次函数的图象关于直线x =2对称.”根据现有信息,题中的二次函数可能具有的性质是( )A .在x 轴上截得的线段的长度是2B .与y 轴交于点(0,3)C .顶点是(-2,-2)D .过点(3,0)解析:选ABD.由已知得⎩⎨⎧a +b +c =0,-b 2a =2,解得b =-4a ,c =3a ,所以二次函数为y =a (x 2-4x +3),其顶点的横坐标为2,所以顶点一定不是(-2,-2),故选ABD.7.(2022·山东烟台模拟)若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________.解析:y =8⎝ ⎛⎭⎪⎫x -m -1162+m -7-8⎝ ⎛⎭⎪⎫m -1162, 因为值域为[0,+∞),所以m -7-8⎝⎛⎭⎪⎫m -1162=0, 解得m =9或m =25. 答案:9或258.若(3-2m )12>(m +1)12,则实数m 的取值范围为________. 解析:因为y =x 12在定义域[0,+∞)上是增函数,所以⎩⎨⎧3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23.故实数m 的取值范围为⎣⎢⎡⎭⎪⎫-1,23. 答案:⎣⎢⎡⎭⎪⎫-1,239.(2022·潍坊质检)已知函数f (x )=⎩⎨⎧x 2+x ,-2≤x ≤c ,1x ,c <x ≤3.若c =0,则f (x )的值域是________;若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则实数c 的取值范围是________.解析:当c =0时,即x ∈[-2,0]时,f (x )∈⎣⎢⎡⎦⎥⎤-14,2,当x ∈(0,3]时,f (x )∈⎣⎢⎡⎭⎪⎫13,+∞,所以f (x )的值域为⎣⎢⎡⎭⎪⎫-14,+∞.作出y =x 2+x 和y =1x 的图象如图所示,当f (x )=-14时,x =-12;当x 2+x =2时,x =1或x =-2;当1x =2时,x =12,由图象可知当f (x )的值域为⎣⎢⎡⎦⎥⎤-14,2时,需满足12≤c ≤1.答案:⎣⎢⎡⎭⎪⎫-14,+∞⎣⎢⎡⎦⎥⎤12,110.已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)由f (-1+x )=f (-1-x )可得f (x )的图象关于直线x =-1对称,设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0),由函数f (x )的值域为[-1,+∞),可得h =-1, 根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+h a,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=-4ha=2,解得a =1,所以f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增, 又g (x )=f (x )-kx =x 2-(k -2)x . 所以g (x )的对称轴方程为x =k -22,则k -22≤-1,即k ≤0,故k 的取值范围为(-∞,0].[B 综合应用]11.(多选)(2022·潍坊模拟)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x -x 2,则下列说法正确的是( )A .f (x )的最大值为14B .f (x )在(-1,0)上是增函数C .f (x )>0的解集为(-1,1)D .f (x )+2x ≥0的解集为[0,3]解析:选AD.由题意,得当x ≥0时,f (x )=x -x 2=-⎝⎛⎭⎪⎫x -122+14;当x <0时,f (x )=-x 2-x =-⎝⎛⎭⎪⎫x +122+14,f (x )的最大值为14,A 正确;f (x )在⎝⎛⎭⎪⎫-12,0上是减函数,B 错误; f (x )>0的解集为(-1,0)∪(0,1),C 错误; 当x ≥0时,f (x )+2x =3x -x 2≥0的解集为[0,3], 当x <0时,f (x )+2x =x -x 2≥0无解,故D 正确.12.(2022·合肥质检)已知函数f (x )=-2x 2+bx +c ,不等式f (x )>0的解集为(-1,3).若对任意的x ∈[-1,0],f (x )+m ≥4恒成立,则m 的取值范围是( )A .(-∞,2] B.[4,+∞) C .[2,+∞)D.(-∞,4]解析:选B.因为f (x )>0的解集为(-1,3),故-2x 2+bx +c =0的两个根分别为-1,3,所以⎩⎪⎨⎪⎧-c 2=-1×3,b 2=-1+3,即⎩⎨⎧b =4,c =6,令g (x )=f (x )+m ,则g (x )=-2x 2+4x +6+m =-2(x -1)2+8+m ,由x ∈[-1,0]可得g (x )min =m ,又g (x )≥4在[-1,0]上恒成立,故m ≥4.13.(多选)(2022·菏泽模拟)已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题,其中是真命题的是( )A .若a 2-b ≤0,则f (x )在区间[a ,+∞)上单调递增 B .存在a ∈R ,使得f (x )为偶函数C .若f (0)=f (2),则f (x )的图象关于x =1对称D .若a 2-b -2>0,则函数h (x )=f (x )-2有2个零点解析:选AB.对于选项A ,若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2在区间[a ,+∞)上单调递增,正确;对于选项B ,当a =0时,f (x )=|x 2+b |显然是偶函数,正确;对于选项C ,取a =0,b =-2,函数f (x )=|x 2-2ax +b |化为f (x )=|x 2-2|,满足f (0)=f (2),但f (x )的图象不关于x =1对称,错误;对于选项D ,如图,a 2-b -2>0,即a 2-b >2,则h (x )=|(x -a )2+b -a 2|-2有4个零点,错误.14.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2.若对任意的x ∈[a ,a +2],不等式f (x +a )≥2f (x )恒成立,求实数a 的取值范围.解:由题意知f (x )=⎩⎨⎧x 2,x ≥0,-x 2,x <0,则2f (x )=f (2x ),因此原不等式等价于f (x +a )≥f (2x ).易知f (x )在R 上是增函数,所以x +a ≥2x ,即a ≥(2-1)x .又x ∈[a ,a +2],所以当x =a +2时,(2-1)x 取得最大值(2-1)(a +2),因此a ≥(2-1)(a +2),解得a ≥ 2.故a 的取值范围是[2,+∞).[C 素养提升]15.(2022·兰州模拟)已知幂函数f (x )的部分对应值如表:x 112则不等式f (|x |)≤2的解集是________.解析:设幂函数为f (x )=x α,则⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以f (x )=x 12.不等式f (|x |)≤2等价于|x |12≤2,所以|x |≤4, 所以-4≤x ≤4.所以不等式f (|x |)≤2的解集是[-4,4]. 答案:[-4,4]16.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的“平均值函数”,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的“平均值函数”,求实数m 的取值范围.解:设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1(舍去)或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).。
2023年新高考数学大一轮复习专题08 幂函数与二次函数(解析版)

专题08 幂函数与二次函数【考点预测】 1.幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2.幂函数的特征:同时满足一下三个条件才是幂函数 ①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质 3.常见的幂函数图像及性质:R RR {|0}x x ≥ (1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 5.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,;2max 4()4ac b f x a -=.(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 6.二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=: (1)若2bp a-≤,则(),()m f p M f q ==; (2)若02b p x a <-<,则(),()2bm f M f q a =-=; (3)若02b x q a ≤-<,则(),()2bm f M f p a=-=; (4)若2bq a-≥,则(),()m f q M f p ==. 【方法技巧与总结】1.幂函数()a y x a R =∈在第一象限内图象的画法如下: ①当0a <时,其图象可类似1y x -=画出; ②当01a <<时,其图象可类似12y x =画出; ③当1a >时,其图象可类似2y x =画出.2.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 3.一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.n (1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.【题型归纳目录】题型一:幂函数的定义及其图像 题型二:幂函数性质的综合应用题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件 题型四:二次函数“动轴定区间”、“定轴动区间”问题【典例例题】题型一:幂函数的定义及其图像例1.(2022·全国·高三专题练习)幂函数()()22121m f x m m x -=-+在()0,∞+上为增函数,则实数m 的值为( ) A .2- B .0或2 C .0 D .2【答案】D 【解析】 【分析】根据函数为幂函数求出m ,再验证单调性可得. 【详解】因为()f x 是幂函数,所以2211m m -+=,解得0m =或2m =,当0m =时,()1f x x -=在()0,∞+上为减函数,不符合题意, 当2m =时,()3f x x =在()0,∞+上为增函数,符合题意,所以2m =. 故选:D.例2.(2022·全国·高三专题练习)已知幂函数pqy x =(p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且0p q> B .q 为偶数,p 为奇数,且0p q < C .q 为奇数,p 为偶数,且0p q > D .q 为奇数,p 为偶数,且0p q< 【答案】D 【解析】 【分析】根据给定函数的图象分析函数的性质,即可得出p 、q 的取值情况. 【详解】因函数p q y x =的图象关于y 轴对称,于是得函数pq y x =为偶函数,即p 为偶数, 又函数p qy x =的定义域为(,0)(0,)-∞+∞,且在(0,)+∞上单调递减,则有pq<0, 又因p 、q 互质,则q 为奇数,所以只有选项D 正确. 故选:D例3.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12##0.5 【解析】 【分析】点A 坐标代入幂函数解析式,求得a ,然后计算函数值. 【详解】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭ 故答案为:12.例4.(2022·黑龙江·哈九中高三开学考试(文))已知幂函数()f x 的图象过点()8,2--,且()()13f a f a +≤--,则a 的取值范围是______. 【答案】(],1-∞ 【解析】 【分析】先求得幂函数()f x 的解析式,根据函数()f x 的奇偶性、单调性来求得a 的取值范围. 【详解】设()f x x α=,则()1823αα-=-⇒=,所以()13f x x =,()f x 在R 上递增,且为奇函数,所以()()()311313f a f a a a f a a =-+≤--+-⇒≤⇒≤. 故答案为:(],1-∞例5.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快 【解析】 【分析】根据幂函数的图象与性质确定结论. 【详解】解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.例6.(2022·全国·高三专题练习)已知幂函数223()m m y f x x --==(m ∈Z )在(0,)+∞是严格减函数,且为偶函数.(1)求()y f x =的解析式;(2)讨论函数5()(2)()y af x a x f x =+-⋅的奇偶性,并说明理由.【答案】(1)4()y f x x -==;(2)当2a =时,为偶函数;当0a =时,为奇函数;当2a ≠且0a ≠时,为非奇非偶函数.理由见解析. 【解析】(1)由题意可得:2230m m --<,解不等式结合m ∈Z 即可求解;(2)由(1)可得4(2)y ax a x -=+-,分别讨论0a =、2a =、0a ≠且2a ≠时奇偶性即可求解. 【详解】(1)因为幂函数223()mm y f x x --==(m Z ∈)在(0,)+∞是严格减函数,所以2230m m --<,即()()310m m -+< ,解得:13x , 因为m Z ∈,所以0,1,2m =,当0m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;当1m =时,4()y f x x -==,此时()y f x =为偶函数,符合题意; 当2m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意; 所以4()y f x x -==,(2)4544(2)(2)y ax a x x ax a x ---=+-⋅=+-,令()4(2)F x ax a x -=+-当0a =时,()2F x x =-,()()()22F x x x F x -=-⨯-==-,此时是奇函数, 当2a =时()4422F x x x -==,()()()444222F x x x x --=-==-,此时是偶函数, 当0a ≠且2a ≠时,()1(2)22F a a a =+-=-,()1(2)2F a a -=--=,()()11F F ≠-,()()11F F -≠-,此时是非奇非偶函数函数.【方法技巧与总结】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.题型二:幂函数性质的综合应用例7.(2022·河北石家庄·高三期末)已知实数a ,b 满足3e e 1a a a -+=+,3e e 1b b b -+=-,则a b +=( ) A .-2 B .0 C .1 D .2【答案】B 【解析】 【分析】由已知构造函数()3e e x xf x x -=+-,利用()1f a =,()1f b =-,及函数的单调性、奇偶性即可得出结果.【详解】构建函数()3e e x xf x x -=+-,则()f x 为奇函数,且在R 上单调递增.由3e e 1a a a -+=+,3e e 1b b b -+=-,得()1f a =,()()()()1f b f a f b f b a b =-⇒=-=-⇒=-,所以0a b +=. 故选:B.例8.(2022·四川眉山·三模(文))下列结论正确的是( )A .2<B .2<C .2log <D .2<【答案】A 【解析】 【分析】对于A 、B :作出2x y =和2yx 在第一象限的图像判断出:在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.即可判断A 、B ;对于C:判断出2>, log 1,即可判断;对于D:判断出2>,2=,即可判断.【详解】 对于A 、B : 作出2x y =和2yx 在第一象限的图像如图所示:其中2x y =的图像用虚线表示,2yx 的图像用虚线表示.可得,在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.因为24<,所以2<,故A 正确;4,所以2>,故B 错误;对于C:2>,而22log log 21<=,所以log >故C 错误;对于D:2>,而2=,所以>.故D 错误.故选:A例9.(2022·广西·高三阶段练习(理))已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根, 则实数k 的取值范围为( ) A .()0,1B .(),1-∞C .(]0,1D .()0,∞+ 【答案】A 【解析】 【分析】分析函数()f x 的性质,作出图象,数形结合即可求解作答. 【详解】当2x <时,函数3()(1)f x x =-是增函数,函数值集合是(,1)-∞,当2x ≥时,2()f x x=是减函数,函数值集合是(]0,1,关于x 的方程()f x k =有两个不同的实根,即函数()y f x =的图象与直线y k =有两个交点, 在坐标系内作出直线y k =和函数()y f x =的图象,如图,观察图象知,当01k <<时,直线y k =和函数()y f x =的图象有两个交点,即方程()f x k =有两个不同的实根,所以实数k 的取值范围为(0,1). 故选:A例10.(2022·浙江·模拟预测)已知0a >,函数()(0)xa f x x a x =->的图象不可能是( )A .B .C .D .【答案】C 【解析】 【分析】分类讨论1a =,01a <<与1a >三种情况下函数的单调性情况,从而判断. 【详解】当1a =时,()1(0)=-=>-a xx f x x x a ,此时函数()f x 为一条射线,且函数()1f x x =-在()0,∞+上为增函数,B 选项符合;当01a <<时,函数a y x =在()0,∞+上为增函数,x y a =在()0,∞+上为减函数,所以函数()=-a x f x x a 在()0,∞+上为增函数,此时函数在()0,∞+上只有一个零点,A 选项符合;当1a >时,x →+∞时,函数a y x =的增长速度远小于函数x y a =的增长速度,所以x →+∞时,函数()=-a xf x x a 一定为减函数,选项D 符合,C 不符合. 故选:C例11.(2022·全国·高三专题练习)不等式()10112200221210x x x -++-≤的解集为:_________.【答案】⎡⎢⎣⎦ 【解析】 【分析】 将不等式化为()()10111011222211x x x x +≤-+-,构造()1011f x x x =+根据其单调性可得221x x ≤-,求解即可.【详解】不等式变形为()()101110112222110x x x x -+-++≤,所以()()10111011222211x x x x +≤-+-,令()1011f x x x =+,则有()()221f x f x ≤-,显然()f x 在R 上单调递增,则221x x ≤-,可得212x ≤,解得x ≤≤故不等式的解集为⎡⎢⎣⎦.故答案为:⎡⎢⎣⎦例12.(2022·上海市实验学校高三阶段练习)若函数()()()3,af x m x m a =+∈R 是幂函数,且其图象过点(,则函数()()2log 3ag x xmx =+-的单调递增区间为___________.【答案】(),1-∞- 【解析】 【分析】根据幂函数的定义及所过的点求出,a m ,再根据对数型复合函数的单调性即可得出答案. 【详解】解:因为函数()()()3,af x m x m a =+∈R 是幂函数,所以31m +=,解得2m =-,又其图象过点(,所以2a 12a =, 则()()212log 23g x x x =--, 则2230x x -->,解得3x >或1x <-, 令223x x μ=--,则函数223x x μ=--在()3,+∞上递增,在(),1-∞-上递减, 又因函数12log y μ=为减函数,所以函数()g x 的单调递增区间为(),1-∞-. 故答案为:(),1-∞-.例13.(2020·四川·泸州老窖天府中学高二期中(理))已知函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若方程2()()20f x bf x ++=有8个相异的实数根,则实数b 的取值范围是_________________________ .【答案】(3,-- 【解析】 【分析】根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,进而数形结合,将问题转化为方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可. 【详解】解:根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,如图:令()t f x =,因为方程2()()20f x bf x ++=有8个相异的实数根, 所以方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,故令()22g t t bt =++,则函数()22g t t bt =++在区间()1,2上有两个不相等的零点.所以()()100220g b g g ⎧>⎪⎪⎛⎫-<⎨ ⎪⎝⎭⎪⎪>⎩,即230204620b b b +>⎧⎪⎪-<⎨⎪+>⎪⎩,解得3b -<<-所以实数b的取值范围是(3,--.故答案为:(3,--例14.(2022·全国·高三专题练习)已知幂函数()()224222mm f x m m x-+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【解析】 【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可. 【详解】(1)(1)因为幂函数()2242()22mm f x m m x-+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意; ②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.【方法技巧与总结】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件例15.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<; 由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >, 因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A例16.(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C 【解析】 【分析】根据二次函数的对称轴与单调区间,结合已知可得到关于a 的不等式,进而求解. 【详解】二次函数24y x x a =-+,对称轴为2x =,开口向上, 在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a << 故实数a 的取值范围是()3,4 故选:C例17.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax xg x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围. 【答案】(1)()24x xg x =-;(2)1,124⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)根据()218f a +=求出a 即可;(2)方程()80xg x m -⋅=参变分离得222x x m --=-,换元法求值域即可.(1)由()218f a +=,可得:2318a +=,解得:32a =,∴()24x xg x =-;(2)由()80xg x m -⋅=,可得222x x m --=-,令12,44xt -⎡⎤=∈⎢⎥⎣⎦,则221124m t t t ⎛⎫=-=-- ⎪⎝⎭, 则原问题等价于y =m 与y =h (t )=2t t -在1,44t ⎡⎤∈⎢⎥⎣⎦上有交点,数形结合可知m ∈[h (12),h (4)]=1,124⎡⎤-⎢⎥⎣⎦.故实数m 的取值范围为:1,124⎡⎤-⎢⎥⎣⎦.例18.(2022·湖北·高一期末)已知函数()2sin 1f x x =-,[0,]x π∈. (1)求()f x 的最大值及()f x 取最大值时x 的值;(2)设实数a R ∈,求方程23[()]2()10f x af x -+=存在8个不等的实数根时a 的取值范围. 【答案】(1)当0x =,π2,π时, max ()1f x =(2))2a ∈【解析】 【分析】(1)去掉绝对值,化为分段函数,求出每一段上的最大值;(2)令()t f x =,问题转化为23210t at -+=在(0,1)t ∈上存在两个相异的实根,进而列出不等式组,求出a 的取值范围.(1)∵()521,66512,066sinx x f x sinx x x πππππ⎧-≤≤⎪⎪=⎨⎪-≤<<≤⎪⎩或,∴当5[,]66x ππ∈时, ()max 12f x f π⎛⎫== ⎪⎝⎭;∴当5[0,)(,]66x πππ∈时, max ()(0)(π)1f x f f ===.故当02x ππ=,,时, max ()1f x =. (2)令()t f x =,则[0,1]t ∈,使方程23[()]2()10f x af x -+=存在8个不等的实数根,则方程23210t at -+=在(0,1)t ∈上存在两个相异的实根,令2()321g t t at =-+,则()()()201013210Δ24310012g g a a a ⎧=>⎪=-+>⎪⎪⎨=--⨯⨯>⎪⎪<<⎪⎩2a <<.故所求的a的取值范围是)2.【方法技巧与总结】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.题型四:二次函数“动轴定区间”、“定轴动区间”问题例19.(2022·全国·高三专题练习)已知2()(0)f x ax bx c a =++>,()(())g x f f x =,若()g x 的值域为[2,)+∞,()f x 的值域为[k ,)+∞,则实数k 的最大值为( )A .0B .1C .2D .4【答案】C 【解析】 【分析】设()t f x =,即有()()g x f t =,t k ,可得函数2y at bt c =++,t k 的图象为()y f x =的图象的部分,即有()g x 的值域为()f x 的值域的子集,即有k 的范围,可得最大值为2. 【详解】解:设()t f x =,由题意可得2()()g x f t at bt c ==++,t k , 函数2y at bt c =++,t k 的图象为()y f x =的图象的部分, 即有()g x 的值域为()f x 的值域的子集, 即[2,)[k +∞⊆,)+∞, 可得2k ,即有k 的最大值为2. 故选:C .例20.(2022·全国·高三专题练习)已知值域为[1,)-+∞的二次函数()f x 满足(1)(1)f x f x -+=--,且方程()0f x =的两个实根12,x x 满足122x x -=.(1)求()f x 的表达式;(2)函数()()g x f x kx =-在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -,求实数k 的取值范围.【答案】(1)()22f x x x =+;(2)(],2-∞-. 【解析】 【分析】(1)根据(1)(1)f x f x -+=--可以判断函数的对称轴,再根据函数的值域可以确定二次函数的顶点坐标,则可设22()(1)121f x a x ax ax a =+-=++-,根据一元二次方程根与系数的关系,结合已知122x x -=进行求解,求出a 的值,即可得出()f x 的表达式;(2)根据题意,可以判断出函数()g x 在区间[2,2]-上的单调性,由()()g x f x kx =-,求得()2(2)g x x k x =+-,进而可知()g x 的对称轴方程为22k x -=,结合二次函数的图象与性质以及单调性,得出222k -≤-,即可求出k 的取值范围. (1)解:由(1)(1)f x f x -+=--,可得()f x 的图象关于直线1x =-对称, 函数()f x 的值域为[1,)-+∞,所以二次函数的顶点坐标为(1,1)--, 所以设22()(1)121f x a x ax ax a =+-=++-, 根据根与系数的关系,可得122x x +=-,121a x x a-=, 因为方程()0f x =的两个实根12,x x 满足122x x -=则122x x -===, 解得:1a =,所以()22f x x x =+.(2)解:由于函数()g x 在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -, 则函数()g x 在区间[2,2]-上单调递增,又2())2(g x f x kx x x kx =-=+-,即()2(2)g x x k x =+-,所以()g x 的对称轴方程为22k x -=,则222k -≤-,即2k ≤-, 故k 的取值范围为(],2-∞-.例21.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==【解析】 【分析】(1)代入3a =解不等式组226756⎧-<⎪⎨-<-⎪⎩x x x x 可得答案; (2)由题意(0)(2)0f f a ==,结合最大值为0最小值是4-分0=t 、22t a +=数形结合可得答案. (1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例22.(2022·全国·高三专题练习)问题:是否存在二次函数2()(0,,)f x ax bx c a b c R =++≠∈同时满足下列条件:(0)3f =,()f x 的最大值为4,____?若存在,求出()f x 的解析式;若不存在,请说明理由.在①(1)(1)f x f x +=-对任意x ∈R 都成立,② 函数(2)y f x =+的图像关于y 轴对称,③ 函数()f x 的单调递减区间是1,2⎡⎫+∞⎪⎢⎣⎭这三个条件中任选一个,补充在上面问题中作答.【答案】答案见解析 【解析】 【分析】由(0)3f =,可求得3c =,由条件可得函数的对称轴,又()f x 的最大值为4,可得关于,a b 的方程组,求解即可. 【详解】解:由(0)3f =,可求得3c =,则2()3f x ax bx =++ 若选择① (1)(1)f x f x +=-对任意x ∈R 都成立 可得()f x 的对称轴为1x =,所以2ba-=1,又()f x 的最大值为4,可得0a <且(1)4f =,即34a b ++=,解得1,2a b =-=,此时2()23f x x x =-++; 若选择函数(2)y f x =+的图像关于y 轴对称 可得()f x 的对称轴为2x =,则2ba-=2, 又f (x )的最大值为4,可得0a <且(2)4f =,即4234a b ++=,解得a 14=-,1b =,此时21()34f x x x =-++若选择③ 函数f (x )的单调递减区间是1[2+∞,), 可得f (x )关于x 12=对称,则122b a -=,又()f x 的最大值为4,可得0a <且142f ⎛⎫= ⎪⎝⎭,即113442a b ++=解得4a b ==-,此时2()434f x x x -=-+例23.(2022·全国·高三专题练习)已知二次函数()f x 满足(1)(3)3,(1)1f f f -===-. (1)求()f x 的解析式;(2)若()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,求a 的取值范围. 【答案】(1)2()2f x x x =-;(2)[1,2]. 【解析】 【分析】(1)利用待定系数法求函数的解析式,设2()f x ax bx c =++(0)a ≠,根据已知条件建立方程组,从而可求出解析式;(2)根据()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,(1)1f =-,从而函数()f x 的对称轴在区间[1,1]a a -+上,1a +离对称轴远,建立关系式,从而求出a 的范围【详解】(1)设2()f x ax bx c =++(0)a ≠,则 (1)3(3)933(1)1f a b c f a b c f a b c -=-+=⎧⎪=++=⎨⎪=++=-⎩解之得:1,2,0a b c ==-=2()2f x x x ∴=- (2)根据题意:111(1)11(1)a a a a -≤≤+⎧⎨+-≥--⎩解之得:12a ≤≤a ∴的取值范围为[]1,2例24.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【答案】(1)2(1)2f x x x =++ (2)913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)根据0∆≤,结合(1)0f -=可解;(2)结合图形,对对称轴和端点函数值进行分类讨论可得. (1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++. (2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦.【方法技巧与总结】“动轴定区间 ”、“定轴动区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.【过关测试】一、单选题1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( ) A .()0,1x ∀∈,都有()0f x > B .()0,1x ∀∈,都有()0f x < C .()00,1x ∃∈,使得()00f x = D .()00,1x ∃∈,使得()00f x >【答案】B 【解析】 【分析】根据题目条件,画出函数草图,即可判断. 【详解】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =【答案】D 【解析】 【分析】根据指对函数的性质判断A 、B ,由正弦函数性质判断C ,对于D 有22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,即可判断奇偶性和()0,+∞单调性. 【详解】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足.故选:D3.(2022·全国·高三专题练习)已知幂函数()()()222nf x n n x n Z =+-∈在()0,∞+上是减函数,则n 的值为( ) A .1或3- B .1 C .1- D .3-【答案】D 【解析】 【分析】根据幂函数的定义和单调性求得n 的值. 【详解】依题意()f x 是幂函数,所以22221230n n n n +-=⇒+-=,解得1n =或3n =-. 当1n =时,()f x x =在()0,∞+递增,不符合题意.当3n =-时,()3f x x -=在()0,∞+递减,符合题意.故选:D4.(2022·全国·高三专题练习(理))设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R ,且该函数为奇函数的α值为( ) A .1或3 B .1-或1C .1-或3D .1-、1或3【答案】A 【解析】 【分析】由幂函数的相关性质依次验证得解. 【详解】因为定义域为R ,所以0α>,12α≠, 又函数为奇函数,所以2α≠,则满足条件的1α=或3. 故选:A5.(2022·全国·高三专题练习(理))已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( ) A .(),0-∞ B .()(),00,-∞⋃+∞ C .()0,∞+ D .[)0,+∞【答案】D 【解析】先求出幂函数解析式,根据解析式即可求出值域. 【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,23(0)f x x ∴==,∴()f x 的值域是[)0,+∞.故选:D.6.(2022·北京·高三专题练习)设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .6【答案】B 【解析】 【详解】因为[]x 表示不超过x 的最大整数.由得,由得, 由得,所以,所以,由得, 所以,由得,与矛盾,故正整数n 的最大值是4.考点:函数的值域,不等式的性质.7.(2022·全国·高三专题练习)若幂函数()mn f x x = (m ,n ∈N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.8.(2022·全国·高三专题练习)已知3,0()3,0x xx f x e x x x ⎧⎪=⎨⎪-<⎩,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为( ) A .72(,)2e e-- B .72](,2e e--C .72(,)(,)2e e -∞--+∞D .72(,(,2])e e-∞--+∞【答案】A 【解析】 【分析】利用导数研究分段函数()f x 的性质,作出函数图形,数形结合得到124010t t e -<<⎧⎪⎨<<⎪⎩,然后结合一元二次方程根的分布即可求出结果. 【详解】 因为0x ≥时,()xx f x e =,则1()x xf x e-'=,令()0f x '=,则1x =,所以()0,1x ∈时,()0f x '>,则()f x 单调递增;()1,x ∈+∞时,()0f x '<,则()f x 单调递减;且(0)0f =,1(1)f e=,x →+∞时,()0f x →;0x <时,3()3f x x x =-,则2()33f x x =-',令()0f x '=,则1x =-,所以()1,0x ∈-时,()0f x '>,则()f x 单调递增;(),1x ∈-∞-时,()0f x '<,则()f x 单调递减;且(0)0f =,(1)4f -=-,x →-∞时,()f x →+∞; 作出()f x 在R 上的图象,如图:关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,令()f x t =,则2210t kt --=有两个不同的实根12121,02t t t t =-<,,所以124010t t e-<<⎧⎪⎨<<⎪⎩,令()221g t t kt =--,则()()280400010k g g g e ⎧∆=+>⎪->⎪⎪<⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩,解得722k e e -<<-,故选:A. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 二、多选题9.(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2 B .3C .4D .5【答案】BC 【解析】 【分析】画出函数244y x x =--的图象,结合值域可得实数a 的取值范围,从而可得正确的选项. 【详解】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确. 故选: BC.10.(2022·全国·高三专题练习)已知函数2()3232x x f x =-⋅+,定义域为M ,值域为[1,2],则下列说法中一定正确的是( ) A .[]30,log 2M = B .(]3,log 2M ⊆-∞ C .3log 2M ∈ D .0M ∈【答案】BCD 【解析】 【分析】根据题意,令3x t =,则()222g t t t =-+,结合()g t 的值域为[1,2],求出t 的取值范围,进而区间M 的特征,即可得到正确选项. 【详解】令3x t =(0)t >,则222()323222(1)1()x x f x t t t g t =-⋅+=-+=-+=, 由()1g t =,得1t =,即31x =,得0x =; 由()2g t =,得0=t (舍)或2,即3log 2x =;根据()g t 的图象特征,知0M ∈,3log 2M ∈,(]3log 2M ⊆-∞,. 故选:BCD .11.(2022·广东揭阳·高三期末)已知函数()3f x x x =+,实数,m n 满足不等式()()2320f m n f n -+->,则( ) A .e e m n > B .11n n m m +>+ C .()ln 0m n -> D .20212021m n <【答案】AC 【解析】 【分析】先判断函数()f x 的奇偶性及单调性结合不等式()()2320f m n f n -+->可得,m n 所满足的关系式,再利用指数函数、对数函数和幂函数的单调性以及特殊值法逐项判断. 【详解】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()f x 为奇函数,因为()2310f x x '=+>,所以()f x R 上单调递增, 由()()2320f m n f n -+->, 得()()()2322f m n f n f n ->--=-, 所以232m n n ->-, 即1m n ->,m n >,因为x y e =在R 上是增函数,所以m n e e >,故A 正确;因为ln y x =在()0,∞+上是增函数,所以ln()0m n ->,故C 正确; 因为2021y x =在R 上是增函数,所以20212021m n >,故D 错误; 令2,0m n ==,可验证B 错误. 故选:AC12.(2022·全国·高三专题练习)设点(),x y 满足()55340x y x x y ++++=.则点(),x y ( ) A .只有有限个 B .有无限多个C .位于同一条直线上D .位于同一条抛物线上【答案】BC 【解析】 【分析】由已知得()()()()5533x y x y x x +++=-+-,根据5y x x =+的单调性有3x y x +=-,即可知(),x y 的性质.【详解】由题意,可得()()()()5533x y x y x x +++=-+-, 又5y x x =+单调递增,得3x y x +=-,则40x y +=, 故满足条件的点(),x y 有无穷多个,且都在直线40x y +=上. 故选:BC 三、填空题13.(2022·内蒙古赤峰·模拟预测(文))写出一个同时具有下列性质①②③的函数()f x =______. ①()()f x f x -=;②当()0,x ∞∈+时,()0f x >; ③()()()1212f x x f x f x =⋅;【答案】2x (答案不唯一); 【解析】 【分析】根据给定函数的性质,结合偶数次幂函数即可写出符合要求的解析式. 【详解】由所给性质:()f x 在(,0),(0,)-∞+∞上恒正的偶函数,且()()()1212f x x f x f x =⋅,结合偶数次幂函数的性质,如:2()f x x =满足条件. 故答案为:2x (答案不唯一)14.(2022·全国·高三专题练习(文))已知α∈112,1,,,1,2,322⎧⎫---⎨⎬⎩⎭.若幂函数f (x )=xα为奇函数,且在(0,+∞)上递减,则α=______. 【答案】-1 【解析】 【分析】根据幂函数()f x x α=,当α为奇数时,函数为奇函数,0α<时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f (x )=xα为奇函数,∴α可取-1,1,3, 又f (x )=xα在(0,+∞)上递减,∴α<0,故α=-1. 故答案为:-1.15.(2022·广东肇庆·模拟预测)已知函数21()2f x x ax =++,()lng x x =-,用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,若()h x 恰有3个零点,则实数a 的取值范围是___________.【答案】3,2⎛- ⎝【解析】 【分析】分析函数21()2f x x ax =++的零点情况,可确定符合题意的情况,从而得到不等式组,解得答案.【详解】函数21()2f x x ax =++恒过点1(0,)2,且其图象开口向上,()ln g x x =-的零点为1,当21()2f x x ax =++的零点至少有一个大于或等于1时,如图示:函数()min{(),()}(0)h x f x g x x =>的零点至多有两个,不符合题意,故要使()h x 恰有3个零点,则函数()f x 在区间(0,1)上存在两个零点,如图示,故20121(1)1021Δ402a f a a ⎧<-<⎪⎪⎪=++>⎨⎪⎪=-⨯>⎪⎩解得32a -<<故答案为:3,2⎛- ⎝16.(2022·全国·高三专题练习)93,42M ⎛⎫⎪⎝⎭是幂函数()a f x x 图象上的点,将()f x 的图象向上平移32个单位长度,得到函数()y g x =的图象,若点(,)n T n m (*n ∈N ,且2n )在()g x 的图象上,则239MT MT MT +++=______. 【答案】30 【解析】 【分析】先求出函数()y g x =的解析式,得到23()2m n -=,从而得到()724n MT n n =-≥,对239MT MT MT +++利用分组求和法求和即可. 【详解】由39()24α=,得12α=,()12f x x =,123()2g x x =+.因为点(,)n m 在函数()g x 上,所以1232m n -=,即23()2m n -=.所以n MT ==7(2)4n n =-≥, 所以239777(2)(3)(9)444MT MT MT +++=-+-+⋯+-7(239)84=+++-⨯811142⨯=- 30=.故答案为:30. 四、解答题17.(2022·全国·高三专题练习)解不等式3381050(1)1x x x x +-->++. 【答案】()()211-∞--,,. 【解析】 【分析】不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,将21x +视为一个整体,方程两边具有相同的结构,于是构造函数()35f x x x =+,然后由函数的单调性解不等式.【详解】令()35f x x x =+,易知()f x 在R 上单调递增.原不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,即()21f f x x ⎛⎫> ⎪+⎝⎭. 由()f x 在R 上单调递增得21x x >+,解得2x <-或11x -<<. 所以原不等式的解集为()()211-∞--,,. 18.(2022·全国·高三专题练习)已知幂函数()()2144m f x m m x+=+-在区间0,上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减. 【答案】(1)()2f x x =;(2)证明见解析.【解析】 【分析】(1)由幂函数的系数为1得2441+-=m m ,再根据函数为0,增函数得1m =;(2)由(1)得()216g x x x=+,再根据函数单调性的定义证明即可. 【详解】(1)解:由题可知:2441+-=m m ,解得1m =或5m =-. 若1m =,则()2f x x =在区间0,上单调递增,符合条件;若5m =-,则()4f x x -=在区间0,上单调递减,不符合条件.故()2f x x =.(2)证明:由(1)可知,()216g x x x=+. 任取1x ,()20,2x ∈,且12x x <,则()()()()22121212121212161616g x g x x x x x x x x x x x ⎡⎤-=+--=-+-⎢⎥⎣⎦. 因为1202x x <<<, 所以120x x -<,124x x +<,12164x x >, 所以()()121212160x x x x x x ⎡⎤-+->⎢⎥⎣⎦, 即()()12gx g x >,故()g x 在区间()0,2上单调递减.【点睛】。
全国名校高考数学优质试题汇编(附详解):二次函数综合问题

一元二次函数专题汇总一元二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况. 是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变; (3)轴变,区间定;(4)轴变,区间变。
2. 轴动区间定1.求函数)(a x x y --=在]1,1[-∈x 上的最大值。
3. 轴定区间动 2. 设函数的定义域为,对任意,求函数的最小值的解析式。
3 (优质试题)20. (本小题满分14分)已知113a ≤≤, 若函数()22f x ax x =-在[]1,3上的最大值为()M a ,最小值为()N a , 令()()()g a M a N a =-. (1)求()g a 的表达式;(2)若关于a 的方程()0g a t -=有解, 求实数t 的取值范围.2. 轴动区间定1.求函数)(a x x y --=在]1,1[-∈x 上的最大值。
1解析:函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;由图可知max ()(1)f x f =- (2)a ≤-22≤;由图可知max ()()2af x f =(3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a a f a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a a a a y 最大3. 轴定区间动2. 设函数的定义域为,对任意,求函数的最小值的解析式。
二次函数知识点及重点题练习答案解析

答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,
二次函数与一元二次方程、不等式【八大题型】(解析版)-2025年新高考数学一轮复习

二次函数与一元二次不等式【八大题型】【新高考专用】【题型1不含参一元二次不等式的解法】【题型2含参一元二次不等式的解法】【题型3由一元二次不等式的解确定参数】【题型4其他不等式的解法】【题型5一元二次不等式根的分布问题】【题型6二次函数的单调性、最值问题】【题型7一元二次不等式恒成立问题】【题型8一元二次不等式有解问题】1、二次函数与一元二次方程、不等式考点要求真题统计考情分析(1)会从实际情景中抽象出一元二次不等式(2)掌握三个“二次”的关系,会解一元二次不等式(3)了解分式、高次、绝对值不等式的解法2020年I 卷:第1题,5分2023年新高考I 卷:第1题,5分一元二次不等式是高考数学的重要内容.从近几年高考情况来看,三个“二次”的关系是必考内容,单独考查的频率很低,偶尔作为已知条件的一部分出现在其他考点的题目中;此外,“含参不等式恒成立与能成立问题”也是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.【知识点1一元二次不等式】1.一元二次不等式的解法(1)解不含参数的一元二次不等式的一般步骤:①通过对不等式变形,使二次项系数大于零;②计算对应方程的判别式;③求出相应的一元二次方程的根,或根据判别式说明方程没有实根;④根据函数图象与x 轴的相关位置写出不等式的解集.(2)解含参数的一元二次不等式的一般步骤:①若二次项系数含有参数,则需对二次项系数大于0、等于0与小于0进行讨论;②若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论;③若求出的根中含有参数,则应对两根的大小进行讨论.2.分式、高次、绝对值不等式的解法(1)解分式不等式的一般步骤:①对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.②对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.(2)解高次不等式的一般步骤:高次不等式的解法:如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:①标准化;②分解因式;③求根;④穿线;⑤得解集.(3)解绝对值不等式的一般步骤:对于绝对值不等式,可以分类讨论然后去括号求解;还可以借助数轴来求解.3.一元二次不等式恒成立、存在性问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为a<0,Δ≤0.【方法技巧与总结】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足a>0Δ<0 ;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为φ,则一定满足a<0Δ≤0 ;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足a<0Δ<0 ;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为φ,则一定满足a>0Δ≤0 .【题型1不含参一元二次不等式的解法】1(2023·广东珠海·模拟预测)不等式x2+x-6<0的解集是()A.-6,1B.-1,6C.-2,3D.-3,2【解题思路】利用二次不等式的解法可得出原不等式的解集.【解答过程】由x2+x-6<0得x-2x+3<0,解得-3<x<2,故原不等式的解集为-3,2.故选:D.2(2024·天津·一模)设x∈R,则“x<0”是“x2-x>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题思路】解出不等式x 2-x >0后,结合充分条件与必要条件的定义即可得.【解答过程】由x 2-x >0,解得x >1或x <0,故“x <0”是“x 2-x >0”的充分不必要条件.故选:A .3(2023·湖南岳阳·模拟预测)不等式x 2-1<3x +1 的解集是()A.x ∣x <4B.x ∣-4<x <1C.x ∣-1<x <4D.x ∣x <-1 或x >4【解题思路】将不等式化简成一元二次不等式的标准形式,即可求得结果.【解答过程】由不等式x 2-1<3x +1 可得x 2-3x -4<0,即x -4 x +1 <0,可得-1<x <4,因此不等式x 2-1<3x +1 的解集是x ∣-1<x <4 .故选:C .4(2024·湖南衡阳·模拟预测)已知命题p :集合A =x x 2+x -2>0 ,命题q :集合B =x x 2+2x -3>0 ,则p 是q 的( )条件A.充分不必要 B.必要不充分 C.充分必要 D.既不充分也不必要【解题思路】解出集合A 、B ,利用集合的包含关系判断可得出结论.【解答过程】∵A =x x 2+x -2>0 =x x +2 x -1 >0 =x x <-2或x >1 ,B =x x 2+2x -3>0 =x x +3 x -1 >0 =x x <-3或x >1 ,∴B 是A 的真子集,因此,p 是q 的必要不充分条件.故选:B .【题型2含参一元二次不等式的解法】1(23-24高一上·海南海口·期中)若0<m <1,则不等式x -m x -1m<0的解集为()A.x 1m <x <mB.x x >1m 或x <mC.x x <1m或x >m D.x m <x <1m【解题思路】根据0<m <1得到1m >m ,从而写出x -m x -1m <0的解集.【解答过程】因为0<m <1,所以1m>m ,所以x -m x -1m <0的解集为x m <x <1m.故选:D .2(23-24高一上·山东·阶段练习)不等式ax 2-a +1 x +1≥0a <0 的解集为( ).A.x 1a ≤x ≤1B.x 1≤x ≤1aC.x x ≤1a 或x ≥1D.x x ≤1或x ≥1a【解题思路】由一元二次不等式的解法求解.【解答过程】原不等式可化为ax -1 x -1 ≥0即a x -1a (x -1)≥0,而a <0,故1a<1,y =ax 2-(a +1)x +1图象开口向下,故原不等式的解集为x 1a≤x ≤1 .故选:A .3(23-24高一上·河南开封·期中)关于x 的不等式ax 2-a +1 x +1<0的解集不可能是()A.∅B.x x >1C.x 1 <x <1aD.x |x <1 或x >1a【解题思路】将原不等式化为ax -1 x -1 <0,再分类讨论a 的取值情况进行求解.【解答过程】由题意,原不等式可化为ax -1 x -1 <0当a =0时,原不等式为-x +1<0,解得x >1,原不等式的解集为x x >1 ;当a >1时,0<1a <1,原不等式的解集为x 1a<x <1 ;当0<a <1时,1a >1,原不等式的解集为x 1<x <1a ;当a =1时,1a =1,原不等式的解集为∅;当a <0时,1a <1,原不等式的解集为x x <1a 或x >1 ;综上,当a =0时,原不等式的解集为x x >1 ;当a >1时,原不等式的解集为x 1a <x <1 ;当0<a <1时,原不等式的解集为x 1<x <1a;当a =1时,原不等式的解集为∅;当a <0时,原不等式的解集为x x <1a 或x >1 ;故不可能的解集为x |x <1 或x >1a .故选:D .4(23-24高一上·浙江台州·期中)不等式ax 2+bx +c >0的解集为x -3<x <2 ,则下列选项正确的为()A.a +b +c <0B.9a +3b +c >0C.不等式cx 2+ax +b >0的解集为x -13<x <12D.不等式cx 2+bx +a >0的解集为x x >12 或x <-13 【解题思路】赋值法可解AB ,消去参数可解CD .【解答过程】记f x =ax 2+bx +c ,因为1∈x -3<x <2 所以f 1 =a +b +c >0,故A 错误;因为3∉x -3<x <2所以f 3 =9a +3b +c ≤0,故B 错误;由题知-3和2是方程ax 2+bx +c =0的两个实根,所以-b a =-3+2=-1,ca=-3×2=-6且a <0解得b =a ,c =-6a故cx 2+ax +b =-a 6x 2-x -1 >0⇔6x 2-x -1>0⇔x >12或x <-13,C 错误;cx 2+bx +a =-a 6x 2-x -1 >0⇔6x 2-x -1>0⇔x >12或x <-13,D 正确;故选:D .【题型3由一元二次不等式的解确定参数】1(23-24高一下·云南·阶段练习)若关于x 的不等式x 2-m +1 x +m <0的解集中恰有三个整数,则实数m 的取值范围为()A.-3,-2 ∪4,5B.-2,-1 ∪4,5C.-3,1 ∪4,5D.-3,5【解题思路】分类讨论x 2-(m +1)x +m =0的两根大小,结合已知条件,通过求一元二次不等式即可求解.【解答过程】原不等式可化为(x -1)(x -m )<0,当m >1时,得1<x <m ,此时解集中的整数为2,3,4,则4<m ≤5;当m <1时,得m <x <1,此时解集中的整数为-2,-1,0,则-3≤m <-2,综上所述,m 的取值范围是[-3,-2)∪(4,5].故选:A .2(2024·广东·一模)已知a ,b ,c ∈R 且a ≠0,则“ax 2+bx +c >0的解集为x x ≠1 ”是“a +b +c =0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题思路】根据一元二次不等式的解及充分条件、必要条件求解.【解答过程】由题意,二次不等式ax 2+bx +c >0的解集为x x ≠1 ,则等价于a >0-b2a =1Δ=b 2-4ac =0 ,即a =c >0,b =-2a ,即a +b +c =0,当a +b +c =0时,不能推出a =c >0,b =-2a ,所以“ax 2+bx +c >0的解集为x x ≠1 ”是“a +b +c =0”的充分不必要条件,故选:A .3(23-24高三上·云南德宏·期末)已知关于x 的不等式x 2-ax +b ≤0的解集为x 2≤x ≤3 ,则关于x 的不等式x 2-bx +a <0的解集为()A.x 2<x <3B.x 1<x <3C.x 2<x <5D.x 1<x <5【解题思路】根据一元二次不等式的解集与对应一元二次方程的根之间的关系求出a 、b 的值,再解不等式.【解答过程】根据题意,方程x 2-ax +b =0的两根为2和3,则a =2+3=5,b =2×3=6,则x 2-bx +a <0为x 2-6x +5<0,其解集为x 1<x <5 .故选:D .4(23-24高一上·黑龙江大庆·期末)关于x 的不等式x 2-ax -6a <0的解集是{x |m <x <n },且n -m ≤5,则实数a 的取值范围()A.-25,-24B.0,1C.-25,-24 ∪0,1D.-25,-24 ∪0,1【解题思路】先求出m =a -a 2+24a 2,n =a +a 2+24a2,再根据n -m ≤5,即可求出.【解答过程】关于x的不等式x2-ax-6a<0的解集是{x|m<x<n},∴m,n是方程x2-ax-6a=0的两个根,∴Δ=a2+24a>0即a(a+24)>0,∴a<-24或a>0,∴m=a-a2+24a2,n=a+a2+24a2,∵n-m≤5,∴a+a2+24a2-a-a2+24a2≤5,即a2+24a-25≤0,即(a-1)(a+25)≤0,解得-25≤a≤1,综上所述-25≤a<-24,或0<a≤1,故选:D.【题型4其他不等式的解法】1(23-24高一上·湖南长沙·期末)解下列不等式:(1)2xx-1≥4;(2)2x-3+x-2≤3.【解题思路】(1)将分式不等式化为2x-2x-1≤0且x≠1,求出解集;(2)将绝对值不等式化为分段函数,零点分段法求解绝对值不等式.【解答过程】(1)不等式2xx-1≥4,移项得2xx-1-4≥0,通分得4-2xx-1≥0,可转化为2x-2x-1≤0且x≠1,解得1<x≤2,不等式解集为x 1<x≤2.(2)令y=2x-3+ x-2=3x-5,x≥2,x-1,32<x<2,-3x+5,x≤32,当x≥2时,3x-5≤3,解得x≤83,即x∈2,83;当32<x<2时,x-1≤3,解得x≤4,即x∈32,2;当x≤32时,-3x+5≤3,解得x≥23,即x∈23,32;综上所述:不等式解集为x 23≤x≤83.2(23-24高一上·江苏扬州·期中)求下列不等式的解集(1)3x-1x+1>4;(2)2x-3x+1<1(3)x+2<1【解题思路】(1)将原不等式3x-1x+1>4等价转换为x-13x+5>0,解一元二次不等式即可.(2)将原不等式2x-3x+1<1等价转换为x+1x-4<0,解一元二次不等式即可.(3)将原不等式x+2<1等价转换为x+1x+3<0,解一元二次不等式即可.【解答过程】(1)由题意3x -1 x +1 >4⇔3x 2+2x -1>4⇔3x 2+2x -5>0⇔x -1 3x +5 >0,解不等式得x <-53或x >1,从而不等式3x -1 x +1 >4的解集为-∞,-53∪1,+∞ .(2)由题意2x -3x +1<1⇔x -4x +1<0⇔x +1 x -4 <0,解不等式得-1<x <4,从而不等式2x -3x +1<1的解集为-1,4 .(3)由题意x +2 <1⇔x +2 2-12<0⇔x +1 x +3 <0,解不等式得-3<x <-1,从而不等式x +2 <1的解集为-3,-1 .3(22-23高一上·上海徐汇·阶段练习)解下列不等式:(1)5-x x 2-2x -3<-1;(2)(x -1)(x +2)2≥0.【解题思路】对不等式因式分解,由数轴标根法或分类讨论求解即可.【解答过程】(1)5-x x 2-2x -3<-1⇔x 2-3x +2x 2-2x -3<0⇔(x +1)(x -1)(x -2)(x -3)<0,由数轴标根法得,解集为(-1,1)∪(2,3);(2)(x -1)(x +2)2≥0⇔x -1≥0x +2≠0 或x +2=0,易得解集为{-2}∪[1,+∞).4(2023高一·上海·专题练习)解下列关于x 的不等式.(1)x +4 x +5 22-x 3<0;(2)x 2-4x +13x 2-7x +2<1.【解题思路】(1)由题意不等式等价于x ≠-5x +4 x -2 3>0,由零点标根法画图即可求解.(2)由题意不等式等价于(2x -1)(x -1)(3x -1)(x -2)>0,由零点标根法画图即可求解.【解答过程】(1)原不等式等价于x +4 x +5 2x -2 3>0,所以x ≠-5x +4 x -2 3>0,如图所示:解得x <-4或x >2且x ≠-5,所以原不等式解集为x |x <-5 或-5<x <-4或x >2 .(2)由x 2-4x +13x 2-7x +2<1得,-2x 2+3x -13x 2-7x +2<0,∴原不等式等价于2x -1 x -13x -1 x -2 >0,即(2x -1)(x -1)(3x -1)(x -2)>0,如图所示:解得x <13或12<x <1或x >2,所以原不等式的解集为{x |x <13或12<x <1或x >2}.【题型5一元二次不等式根的分布问题】1(2024高三·全国·专题练习)关于x 的方程ax 2+a +2 x +9a =0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是()A.-27<a <25B.a >25 C.a <-27D.-211<a <0【解题思路】说明a =0时,不合题意,从而将ax 2+a +2 x +9a =0化为x 2+1+2ax +9=0,令y =x 2+1+2ax +9,结合其与x 轴有两个交点,且分布在1的两侧,可列不等式即可求得答案.【解答过程】当a =0时,ax 2+a +2 x +9a =0即为2x =0,不符合题意;故a ≠0,ax 2+a +2 x +9a =0即为x 2+1+2ax +9=0,令y =x 2+1+2ax +9,由于关于x 的方程ax 2+a +2 x +9a =0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,则y =ax 2+a +2 x +9a 与x 轴有两个交点,且分布在1的两侧,故x =1时,y <0,即1+1+2a ×1+9<0,解得2a <-11,故-211<a <0,故选:D .2(23-24高三上·四川·阶段练习)若关于x 的方程x 2-2ax +a +2=0在区间-2,1 上有两个不相等的实数解,则a 的取值范围是()A.-65,-1 B.-65,1 C.-∞,-65 ∪-1,+∞D.-∞,-65∪1,+∞【解题思路】令g x =x 2-2ax +a +2,依题意可得Δ>0-2<a <1g -2 >0g 1 >0,解得即可.【解答过程】令g x =x 2-2ax +a +2,因为方程x 2-2ax +a +2=0在区间-2,1 上有两个不相等的实数解,所以Δ>0-2<a <1g -2 >0g 1 >0,即Δ=4a 2-4a +2 >0-2<a <14+4a +a +2>01-2a +a +2>0,解得-65<a <-1,所以a 的取值范围是-65,-1 .故选:A .3(23-24高一上·上海浦东新·期中)已知实数a <b ,关于x 的不等式x 2-a +b x +ab +1<0的解集为x 1,x 2 ,则实数a 、b 、x 1、x 2从小到大的排列是()A.a <x 1<x 2<bB.x 1<a <b <x 2C.a <x 1<b <x 2D.x 1<a <x 2<b【解题思路】由题可知x 1+x 2=a +b ,再利用中间量m ,根据x 1+x 2与x 1x 2之间的关系求出的取值范围,即可判断a 、b 、x 1、x 2之间的关系.【解答过程】由题可得:x 1+x 2=a +b ,x 1x 2=ab +1.由a <b ,x 1<x 2,设x 1=a +m ,则x 2=b -m .所以x 1x 2=(a +m )(b -m )=ab +m (b -a )-m 2=ab +1,所以m (b -a )-m 2=1,m =1+m 2b -a .又a <b ,所以b -a >0,所以m >0.故x 1>a ,x 2<b .又x 1<x 2,故a <x 1<x 2<b .故选:A .4(23-24高三·全国·阶段练习)方程x 2+(m -2)x +5-m =0的一根在区间(2,3)内,另一根在区间(3,4)内,则m 的取值范围是()A.(-5,-4)B.-133,-2 C.-133,-4 D.(-5,-2)【解题思路】令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质有f (2)>0,f (3)<0),f (4)>0,求得m 的取值范围.【解答过程】令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质,若一根在区间(2,3)内,另一根在区间(3,4)内,只需f (2)>0f (3)<0f (4)>0 ,即4+2(m -2)+5-m >09+3(m -2)+5-m <016+4(m -2)+5-m >0,解不等式组可得-133<m <-4,即m 的取值范围为-133,-4 ,故选:C .【题型6二次函数的单调性、最值问题】1(23-24高一上·江苏南京·期末)若函数f x =x 2-mx +3在区间-∞,2 上单调递减,则实数m 的取值范围是()A.-∞,2B.2,+∞C.-∞,4D.4,+∞【解题思路】利用二次函数的对称轴及函数的单调性列出不等式求解.【解答过程】因为函数f x =x 2-mx +3在区间-∞,2 上单调递减,所以m 2≥2,解得m ≥4.故选:D .2(23-24高一上·湖北武汉·期中)已知函数f (x )=2x 2-kx -8在[-2,1]上具有单调性,则实数k 的取值范围是()A.k ≤-8B.k ≥4C.k ≤-8或k ≥4D.-8≤k ≤4【解题思路】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【解答过程】函数f (x )=2x 2-kx -8对称轴为x =k4,要使f (x )在区间[-2,1]上具有单调性,则k 4≤-2或k4≥1,∴k ≤-8或k ≥4综上所述k 的范围是:k ≤-8或k ≥4.故选:C .3(23-24高一上·江苏镇江·阶段练习)若函数y =x 2-2x -3的定义域为[-1,t ],值域为[-4,0]则实数t 的取值范围为()A.1≤t ≤3B.1<t <3C.-1<t <3D.-1<t ≤3【解题思路】利用分类讨论-1<t ≤1与t >1,求解t 范围.【解答过程】由y =x 2-2x -3的定义域为-1,t ,对称轴为x =1,y =x 2-2x -3当-1<t ≤1时,y =x 2-2x -3在-1,t 单调递减,则y min =t 2-2t -3,y max =(-1)2-2×-1 -3=0,而函数的值域为-4,0 ,则t 2-2t -3=-4,解得t =1,故t =1,当t >1时,y =x 2-2x -3在-1,1 单调递减,在1,t 单调递增,则y min =12-2×1-3=-4,y =-1 2-2×-1 -3=0,y =t 2-2t +3,故-4≤t 2-2t -3≤0,解得-1≤t ≤3,故1<t ≤3,综上所述,t 的取值范围为1≤t ≤3,故选:A .4(2024高三·全国·专题练习)已知函数f x =x 2+ax +b a ,b ∈R 的最小值为0,若关于x 的不等式f x <c 的解集为m ,m +4 ,则实数c 的值为()A.9B.8C.6D.4【解题思路】先由f x =x 2+ax +b a ,b ∈R 的最小值为0,得到Δ=0,再由f (x )<c 的解集为(m ,m +4),得到f (x )-c =0的根为m ,m +4,从而利用韦达定理即可求解.【解答过程】因为f x =x 2+ax +b a ,b ∈R 开口向上,最小值为0,∴Δ=a 2-4b =0,∴b =a 24,则f (x )=x 2+ax +a 24=x +a 22,∵f (x )<c 的解集为(m ,m +4),所以m ,m +4是f (x )-c =0的两个不等实根,即m ,m +4是x 2+ax +a 24-c =0的两个不等实根,所以m +m +4=-a ,则m =-a -42,∴c =f (m )=m +a 2 2=-a -42+a 22=4.故选:D .【题型7一元二次不等式恒成立问题】1(2023·福建厦门·二模)不等式ax 2-2x +1>0(a ∈R )恒成立的一个充分不必要条件是()A.a >2B.a ≥1C.a >1D.0<a <12【解题思路】分a =0和a ≠0两种情况讨论求出a 的范围,再根据充分条件和必要条件的定义即可得解.【解答过程】当a =0时,-2x +1>0,得x <12,与题意矛盾,当a ≠0时,则a >0Δ=4-4a <0 ,解得a >1,综上所述,a >1,所以不等式ax 2-2x +1>0(a ∈R )恒成立的一个充分不必要条件是A 选项.故选:A .2(2023·江西九江·模拟预测)无论x 取何值时,不等式x 2-2kx +4>0恒成立,则k 的取值范围是()A.-∞,-2B.-∞,-4C.-4,4D.-2,2【解题思路】由题知4k 2-16<0,再解不等式即可得答案.【解答过程】解:因为无论x 取何值时,不等式x 2-2kx +4>0恒成立,所以,4k 2-16<0,解得-2<k <2,所以,k 的取值范围是-2,2 故选:D .3(2023·辽宁鞍山·二模)若对任意的x ∈(0,+∞),x 2-mx +1>0恒成立,则m 的取值范围是()A.(-2,2)B.(2,+∞)C.(-∞,2)D.(-∞,2]【解题思路】变形给定不等式,分离参数,利用均值不等式求出最小值作答.【解答过程】∀x ∈(0,+∞),x 2-mx +1>0⇔m <x +1x ,而当x >0时,x +1x≥2x ⋅1x =2,当且仅当x =1x,即x =1时取等号,则m <2,所以m 的取值范围是(-∞,2).故选:C .4(23-24高一上·贵州铜仁·期末)当x ∈-1,1 时,不等式2kx 2-kx -38<0恒成立,则k 的取值范围是()A.-3,0B.-3,0C.-3,18D.-3,18【解题思路】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【解答过程】当x ∈-1,1 时,不等式2kx 2-kx -38<0恒成立,当k =0时,满足不等式恒成立;当k ≠0时,令f x =2kx 2-kx -38,则f x <0在-1,1 上恒成立,函数f x 的图像抛物线对称轴为x =14,k >0时,f x 在-1,14 上单调递减,在14,1 上单调递增,则有f -1 =2k +k -38≤0f 1 =2k -k -38≤0,解得0<k ≤18;k <0时,f x 在-1,14 上单调递增,在14,1 上单调递减,则有f 14 =2k 16-k 4-38<0,解得-3<k <0.综上可知,k 的取值范围是-3,18.故选:D .【题型8一元二次不等式有解问题】1(2023·福建宁德·模拟预测)命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是()A.a ≥1B.a ≥4C.a ≥-2D.a ≤4【解题思路】根据能成立问题求a 的取值范围,结合充分不必要条件理解判断.【解答过程】∵∃x ∈[1,2],x 2≤a ,则x 2 min ≤a ,即a ≥1,∴a 的取值范围1,+∞由题意可得:选项中的取值范围对应的集合应为1,+∞ 的真子集,结合选项可知B 对应的集合为4,+∞ 为1,+∞ 的真子集,其它都不符合,∴符合的只有B ,故选:B .2(2023高三·全国·专题练习)若关于x 的不等式x 2+mx -4>0在区间2,4 上有解,则实数m 的取值范围为()A.-3,+∞B.0,+∞C.-∞,0D.-∞,-3【解题思路】利用二次函数的图象及根的分布计算即可.【解答过程】易知Δ=m 2+16>0恒成立,即x 2+mx -4=0有两个不等实数根x 1,x 2,又x 1x 2=-4<0,即二次函数y =x 2+mx -4有两个异号零点,所以要满足不等式x 2+mx -4>0在区间2,4 上有解,所以只需42+4m -4>0,解得m >-3,所以实数m 的取值范围是-3,+∞ .故选A .3(2023·河南·模拟预测)已知命题“∃x 0∈-1,1 ,-x 20+3x 0+a >0”为真命题,则实数a 的取值范围是()A.-∞,-2B.-∞,4C.-2,+∞D.4,+∞【解题思路】由题知x 0∈-1,1 时,a >x 20-3x 0 min ,再根据二次函数求最值即可得答案.【解答过程】解:因为命题“∃x 0∈-1,1 ,-x 20+3x 0+a >0”为真命题,所以,命题“∃x 0∈-1,1 ,a >x 20-3x 0”为真命题,所以,x 0∈-1,1 时,a >x 20-3x 0 min ,因为,y =x 2-3x =x -32 2-94,所以,当x ∈-1,1 时,y min =-2,当且仅当x =1时取得等号.所以,x 0∈-1,1 时,a >x 20-3x 0 min =-2,即实数a 的取值范围是-2,+∞ 故选:C .4(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3-3x -a >x 2+2x 成立,则实数a 的取值范围是()A.-374,3B.-3,134C.-374,134D.-3,3【解题思路】化简不等式3-3x -a >x 2+2x ,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【解答过程】依题意,至少存在一个x <0,使得关于x 的不等式3-3x -a >x 2+2x 成立,即至少存在一个x<0,使得关于x的不等式-x2-2x+3>3x-a成立,画出y=-x2-2x+3x<0以及y=3x-a的图象如下图所示,其中-x2-2x+3>0.当y=3x-a与y=-x2-2x+3x<0相切时,由y=3x-ay=-x2-2x+3消去y并化简得x2+5x-a-3=0,Δ=25+4a+12=0,a=-374.当y=-3x+a与y=-x2-2x+3x<0相切时,由y=-3x+ay=-x2-2x+3消去y并化简得x2-x+a-3=0①,由Δ=1-4a+12=0解得a=134,代入①得x2-x+14=x-122=0,解得x=12,不符合题意.当y=-3x+a过0,3时,a=3.结合图象可知a的取值范围是-37 4 ,3.故选:A.一、单选题1(2023·山东泰安·模拟预测)“c∈-23,23”是“∀x∈R,x2-cx+3≥0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】化简“∀x∈R,x2-cx+3≥0成立”,再结合充分条件和必要条件的定义判断.【解答过程】由∀x∈R,x2-cx+3≥0可得Δ=c2-4×3≤0,化简可得-23≤c≤23,所以“∀x∈R,x2-cx+3≥0成立”等价于“c∈-23,23”,“c∈-23,23”可推出“∀x∈R,x2-cx+3≥0成立”,“∀x∈R,x2-cx+3≥0成立”不能推出“c∈-23,23”所以“c∈-23,23”是“∀x∈R,x2-cx+3≥0成立”的充分不必要条件,故选:A.2(2023·湖南岳阳·模拟预测)不等式x-1x-2023≥0的解集为()A.{x∣x≥2023或x≥1}B.{x∣x≤1或x≥2023}C.x∣1≤x≤2023D.{x∣x<1或x>2023}【解题思路】解一元二次不等式即可得解.【解答过程】因为x-1x-2023≥0,所以x≥2023或x≤1,故不等式x -1 x -2023 ≥0的解集为{x ∣x ≤1或x ≥2023}.故选:B .3(2024·浙江·模拟预测)若不等式kx 2+k -6 x +2>0的解为全体实数,则实数k 的取值范围是()A.2≤k ≤18B.-18<k <-2C.2<k <18D.0<k <2【解题思路】分类讨论k =0与k ≠0两种情况,结合二次不等式恒成立问题的解决方法即可得解.【解答过程】当k =0时,不等式kx 2+k -6 x +2>0可化为-6x +2>0,显然不合题意;当k ≠0时,因为kx 2+k -6 x +2>0的解为全体实数,所以k >0Δ=k -6 2-4k ×2<0,解得2<k <18;综上:2<k <18.故选:C .4(2024·甘肃张掖·模拟预测)不等式x 2-3x <2-2x 的解集是()A.-1,12B.-12,12C.-1,5-172D.5-172,12【解题思路】按照x 2-3x 正负分类讨论取绝对值,运算得解.【解答过程】当x 2-3x ≥0,即x ≥3或x ≤0时,不等式x 2-3x <2-2x 等价于x 2-3x <2-2x ,即x 2-x -2<0,解得-1<x <2,所以-1<x ≤0;当x 2-3x <0,即0<x <3时,不等式x 2-3x <2-2x 等价于不等式3x -x 2<2-2x ,即x 2-5x +2>0,解得x >5+172或x <5-172,所以0<x <5-172.综上,不等式x 2-3x <2-2x 的解集是-1,5-172 .故选:C .5(2023·山东·模拟预测)若不等式2x 2+bx +c <0的解集是(0,4),函数f (x )=2x 2+bx +c 的对称轴是()A.x =2B.x =4C.x =52D.x =32【解题思路】由一元二次不等式的解法与二次函数的性质求解.【解答过程】解:∵不等式2x 2+bx +c <0的解集是(0,4),∴x =0和x =4是方程2x 2+bx +c =0的两个根,∴-b2=0+4,∴b =-8,∴函数f (x )=2x 2+bx +c 的对称轴是x =-b4=2.故选:A .6(23-24高一上·四川成都·期中)一元二次不等式ax 2+bx +c >0的解为x -2<x <3 ,那么ax 2-bx +c >0的解集为()A.x x >3或x <-2B.x x >2或x <-3C.x -2<x <3D.x -3<x <2【解题思路】根据题意得出a 、b 、c 的关系,代入新的一元二次不等式求解即可.【解答过程】一元二次不等式ax 2+bx +c >0的解为x -2<x <3 ,所以ax 2+bx +c =0的解为x 1=-2,x 2=3,且a <0,由韦达定理得x 1+x 2=-ba =1x 1⋅x 2=c a =-6⇒b =-ac =-6a,代入得ax 2+ax -6a >0⇒x 2+x -6<0⇒-3<x <2,故选:D .7(2023·辽宁鞍山·二模)已知当x >0时,不等式:x 2-mx +16>0恒成立,则实数m 的取值范围是()A.-8,8B.-∞,8C.-∞,8D.8,+∞【解题思路】先由x 2-mx +16>0得m <x +16x ,由基本不等式得x +16x≥8,故m <8.【解答过程】当x >0时,由x 2-mx +16>0得m <x +16x,因x >0,故x +16x ≥2x ×16x =8,当且仅当x =16x 即x =4时等号成立,因当x >0时,m <x +16x恒成立,得m <8,故选:C .8(2023·河南·模拟预测)某同学解关于x 的不等式ax 2+bx +c <0(a ≠0)时,因弄错了常数c 的符号,解得其解集为(-∞,-3)∪(-2,+∞),则不等式bx 2+cx +a >0的解集为()A.-1,-15B.(-∞,-1)∪-15,+∞ C.15,1D.-∞,15∪(1,+∞)【解题思路】利用根与系数关系、一元二次不等式的解求得a ,b ,c 的关系式,进而求得不等式bx 2+cx +a >0的解集.【解答过程】由题意可知a <0,且-3+(-2)=-b a ,-3×(-2)=-c a,所以b =5a ,c =-6a ,所以bx 2+cx +a >0化为5x 2-6x +1<0,5x -1 x -1 <0,解得15<x <1.故选:C .二、多选题9(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x 2-5x +1>0的解集是x x >14或x <1 B.不等式2x 2-x -6≤0的解集是x x ≤-32或x ≥2 C.若不等式ax 2+8ax +21<0恒成立,则a 的取值范围是∅D.若关于x 的不等式2x 2+px -3<0的解集是q ,1 ,则p +q 的值为-12【解题思路】对于AB ,直接解一元二次不等式即可判断;对于C ,对a 分类讨论即可判断;对于D ,由一元二次不等式的解集与一元二次方程的根的关系,先求得p ,q ,然后即可判断.【解答过程】对于A ,4x 2-5x +1>0⇔x -1 4x -1 >0⇔x <14或x >1,故A 错误;对于B ,2x 2-x -6≤0⇔x -2 2x +3 ≤0⇔-32≤x ≤2,故B 错误;若不等式ax 2+8ax +21<0恒成立,当a =0时,21<0是不可能成立的,所以只能a <0Δ=64a 2-84a <0 ,而该不等式组无解,综上,故C 正确;对于D ,由题意得q ,1是一元二次方程2x 2+px -3=0的两根,从而q ×1=-322+p -3=0,解得p =1,q =-32,而当p =1,q =-32时,一元二次不等式2x 2+x -3<0⇔x -1 2x +3 <0⇔-32<x <1满足题意,所以p +q 的值为-12,故D 正确.故选:CD .10(2023·江苏连云港·模拟预测)若对于任意实数x ,不等式a -1 x 2-2a -1 x -4<0恒成立,则实数a 可能是()A.-2B.0C.-4D.1【解题思路】首先当a =1,不等式为-4<0恒成立,故满足题意;其次a ≠1,问题变为了一元二次不等式恒成立问题,则当且仅当a -1<0Δ<0 ,解不等式组即可.【解答过程】当a =1时,不等式为-4<0恒成立,故满足题意;当a ≠1时,要满足a -1<0Δ<0 ,而Δ=4a -1 2+16a -1 =4a -1 a +3 ,所以解得-3<a <1;综上,实数a 的取值范围是-3,1 ;所以对比选项得,实数a 可能是-2,0,1.故选:ABD .11(23-24高二上·山东威海·期末)已知关于x 的不等式ax 2+bx +c >0的解集为-∞,-2 ∪3,+∞ ,则下列选项中正确的是()A.a <0B.不等式bx +c >0的解集是x |x <-6C.a +b +c >0D.不等式cx 2-bx +a <0的解集为-∞,-13 ∪12,+∞ 【解题思路】根据给定的解集,用a 表示出b ,c ,再逐项判断作答.【解答过程】不等式ax 2+bx +c >0的解集为-∞,-2 ∪3,+∞ ,则-2,3是方程ax 2+bx +c =0的根,且a >0,则-b a =1,ca=-6,a >0,即b =-a ,c =-6a ,a >0,A 错误;不等式bx +c >0化为-ax -6a >0,解得x <-6,即不等式bx +c >0的解集是x |x <-6 ,B 正确;a +b +c =-6a <0,C 错误;不等式cx 2-bx +a <0化为-6ax 2+ax +a <0,即6x 2-x -1>0,解得x <-13或x >12,所以不等式cx 2-bx +a <0的解集为-∞,-13 ∪12,+∞ ,D 正确.故选:BD .三、填空题12(2023·江西鹰潭·模拟预测)若命题p :“∃x ∈R ,k 2-1 x 2+41-k x +3≤0”是假命题,则k 的取值范围是[1,7).【解题思路】本题首先可根据题意得出命题“∀x ∈R ,k 2-1 x 2+4(1-k )x +3>0”是真命题,然后分为k =1,k =-1,k 2-1≠0三种情况进行讨论,结合二次函数性质即可得出结果.【解答过程】因为命题p :“∃x ∈R ,k 2-1 x 2+41-k x +3≤0”是假命题,所以命题“∀x ∈R ,k 2-1 x 2+4(1-k )x +3>0”是真命题,若k 2-1=0,即k =1或k =-1,当k =1时,不等式为3>0,恒成立,满足题意;当k =-1时,不等式为8x +3>0,不恒成立,不满足题意;当k 2-1≠0时,则需要满足k 2-1>0Δ=16(1-k )2-4×k 2-1 ×3<0 ,即(k -1)(k +1)>0(k -1)(k -7)<0,解得1<k <7,综上所述,k 的取值范围是[1,7).故答案为:[1,7).13(2023·河南·模拟预测)已知函数y =kx -k 与曲线y =x 2-1x有三个交点,则k 的取值范围是-∞,-1 ∪3,+∞.【解题思路】将两曲线表达式联立,得出一元二次方程,利用判别式即可求出k 的取值范围.【解答过程】由题意,函数y =kx -k 与曲线y =x 2-1x有三个交点,y =kx -ky =x 2-1x,则x -1 x 2+1-k x +1 =0,若直线y =kx -k 与曲线y =x 2-1x有三个交点,只需满足方程x 2+1-k x +1=0有两个不等于1和0的解.因为该方程的两个解之积x 1x 2=1,故只需满足Δ=1-k 2-4>0,所以k <-1或k >3,即k 的取值范围是-∞,-1 ∪3,+∞ .故答案为:-∞,-1 ∪3,+∞ .14(23-24高一上·江苏徐州·阶段练习)若关于x 的不等式0≤ax 2+bx +c ≤2a >0 的解集为x -1≤x ≤3 ,则3a +b +2c 的取值范围是32,4.【解题思路】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出a 的取值范围,最后3a +b +2c 都表示成a 的形式即可.【解答过程】因为不等式0≤ax 2+bx +c ≤2a >0 的解集为x -1≤x ≤3 ,所以二次函数f x =ax 2+bx +c 的对称轴为直线x =1,且需满足f -1 =2f 3 =2f 1 ≥0,即a -b +c =29a +3b +c =2a +b +c ≥0,解得b =-2ac =-3a +2 ,所以a+b+c=a-2a-3a+2≥0⇒a≤12,所以a∈0,12,所以3a+b+2c=3a -2a-6a+4=4-5a∈32,4.故答案为:3 2 ,4.四、解答题15(23-24高一下·四川成都·开学考试)已知函数f x =x2-2ax+3.(1)若关于x的不等式f x ≥0的解集为R,求实数a的取值范围;(2)解关于x的不等式f x <0.【解题思路】(1)由题意可知Δ≤0,进而求出实数a的取值范围;(2)根据Δ≤0和Δ>0两种情况讨论,结合二次函数的性质求解即可.【解答过程】(1)若不等式x2-2ax+3≥0的解集为R,则Δ=(-2a)2-12≤0,解得-3≤a≤3,即实数a的取值范围[-3,3];(2)不等式x2-2ax+3<0,①当Δ≤0时,即-3≤a≤3时,不等式的解集为∅,②当Δ>0时,即a<-3或a>3时,由x2-2ax+3=0,解得x=a-a2-3或x=a+a2-3,所以不等式的解集为{x|a-a2-3<x<a+a2-3},综上所述,当-3≤a≤3时,不等式的解集为∅;当a<-3或a>3时,不等式的解集为{x|a-a2-3<x<a+a2-3}.16(2024·山东·二模)已知f x 是二次函数,且f1 =4,f0 =1,f3 =4.(1)求f x 的解析式;(2)若x∈-1,5,求函数f x 的最小值和最大值.【解题思路】(1)设二次函数为f x =ax2+bx+c,a≠0,根据题意,列出方程组,求得a,b,c的值,即可求解;(2)根据二次函数的性质,求得函数f x 的单调区间,进而求得其最值.【解答过程】(1)解:设二次函数为f x =ax2+bx+c,a≠0,因为f1 =4,f0 =1,f3 =4,可得a+b+c=4c=19a+3b+c=4,解得a=-1,b=4,c=1,所以函数f x 的解析式f x =-x2+4x+1.(2)解:函数f x =-x2+4x+1,开口向下,对称轴方程为x=2,即函数f x =-x2+4x+1在-1,2单调递增,在2,5单调递减,所以f(x)min=f-1=f5 =-4,f(x)max=f2 =5.17(23-24高二上·江苏南通·期中)设m∈R,关于x的不等式x2+2mx+m+2<0的解集为∅.(1)求m的取值范围;(2)求关于x的不等式mx2+(m-2)x-2≥0的解集.【解题思路】(1)由一元二次不等式恒成立的性质运算即可得解;(2)转化条件为mx-2x+1≥0,按照m=0、0<m≤2、-1≤m<0讨论,运算即可得解.【解答过程】(1)因为关于x的不等式x2+2mx+m+2<0的解集为∅,。
高考数学复习考点知识与结论专题讲解9 二次函数

高考数学复习考点知识与结论专题讲解第9讲二次函数通关一、二次函数的解析式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:f(x)=a(x-m)2+n(a≠0),其中(m,n)为抛物线顶点坐标,x=m为对称轴方程(3)双根式:f(x)=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴交点的横坐标。
通关二、二次函数的图像和性质R对称轴距离大的自变量对应的函数值较大;若二次函数的图像开口向下,则到对称轴距离大的自变量对应的函数值较小。
【结论第讲】结论一、y=ax2+bx+c(a≠0)的性质与a,b,c的关系【例1】设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是()【答案】D【解析】A 选项,由图像开口向下知a <0,由对称轴位置知2ba-<0,所以b <0。
若abc >0,则c >0,而由题图知f (0)=c <0,所以A 选项不符;B 选项,由题意知a <0,2ba->0,所以 0b >.若0abc >,则0c <,而由题图知(0)0f c =>,所以B 选项不符;C 选项,由题图知0a >,02ba-<,所以0b >.若0abc >,则0c >,而由题图知(0)0f c =<,所以C 选项不符;D 选项,由题图知0,02ba a>->,所以0b <.若0abc >,则0c <,而由题图知(0)0f c =<,所以D 选项正确.故选D.【变式】右图是二次函数2y ax bx c =++图像的一部分,图像过点(3,0)A -,对称轴为1x =-.给出下面四个结论:①24b ac >;②2a b -=-1;③0a b c -+=;④5a b <.其中正确的是( ). A.②④B.①④C.②③D.①③【答案】B【解析】因为图像与x 轴交于两点,所以240b ac ->,即24b ac >,①正确.对称轴为1x =-,即1,202ba b a-=--=,②错误.结合图像,当1x =-时,0y >,即0,a b c -+>③错误.由对称轴为1x =-知,2b a =.又函数图像开口向下,所以0a <,所以52a a <,即5a b <,④正确.故选B.结论二、二次函数的对称性二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭①如果二次函数()y f x =满足()()12f x f x =,那么函数()y f x =的图像关于x 122x x +=对称.②二次函数()y f x =使()()f a x f a x +=-成立的充要条件是函数()y f x =的图像关于直线(x a a =为常数)对称.【例2】若2()(2)3,[,]f x x b x x b c =-+++∈的图像关于1x =对称,则c =_______. 【答案】2 【解析】由题意可知212b +=,解得0b =,所以012c+=,解得2c =. 【变式】已知二次函数2()f x ax bx c =++,如果()()(12f x f x =其中)12x x ≠,则122x x f +⎛⎫=⎪⎝⎭_____.【答案】244ac b a-【解析】因为()()12f x f x =,所以()y f x =的图像关于122x x x +=对称,122x x f +⎛⎫ ⎪⎝⎭244ac b a-=. 结论三、二次函数的单调性二次函数2()(0)f x ax bx c a =++≠ (1)当0a >时,如图(a)所示,抛物线开口向上,函数在,2b a ⎛⎤-∞-⎥⎝⎦上递减,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上递增,当2bx a=-时,2min 4()4ac b f x a -=;(2)当0a <时,如图(b)所示,抛物线开口向下,函数在,2b a ⎛⎤-∞-⎥⎝⎦上递增,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上递减,当2bx a=-时,2max 4()4ac b f x a -=.【例3】已知函数2()f x x kx =-+在[2,4]上是单调函数,则实数k 的取值范围为_______.【答案】4k …或8k …【解析】函数2()f x x kx =-+的图像是开口向下的抛物线,经过坐标原点,对称轴是x 2k=.因为已知函数在[2,4]上是单调函数,所以区间[2,4]应在直线2k x =的左侧或右侧,即有22k …或42k …,解得4k …或8k …. 【变式】若函数2()2f x x ax =-+在区间[0,1]上是增函数,在区间[3,4]上是减函数,则实数a 的取值范围是(). A.(0,3) B.(1,3) C.[1,3] D.[0,4]【答案】C【解析】因为函数2()2f x x ax =-+在区间[0,1]上是增函数,在区间[3,4]上是减函数,所以对称轴x a =应在1x =的右侧,3x =的左侧或与1,3x x ==重合,所以[1,3]a ∈.故选C.结论四、给定区间上的值域对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令02p qx +=: (1)若2bp a-…,则(),()m f p M f q ==; (2)若02b p x a <-<,则,()2b m f M f q a ⎛⎫=-= ⎪⎝⎭;(3)若02b x q a -<…,则,()2b m f M f p a ⎛⎫=-= ⎪⎝⎭; (4)若2b q a-…,则(),()m f q M f p ==. 【例4】如果函数2()(1)1f x x =-+定义在区间[,1]t t +上,求()f x 的最小值.【答案】2min2(1)1,1()1,011,0t t f x t t t ⎧-+>⎪=⎨⎪+<⎩剟 【解析】函数2()(1)1f x x =-+,其对称轴方程为1x =,顶点坐标为(1,1),图像开口向上.如图()a 所示,若顶点横坐标在区间[,1]t t +左侧时,有1t <,此时,当x t =时,函数取得最小值2min ()()(1)1f x f t t ==-+.如图()b 所示,若顶点横坐标在区间[,1]t t +上时,有11t t +剟,即01t 剟.当1x =时,函数取得最小值min ()(1)1f x f ==.如图(c)所示,若顶点横坐标在区间[,1]t t +右侧时,有11t +<,即0t <.当1x t =+时,函数取得最小值,2min ()(1) 1.f x f t t =+=+综上,2min2(1)1,1()1,011,0t t f x t t t ⎧-+>⎪=⎨⎪+<⎩剟【变式】已知二次函数()f x 的最小值为1,且(0)(2)3f f ==.(1)求()f x 的解析式;(2)若()f x 在区间[2,1a a +]上不单调,求a 的取值范围; (3)若[,2]x t t ∈+,试求()y f x =的最小值.【解析】(1)因为()f x 是二次函数,且(0)(2)f f =,所以()f x 图像的对称轴为1x =.又()f x 的最小值为1,设2()(1)1(0)f x k x k =-+>,又(0)3f =,所以2k =.所以()f x =222(1)1243x x x -+=-+.(2)要使()f x 在区间[2,1]a a +上不单调,则211a a <<+,所以102a <<. (3)由(1)知,()y f x =的对称轴为1x =,若1t …,则()y f x =在[,2]t t +上是增函数,min y 2243t t =-+;若21t +…,即1t -…,则()y f x =在[,2]t t +上是减函数,min (2)y f t =+=2243t t ++;若12t t <<+,即11t -<<,则min (1)1y f ==.综上,当1t …时,2min 24y t t =-3+;当11t -<<时,min 1y =;当1t -…时,2min 243y t t =++.结论五、二次函数、一元二次方程及一元二次不等式的关系设2()(0)f x ax bx c a =++> ①0∆<⇔函数()y f x =的图像与x 轴无交点⇔方程()0f x =无实根⇔不等式()0f x >的解集为⇔R 不等式()0f x …的解集为∅.②0∆=⇔函数()y f x =的图像与x 轴相切⇔方程()0f x =有两个相等的实根⇔不等式()0f x >的解集为|2b x x a ⎧⎫≠-⎨⎬⎩⎭.③0∆>⇔函数()y f x =的图像与x 轴有两个不同的交点⇔方程()0f x =有两个不等的实根:,(αβ设)αβ<⇔不等式()0f x >的解集为(,)(,)αβ-∞⋃+∞⇔不等式()0f x <的解集为(,)αβ.【例5】设二次函数2()(0)f x ax bx c a =++>,方程()0f x x -=的两个根12,x x 满足0121x x a<<<(1)当()10,x x ∈时,证明1()x f x x <<;(2)函数()f x 的图像关于直线0x x =对称,证明:102x x <.【解析】证明(1)由题意可知()()12()f x x a x x x x -=--.因为1210x x x a<<<<,所以()()120a x x x x -->,所以当()10,x x ∈时,()f x x >.又1()(f x x a x -=-)()()()1211211,0x x x x x x x ax ax x x -+-=--+-<且22110ax ax ax -+>->,所以1()f x x <.综上可知,所给问题获证.(2)由题意可知2()(1)f x x ax b x c -=+-+,它的对称轴方程为12b x a-=-,由方程()f x 0x -=的两个根12,x x 满足1210x x a <<<,可得121102b x x a a -<<<<-得1212b x x a --=-12b a---,所以121111222b b b x x a a a a ----=-<----,即1b x a -<,而02bx a =-,故102x x <. 【变式】设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和()223x a a x a -++<0()a ∈R 的解集分别是A 和B .(1)若A B ⋂=∅,求实数a 的取值范围;(2)是否存在实数a ,使得A B ⋃=R ?如果存在,求出a 的值,如果不存在,请说明理由. 【解析】(1)(){}2(,1)(2,),|()0A a a B x x a x a=-∞-⋃++∞=--<①当0a <或1a >时,()22,,a a B a a >=,由A B ⋂=∅,得212a aa a -⎧⎨+⎩……,解得12a -剟. 所以10a -<…或12a <….②当0a =或1a =时,,B A B =∅⋂=∅显然成立.③当01a <<时,()2,B a a =,由A B ⋂=∅,得212a aa a ⎧-⎨+⎩……,解得a ∈R .所以01a <<.综上,实数a 的取值范围是[1,2]-. (2)假设存在实数a ,使得A B ⋃=R ,则:①当0a <或1a >时,()22,,a a B a a >=,由A B ⋃=R ,得212a a a a <-⎧⎨+<⎩,所以a 不存在.②当0a =或1a =时,,B A B =∅⋃=R 显然不成立.③当01a <<时,()2,B a a =,由A B ⋃=R ,得212a a a a a ⎧<-⇒∈∅⎨>+⎩. 综上,不存在实数a 使得A B ⋃=R 成立.结论六、一元二次方程20(0)ax bx c a ++=>根的分布令2()(0)f x ax bx c a =++>图像>充要0∆⎧…0∆⎧…()0f k <0∆…图像>注:(1)一元二次方程根的分布问题需考虑:①∆;②对称轴;③区间端点函数值的符号.(2)若()0f k <,则不用考虑∆、对称轴的范围;方程有两根时要注意区分0∆>,还是0∆…. 【例6】二次方程()22120x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是().A.31a -<<B.20a -<<C.10a -<<D.02a << 【答案】C 【解析】令()22()12f x x a x a =+++-,则由题意可知(1)0f <且(1)0f -<,即220,20a a a a ⎧+<⎨-+>⎩,解得10a -<<.故选C .【变式】求实数m 的范围,使关于x 的方程22(1)260x m x m +-++=.(1)有两个实根,且一个比2大,一个比2小.(2)有两个实根,αβ,且满足014αβ<<<<.(3)至少有一个正根.【答案】75(1)1(2)(3)154m m m <--<<--… 【解析】2()2(1)26y f x x m x m ==+-++.(1)依题意有(2)0f <,即44(1)260m m +-++<,得1m <-.(2)依题意有(0)260(1)450(4)10140f m f m f m =+>⎧⎪=+<⎨⎪=+>⎩,解得7554m -<<-. (3)方程至少有一个正根,则有三种可能:①有两个正根,此时可得0)0(0)(10202)f m ∆>⎧⎪⎪>⎨--⎪>⎪⎩…,即1531m m m m -≥⎧⎪>-⎨⎪<⎩或…,所以31m -<-….②有一个正根,一个负根,此时可得(0)0f <,得3m <-. ③有一个正根,另一根为0,此时可得6202(1)0m m +=⎧⎨-<⎩,所以3m =-.综上,1m -….。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析高考数学二次函数题型二次函数是高中数学中的重要内容,也是高考中不可避免的考点之一。
在二次函数中,最常见的要素是a、b、c,分别表示二次项系数、一次项系数和常数项。
掌握这些基本知识后,就可以开始解析高考数学中的二次函数题型。
一、基础题型
1.给定二次函数y = x² - 4x + 3,求它的顶点坐标。
解析:顶点的横坐标为x = -b/2a,带入函数得到y = 1。
因此,该二次函数的顶点坐标为(-2,1)。
2. 给定二次函数y = x² - 4x + 3,求它的对称轴方程。
解析:对称轴方程为x = -b/2a,带入函数得到x = 2。
因此,该二次函数的对称轴方程为x = 2。
3. 给定二次函数y = x² - 2x - 3,求它的零点并画出函数图像。
解析:零点为x1 = -1、x2 = 3。
画出函数图像如下:(图片暂缺)
二、高级题型
1. 给定二次函数y = ax² + bx + c,其中a>0,若当x = 1时,y = 0;当x = 2时,y = 1,则求a、b、c的值。
解析:根据给定条件可列出如下方程组:
a +
b +
c = 0
4a + 2b + c = 1
a +
b +
c = 0
解方程得到a = 1/2、b = -3/2、c = 1/2。
因此,该二次函数的表达式为y = 1/2x² - 3/2x + 1/2。
2. 给定二次函数y = x² + bx + c,其中c ≠ 0,若它的顶点在y轴上,则求b、c的值。
解析:由题可得该二次函数的顶点坐标为(0, c)。
又因为顶点在y轴上,所以对称轴方程为x = 0,即-b/2 = 0,解得b = 0。
代入函数得到c ≠ 0。
因此,二次函数的表达式为y = x² + c。
3. 给定二次函数y = ax² + bx + c,其中a>0,且该函数图像经过点(2,5),交x轴于点(3,0)和(k,0),求k的值。
解析:首先确定a>0,说明二次函数开口向上。
由经过点(2,5)可列出方程5 = 4a + 2b + c。
由交x轴于点(3,0)和(k,0)可列出方程3k = 3a + b和k²a + kb + c = 0。
解方程组得到a = 1/3,b = -2,c = 29/3,k = -1。
因此,二次函数的表达式为y = 1/3x² - 2x + 29/3。
总结:以上是高考数学二次函数题型的解析。
对于基础题型,需要掌握基本的概念和计算方法;对于高级题型,需要运用方程组的解法,发现规律,从而得出答案。
在备考时,不要只关注题型的形式,更要培养自己的数学思维能力,拓展思路,灵活应对各种难题。