【高考必备】高三数学总复习:数列知识点及题型归纳总结
2024高考数学数列知识点总结与题型分析
2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。
在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。
一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。
对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。
1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。
设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。
(1)等差数列中,任意三项可以构成一个等差数列。
(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。
与等差数列不同的是,等比数列中的任意两项的比值都相等。
2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。
设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。
(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。
高考数列必考知识点
高考数列必考知识点数列作为高中数学中的重要知识点之一,在高考中占据着重要的位置。
掌握数列的概念、性质以及常见的数列类型是高考数学取得好成绩的必备知识。
本文将为同学们总结归纳高考数列必考的知识点。
一、数列的概念和性质1. 数列的定义:数列是按照一定顺序排列的由数字组成的序列。
2. 数列的通项公式:数列的通项公式表示数列中第n个数的一般项,常用符号有an或者Un。
3. 数列的首项和公差:对于等差数列,首项表示数列的第一个数,常用符号是a1;公差表示相邻两项之间的差值,常用符号是d。
4. 数列的递推公式:数列的递推公式表示数列中第n+1项与第n项的关系式。
二、等差数列1. 等差数列的定义:等差数列是指数列中相邻两项之差保持不变的数列。
2. 等差数列的通项公式:对于公差为d的等差数列,其通项公式为an = a1 + (n-1)d。
3. 等差数列前n项和:等差数列前n项和的公式为Sn = (a1 + an) *n / 2。
三、等比数列1. 等比数列的定义:等比数列是指数列中相邻两项之比保持不变的数列,且首项不能为0。
2. 等比数列的通项公式:对于公比为q的等比数列,其通项公式为an = a1 * q^(n-1)。
3. 等比数列前n项和:等比数列前n项和的公式为Sn = a1 * (1-q^n) / (1-q)。
四、特殊数列1. 斐波那契数列:斐波那契数列是指数列中的每一项都是前两项之和,首几项为0、1、1、2、3、5、8、13……2. 等差-等比混合数列:等差-等比混合数列是指数列中既存在等差关系又存在等比关系的数列。
五、数列求和问题1. 常用的数列求和方法:对于等差数列或者等比数列,可以通过数列求和公式或者特殊方法进行求和。
2. 数列求和的技巧:对于一些特殊的数列,可以利用数列的性质进行化简,从而简化求和的过程。
六、题目实战演练1. 高考数列选择题:通过对历年高考数学试卷中关于数列的选择题进行分类整理,帮助同学们熟悉数列的考点和解题思路。
数列高考知识点归纳(非常全!) - 含答案
数列高考知识点大扫描第一节等差数列的概念、性质及前n 项和例1.等差数列{a n }中,69121520a a a a +++=,求S 20 [思路]等差数列前n 项和公式11()(1)22n n a a n n n S na d +-==+: 1、 由已知直接求a 1,公差d.2、 利用性质q p n m a a a a q p n m +=+⇒+=+[解题 ] 由69121520a a a a +++=,615912120a a a a a a +=+=+,得1202()20a a +=,12010a a ∴+=,120()201002n a a S +⨯∴==。
[收获] 灵活应用通项性质可使运算过程简化。
练习:1.等差数列{a n }满足121010a a a +++= ,则有()A 、11010a a +> B 、21000a a +< C 、3990a a += D 、5151a =2.等差数列中,a 3+a 7-a 10=8,a 11-a 4=4,求13S 。
3.等差数列{a n }共10项,123420a a a a +++=,12360n n n n a a a a ---+++=,求S n. [思路] 已知数列前四项和与后四项和,结合通项性质,联想S n 公式推导方法。
[解题] 已知123420a a a a +++=,12360n n n n a a a a ---+++=,又14()80n a a +=,得120n a a +=,1()201010022n n a a n S +⨯∴==⨯=,[收获] 1、重视倒加法的应用,恰当运用通项性质:q p n m a a a a q p n m +=+⇒+=+,快捷准确;1、 求出1n a a +后运用“整体代换”手段巧妙解决问题。
4.等差数列{a n }前n 项和为18 ,若1S =3, 123n n n a a a --++=, 求项数n .第2变已知前n 项和及前m 项和,如何求前n+m 项和[变题2] 在等差数列{a n }中,S n =a,S m =b,(m>n),求S n+m 的值。
高考数列必懂的知识点总结
高考数列必懂的知识点总结数列作为高中数学中重要的一个章节,经常出现在高考试卷中。
掌握数列的相关知识点对考试成绩至关重要。
下面将针对高考数列的必懂知识点进行总结与归纳。
一、等差数列1. 等差数列的定义:数列中任意两个相邻的数之差相等,这个公差为常数,就是等差数列。
2. 等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。
3. 等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = n(a₁ + aₙ)/2。
4. 教材上常见的等差数列:斐波那契数列、等差数列的特殊形式等。
二、等比数列1. 等比数列的定义:数列中任意两个相邻的数之比相等,这个比值为常数,就是等比数列。
2. 等比数列的通项公式:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ = a₁q^(n-1)。
3. 等比数列的前n项和公式:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(q^n-1)/(q-1) (当q ≠ 1时)。
4. 教材上常见的等比数列:几何数列、等比数列的特殊形式等。
三、数列的性质与应用1. 数列的有界性:有界数列是指存在上界或下界(甚至同时存在上下界)的数列。
2. 数列的单调性:单调数列是指数列中的数单调递增或单调递减。
3. 数列的极限:数列的极限表示数列随着项数趋向于无穷时的极限值。
4. 数列的应用:数列可以用来解决各种实际问题,如计算质数、拓展数列的概念、运用数列解决函数极限等。
四、递推数列1. 递推数列的定义:数列的第n+1项与前面的n项有一定的关系。
2. 递推数列的通项公式:通过递推公式可以求得递推数列的任意项。
3. 递推数列的性质:递推数列具有独特的性质,如线性递推数列、非线性递推数列、齐次递推数列等。
5. 教材上常见的递推数列:斐波那契数列、阶乘数列等。
五、其它常见数列1. 二项式系数:二项式系数通常用来展开二项式的幂,是数学上常见的一种数列。
数学数列与级数知识点清单 2024高考总结题型应用
数学数列与级数知识点清单 2024高考总结题型应用2024高考数学数列与级数知识点清单一、等差数列与等比数列的概念及性质等差数列是指一个数列中,任意两个相邻的项之差都相等的数列。
等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个项,a1表示第一个项,d表示公差。
等比数列是指一个数列中,任意两个相邻的项之比都相等的数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个项,a1表示第一个项,r表示公比。
二、数列的求和公式1. 等差数列的前n项和:Sn = (n/2)(a1 + an),其中Sn表示前n项和,n表示项数,a1表示第一个项,an表示第n个项。
2. 等比数列的前n项和:Sn = (a1(1-r^n))/(1-r),其中Sn表示前n项和,a1表示第一个项,r表示公比。
三、常见数列的特殊性质与应用1. 等差数列(1)若等差数列的前n项和与项数的乘积为定值k,即Sn * n = k,则称该数列为等差-等比数列。
(2)若等差数列中的每一项皆为两个自然数的和,则称该数列为等差数列配对数列。
2. 等比数列(1)若等比数列的前n项和与项数的乘积为定值k,即Sn * n = k,则称该数列为等比-等差数列。
(2)若等比数列的每一项均为两个自然数的积,则称该数列为等比数列配对数列。
四、数列求和的应用1. 题型一:求前n项和对于已知数列的首项和公差(或首项和公比)的情况,可以根据前n项和的公式求解。
2. 题型二:求项数已知数列的前n项和与定值k的情况下,可以通过前n项和与项数的乘积等于k的等式,解得项数n。
3. 题型三:数列和其他数学概念的应用数列的概念与求和公式可以应用于等差数列与等比数列的性质推导,以及数学中其他相关概念的计算等。
五、数列与级数知识点在高考中的应用1. 考点一:等差数列与等比数列的识别与应用在高考数学中,往往需要通过题干给出的条件,确定问题所涉及的数列类型,并灵活运用数列性质和求和公式解决问题。
2024年高考数学数列易错知识点总结
2024年高考数学数列易错知识点总结高考数学中的数列作为重要考点之一,经常涉及到的知识点较多且易错。
在2024年高考数学考试中,以下是数列的易错知识点总结:一、数列的基本概念与性质1. 数列的概念:数列是由一系列按照一定规律排列的数字组成的序列。
需要区分数列的元素与项,元素是指数列中的具体数字,而项是指元素所在的位置。
2. 等差数列与等差中项:等差数列是指数列中相邻两项之间的差值相等的数列。
等差中项是指位于等差数列中的任意一项。
3. 等差数列的通项公式:对于等差数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,d表示公差。
4. 等比数列与等比中项:等比数列是指数列中相邻两项之间的比值相等的数列。
等比中项是指位于等比数列中的任意一项。
5. 等比数列的通项公式:对于等比数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1r^{n-1}$,其中$a_n$表示第n项,$a_1$表示首项,r表示公比。
6. 等差数列与等比数列的前n项和公式:等差数列的前n项和公式为$S_n = \\frac{n}{2}(a_1 + a_n)$,等比数列的前n项和公式为$S_n = \\frac{a_1(1 - r^n)}{1 - r}$。
7. 数列的性质:数列的奇数项和与偶数项和的关系,数列的倒数项和与首项和的关系。
如等差数列中的奇数项和是首项和的一半,倒数项和是首项和的倒数。
二、数列的综合应用1. 数列的增长率与减少率:通过对序列中的元素进行操作,可以计算出数列的增长率与减少率。
如等差数列中,相邻元素的增长率是公差d;等比数列中,相邻元素的增长率是公比r。
2. 数列的问题转化:将数列问题转化为方程或等价式,从而找到解题的方法。
如通过设置未知数,将一个复杂的数列问题转化为简单的方程求解。
数列专题总复习知识点整理及经典例题讲解-高三数学
数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =na a a n+++ 21*n N ∈为通项公式的数列{}n b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如(1)数列{}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(答:13a =-,10n =);(2)已知数列{}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩).4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
2024年高考数学数列易错知识点总结
2024年高考数学数列易错知识点总结【数学数列易错知识点总结】数学数列是高考数学中的一个重要考点,也是一些同学容易出错的地方。
下面将针对2024年高考数学数列部分常见易错知识点进行总结,帮助同学们更好地备考。
一、数列的概念和性质1. 数列的概念:数列是按照一定顺序排列的一列数,一般用字母a_n表示第n个数。
2. 通项公式与通项:数列的通项公式是指通过计算得到第n 项的公式,一般用a_n表示。
通项公式能够简化计算,提高解题效率,需要了解并熟练掌握各种数列的通项公式。
3. 数列的性质:数列包括有界性、递增性、递减性、单调性、有限性等性质。
在计算题中,要根据题目给出的条件判断数列的性质。
二、等差数列1. 等差数列的定义:如果一个数列从第二项开始,每一项与它的前一项的差都相等,这个数列就是等差数列。
2. 等差数列的通项公式:对于等差数列a_n=a_1+(n-1)d,其中a_1为首项,d为公差。
熟练掌握并能够根据题目条件求出等差数列的通项公式。
3. 等差数列的性质:等差数列的前n项和、项数与首项、末项的关系等。
在计算等差数列的和时,要注意首项、末项以及项数的确定。
4. 数列位置问题:计算等差数列的第几项、确定项数时要注意各个变量的含义,尤其是考虑首项的位置是第一项还是第零项。
三、等比数列1. 等比数列的定义:如果一个数列从第二项开始,每一项与它的前一项的比值都相等,这个数列就是等比数列。
2. 等比数列的通项公式:对于等比数列an=a1*q^(n-1),其中a_1为首项,q为公比。
要注意当公比q为0或1时,等比数列的特殊情况。
3. 等比数列的性质:等比数列的前n项和、项数与首项、末项的关系等。
熟练掌握并能够根据题目条件求出等比数列的通项公式和相关性质。
四、等差数列与等比数列的联系与区别1. 联系:等差数列与等比数列都属于数列的一种特殊类型,都有对应的通项公式和性质。
可以通过等差数列与等比数列之间的相互转化,简化计算。
高中数列知识点归纳及习题附答案
第五章 数列5.1数列基础 5.1.1数列的概念一、知识点1. 定义:按照一定顺序排列的一列数成为数列。
2. 项:数列中的每一个数都称为这个数列的项,各项依次称为这个数列的第1项(或首项) ,第2项,…,第n 项 ,n a a a a ,......,,321,-1a 首项。
3. 通项:因为数列从首项起,每一项都与正整数对应,所以数列的一般形式可以写成n a a a a ,......,,321…,其中n a 表示数列的第n 项(也称n 为n a 的序号,其中n 为正整数,即n ∈N+),n a 称为数列的通项.此时,一般将整个数列简记为{an} ,这里的小写字母a 也可以换成其他小写英文字母.4. 通项公式:一般地,如果数列的第n 项n a 与n 之间的关系可以用 n a =f(n) 来表示,其中f (n)是关于n 的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式 .不是所有的数列都能写出通项公式,如果数列有通项公式,那么通项公式的表达式不一定唯一.5. 与函数的关系:数列{n a }可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式.数列也可以用平面直角坐标系中的点来直观地表示.6. 分类:1)有穷数列:项数有限个2)无穷数列:项数无限个3)增数列:从第2项起,每一项都大于它的前一项的数列 4)减数列:从第2项起,每一项都小于它的前一项的数列 5)常数列:各项都相等6)摆动数列:时而增大时而减小二、典型题典型题一 数列定义的理解1.有下面四个结论,其中正确的为( ) ①数列的通项公式是唯一的;②数列可以看成是一个定义在正整数集或其子集上的函数; ③若用图像表示数列,则其图像是一群孤立的点; ④每个数列都有通项公式. A.①② B.②③ C.③④ D.①④2.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A.11B.12C.13D.143.(2020甘肃兰州高二期中)下列数列中,既是递增数列又是无穷数列的是( ) A.-1,-2,-3,-4,…B.-1,-,…C.-1,-2,-4,-8,…D.1,,…,典型题二 求数列的通项公式4.若数列{a n }的前4项依次是2,0,2,0,则这个数列的通项公式不可能是( ) A.a n =1+(-1)n+1B.a n =1-cos nπC.a n =2sin2D.a n =1+(-1)n-1+(n-1)(n-2)5.已知数列{a n }的通项公式为n n a n -=2,则下列各数中不是数列中的项是( )A.2B.40C.56D.906.(2020辽宁沈阳东北育才学校高二期中)如图是谢尔宾斯基三角形,在所给的四个三角形图案中,黑色的小三角形个数依次构成数列{a n }的前4项,则{a n }的通项公式可以是( )A.a n =3n-1B.a n =2n-1C.a n =3nD.a n =2n-17.已知数列{a n }的通项公式为13+=n na n ,那么这个数列是( ) A.递增数列B.递减数列C.摆动数列D.常数列 8.写出下列数列的一个通项公式.(1)-,…;(2),…;(3)7,77,777,7 777,….典型题三 数列的单调性9.在数列{a n }中,a n =n 2-kn(n ∈N +),且{a n }是递增数列,求实数k 的取值范围.10.(2020北京第十一中学高三一模)数列{a n }的一个通项公式为a n =|n-c|(n ∈N +),则“c<2”是“{a n }为递增数列”的( ) A.必要不充分条件 B.充要条件 C.充分不必要条件 D.既不充分也不必要条件 11.数列{a n }的通项公式为nan a n +=。
高中数列知识点总结(附例题)
高中数列知识点总结(附例题)知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1)d .3.等差中项如果 A =a +b2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn ,(A 、B 为常数).7.等差数列的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值.[难点正本 疑点清源] 1.等差数列的判定(1)定义法:a n -a n -1=d (n ≥2); (2)等差中项法:2a n +1=a n +a n +2.2.等差数列与等差数列各项和的有关性质(1)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (2)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (3)S 2n -1=(2n -1)a n .(4)若n 为偶数,则S 偶-S 奇=n2d . 若n 为奇数,则S 奇-S 偶=a 中(中间项).例1(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 ∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1.∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.∴数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.例2(等差数列的基本量的计算)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1 (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8.所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7. (2)方法一 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-8(10d 2+1)=d 2-8≥0,解得d ≤-22或d ≥2 2. 方法二 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0, 9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.例3(前n 项和及综合应用)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值; (2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.解 方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1)-25, ∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎨⎧a n =4n -25<0, ①a n +1=4(n +1)-25≥0, ②由①得n <614;由②得n ≥514,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则T n =⎩⎪⎨⎪⎧21n +n (n -1)2×(-4) (n ≤6)66+3(n -6)+(n -6)(n -7)2×4 (n ≥7)=⎩⎨⎧-2n 2+23n (n ≤6),2n 2-23n +132 (n ≥7).例4,已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例5等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453n nS n T n,则使得n na b 为正整数的正整数n 的个数是 3 . (先求an/bn n=5,13,35)已知递推关系求通项:这类问题的要求不高,但试题难度较难把握.一般有三常见思路:(1)算出前几项,再归纳、猜想;(2)“a n+1=pa n+q ”这种形式通常转化为an +1+λ=p (an +λ),由待定系数法求出,再化为等比数列; (3)逐差累加或累乘法.例6 已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为例7在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .知识点2:等比数列及其n 项和 1.等比数列的定义 2.等比数列的通项公式 3.等比中项若G 2=a ·b (ab ≠0),那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a n q n-m,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),21221nn n n S S S S --=-1.21n S n ⇒=+1111122(2)n n n n n n S S S S n S S ---⇒-=⇒-=≥()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥13211221, 2.≥n n n n n a a a a a a n a a a a ---=⋅⋅⋅⋅⋅2ln n+⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q(q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .7. 等比数列的单调性【难点】1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)等比数列的通项公式a n =a 1q n -1及前n 项和公式S n =a 1(1-q n )1-q =a 1-a n q 1-q(q ≠1)共涉及五个量a 1,a n ,q ,n ,S n ,知三求二,体现了方程的思想的应用.(3)在使用等比数列的前n 项和公式时,如果不确定q 与1的关系,一般要用分类讨论的思想,分公比q =1和q ≠1两种情况.例1:(1)在等比数列{a n }中,已知a 6-a 4=24,a 3a 5=64,求{a n }的前8项和S 8; (2)设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大的项为27,求数列的第2n 项. (1)设数列{a n }的公比为q ,由通项公式a n =a 1q n -1及已知条件得: ⎩⎨⎧a 6-a 4=a 1q 3(q 2-1)=24, ①a 3·a 5=(a 1q 3)2=64. ②由②得a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,无解将a 1q 3=8代入①式,得q 2=4,∴q =±2.,故舍去.当q =2时,a 1=1,∴S 8=a 1(1-q 8)1-q =255;当q =-2时,a 1=-1,∴S 8=a 1(1-q 8)1-q =85.(2)若q =1,则na 1=40,2na 1=3 280,矛盾.∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q =40, ①a 1(1-q 2n )1-q =3 280, ②②①得:1+q n =82,∴q n=81, ③ 将③代入①得q =1+2a 1. ④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27, ⑤ 由③、④、⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.例2 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n.(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 1)证明 ∵a n +S n =n , ① ∴a n +1+S n +1=n +1. ②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. ∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,∴c 1=-12,公比q =12. 又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n . ∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n.又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .例3 在等比数列{a n }中,(1)若已知a 2=4,a 5=-12,求a n ;(2)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.解 (1)设公比为q ,则a 5a 2=q 3,即q 3=-18,∴q =-12,∴a n =a 5·q n -5=⎝ ⎛⎭⎪⎫-12n -4.(2)∵a 3a 4a 5=8,又a 3a 5=a 24,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=a 54=25=32.例4已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 规范解答(1)证明 b 1=a 2-a 1=1, [1分]当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n=-12(a n -a n -1)=-12b n -1, [5分]∴{b n }是首项为1,公比为-12的等比数列. [6分](2)解 由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1, [8分]当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) [10分]=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1, ∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1 (n ∈N *). [14分]例4 (07 重庆11)设11a a -+是和的等比中项,则a +3b 的最大值为 2 .(三角函数)例5 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为( )例 6 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形__________.【综合应用】例7.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }与{b n }的通项公式;22,Z 3k k ππ±∈(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解 (1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).解得d =2 (∵d >0). ∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1.2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c nb n=a n +1-a n =2.∴c n =2b n =2·3n -1 (n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎨⎧3 (n =1)2·3n -1 (n ≥2).∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.知识点3:数列的基本知识1,1-1)1(n n n n n S S n S a S a -==或的关系:与例1:设{}n a 数列的前n 项和2n S n =,则8a 的值为 15 .2,数列的递推公式及应用:利用数列的递推公式求数列的通项公式,一般有三种方法:累加法,累积法,构造法①对形如q pa a a a n n +==+11;的递推公式()1.≠p q p 为常数且,可令()λλ+=++n n a p a 1,整理得()λλλ+=+=+n n a p a p q1,1-,所以是{}λ+n a 等比数列②对形如q pa a a n n n +=+1的递推公式,两边取倒数后换元转化为nn a qp a +=+11,再求出⎭⎬⎫⎩⎨⎧n a 1即可例2:已知数列{}n a 满足n a a a n n 2-,3311==+,则na n的最小值为 10.5。
数列知识点归纳总结及题型
数列知识点归纳总结及题型数列是数学中一个重要的概念,也是高中数学中的重点内容之一。
它主要研究数字序列和它们之间的关系,包括等差数列、等比数列、递推数列等。
下面对数列知识点进行归纳总结:1. 数列的定义:数列是按照一定规律排列起来的一串数。
2. 数列的表示方法:通项公式、递推公式、等差数列、等比数列等。
3. 等差数列:若一个数列从第二项开始,每一项与它的前一项之差相等,则称这个数列为等差数列。
等差数列的通项公式为an=a1+(n-1)d。
4. 等比数列:若一个数列从第二项开始,每一项与它的前一项之比相等,则称这个数列为等比数列。
等比数列的通项公式为an=a1*q^(n-1)。
5. 递推数列:递推数列是根据已知的一些项的值求出其后继项的一类数列。
6. 数列的性质:有限数列具有有限项、无限数列具有无限项;等差数列中任意三项都可以构成一个等差数列;等比数列中任意三项都可以构成一个等比数列。
7. 数列求和公式:等差数列的前n项和为Sn=[n(a1+an)]/2;等比数列的前n项和为Sn=a1*(q^n-1)/(q-1)。
下面对数列考试题型进行归纳总结:1. 求某个位置上的项数或值。
2. 判断一个数列是等差数列还是等比数列,然后求出通项公式。
3. 求等差数列或等比数列的前n项和。
4. 通过已知的一些项的值来求递推数列的后继项。
5. 应用数列知识解决实际问题,如财务上的利润、收益等问题。
以上就是数列知识点和考试题型的总结。
在学习数列时,需要掌握基本概念和性质,熟练掌握求解各种类型的数列题目,才能够应对各种考试题型。
高考数学题型全归纳数列的概念知识总结及例题讲解
§1.1.1 数列的概念本末节重点:了解数列概念、分类、通项公式;及通项公式的求法。
大体概念1. 数列的概念○1按必然顺序排列的一列数叫数列。
注:数列的另一概念:数列也能够看做是一个概念域为正整数集,当自变量从小到大依次取值时对应的一列函数值。
○2数列中的每一个数按顺序1,2,3,…,都有一个序号,叫作项数,每一个序号也对应着一个数,那个数叫作数列中的项,例如第4个数,叫作第4项,第n个数,叫作第n项,记作;○3数列的一般形式为,,,…,,…简单记为,其中表示数列的通项. ○4通项公式:若是一个数列的第n项与项数n之间的函数关系能够用一个公式表示时,咱们称那个公式为那个数列的通项公式。
特别提示:a) 数列的通项公式不是唯一的,例如:-1,1,-1,1,…通项公式可表示为或;b) 不是所有的数列都有通项公式,例如:3,,,,,…就没有通项公式.○5递推公式:若是已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系式能够用一个公式来表示,则那个公式就叫作递推公式。
2. 数列的表示方式○1列表法,指列出表格来表示数列的第n项与序号n之间的关系.○2图像法,指在座标平面顶用点表示.○3解析法,指用一数学式子表示来。
例如:常常利用的通项公式.3. 数列的分类○1按数列中项数的多少来分:有穷数列和无穷数列.○2按数列中相邻两项间的大小关系来分:递增数列、递减数列、常数列和摆动数列.○3依照任何一项的绝对值是不是都大于某一正数来分:有界数列和无界数列.例题讲解按照数列的前几项,写出下列各数列的一个通项公式:,,,,…(2) 1,3,6,10,15,…(3) ,,,,…(4) 6,66,666,…(5),,,,…(6) ,,,,,,…或特别提示:在此种题型当中一些常常利用的数列为:1,0,1,0,…; 2)-1,1,-1,1,…; 3)1,11,111,1111,…已知数列,求数列的第10项是不是为该数列的项,为何?求证:数列中各项都在区间内;在区间内有无数列中的项?利用递推公式写出下列各题通项公式(1)(可用两种方式)(2)已知数列知足求(3)(插项法和叠加法组合)(4)在数列中,已知,(5)设是首项为1的正数数列,且,求它的通项公式.(累乘法)(6)已知数列中,,数列中,,当时,,求例4. 求下列数列中某一项已知数列知足,求已知数列对任意,有,若,求在数列中,,求已知数列知足,求例5. 利用数列的单调性解答(1)若数列的通项公式,数列的最大项为第x项,最小项为第y项,则x+y=(2)设数列的通项公式为,若数列是单调递增数列,求实数k 的取值范围.(3)设,又知数列的通项知足,1)试求数列的通项公式;2)判断数列的增减性.(4)设是概念在正整数集上的函数,且知足,若是,则=例6. 和之间的关系注:数列的通项与前n项和的彼此关系是:;已知数列的前n项和,求数列的通项公式.已知求已知,又数列中,,那个数列的前n项和的公式,对所有大于1的自然数n都有.求数列的通项公式.若, 求的值特别提示:请同窗自行归纳出求通项公式的大体方式.。
数列高考知识点大全总结
数列高考知识点大全总结一、数列的概念1. 数列的定义数列是由一系列有限或无限个数按照一定的顺序排列组成的。
用数学语言描述就是一个由实数构成的序列。
一般用字母或符号表示,如{an}、{bn}等。
2. 数列中的相关概念(1)通项公式:数列中的第n个数的一般表达式,通常用an表示。
(2)前n项和:数列前n项的和,通常用Sn表示。
3. 数列的分类(1)等差数列:若数列中相邻两项的差恒定,称其为等差数列。
其通项公式为an=a1+(n-1)d。
(2)等比数列:若数列中相邻两项的比恒定,称其为等比数列。
其通项公式为an=a1*q^(n-1)。
(3)常数数列:数列中的每一项都相等的数列称为常数数列。
二、数列的性质1. 数列的有界性(1)有界数列:当数列中的数有上界和下界时,称其为有界数列。
(2)无界数列:当数列中的数没有上界和下界时,称其为无界数列。
2. 数列的单调性若数列中的每一项都满足an≤an+1或者an≥an+1时,称其为单调递增数列或者单调递减数列。
3. 数列的性质(1)数列的线性组合:若an和bn是两个数列,k和m是任意常数,那么k*an+m*bn 也是一个数列。
(2)数列的绝对值:若an是一个数列,那么|an|也是一个数列。
三、常见数列1. 等差数列(1)性质:等差数列的前n项和Sn=a1*n+n(n-1)d/2。
(2)求通项公式:an=a1+(n−1)d。
(3)常用公式:Sn=n/2(a1+an)。
2. 等比数列(1)性质:等比数列的前n项和Sn=a1*(q^n-1)/(q-1),|q|>1。
(2)求通项公式:an=a1*q^(n-1)。
(3)常用公式:Sn=a1*(q^n-1)/(q-1)。
3. 斐波那契数列(1)定义:斐波那契数列是一个典型的递推数列,前两项都为1,从第三项开始,每一项都等于前两项之和。
(2)通项公式:an=f(n)=f(n-1)+f(n-2)。
(3)性质:斐波那契数列是一个无界数列。
高中数学数列知识点总结8篇
高中数学数列知识点总结8篇篇1一、数列的基本概念数列是一组按照一定顺序排列的数字的集合。
其中每一个数字称为项,第一项称为首项,最后一项称为末项。
数列的通项公式是用来表示数列中每一项的公式,如果存在的话。
此外,数列还有和的概念,即数列所有项的和。
二、等差数列等差数列是一种特殊的数列,任意两项的差都等于常数,这个常数被称为公差。
等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列的求和公式为:S = n/2 * (a1 + an),其中S表示数列的和,n表示项数。
三、等比数列等比数列是一种每一项与它的前一项的比值都等于常数的数列。
这个常数被称为公比。
等比数列的通项公式为:an = a1 * q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
等比数列的求和公式较为复杂,需要根据公比q的值分别讨论。
四、数列的极限数列的极限是指当项数趋近于无穷大时,数列的项趋近于某一常数。
了解数列极限的概念对于理解数列的性质非常重要。
此外,还需要掌握一些与极限有关的性质,如夹逼准则等。
五、数列的应用数列在实际生活中有着广泛的应用。
例如,金融中的复利计算、物理学中的衰变问题等都可以转化为数列问题来解决。
在解决这些问题时,需要灵活运用数列的知识和方法。
此外,数列还与高等数学中的许多概念有着紧密的联系,如微积分、级数等。
因此,掌握数列的知识对于后续的学习和研究也有着重要的意义。
六、数列的题型与解题方法高中数学中,数列是一个重要的知识点,常常作为考试的重点内容。
在考试中,数列的题型多种多样,如填空题、选择题、解答题等。
常见的解题方法包括:利用通项公式求解、利用求和公式求解、利用等差或等比数列的性质求解、利用夹逼准则求解极限等。
在解题过程中,需要熟练掌握这些方法和技巧,并能够灵活运用。
七、总结与展望本文对高中数学中的数列知识点进行了全面的总结,包括基本概念、等差数列、等比数列、数列的极限以及应用等方面。
高考数列知识点归纳总结
高考数列知识点归纳总结一、等差数列等差数列是指数列中任意两项之间的差值恒定的数列。
常用的表示方式是:a,a + d,a + 2d,a + 3d...,其中a为首项,d为公差。
1. 等差数列的通项公式为了快速计算等差数列中任意一项的数值,我们可以使用通项公式。
对于等差数列{an},其通项公式为:an = a + (n - 1)d其中,an表示第n项的值,a为首项,d为公差。
2. 等差数列的前n项和公式等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
3. 等差数列性质等差数列具有以下性质:- 任意三项成等差数列,当且仅当它们的差值相等。
- 等差数列中,如果知道了首项、末项和项数,就可以计算出公差。
或者前n项和。
二、等比数列等比数列是指数列中任意两项之间的比值恒定的数列。
常用的表示方式是:a,ar,ar^2,ar^3...,其中a为首项,r为公比。
1. 等比数列的通项公式为了快速计算等比数列中任意一项的数值,我们可以使用通项公式。
对于等比数列{an},其通项公式为:an = ar^(n-1)其中,an表示第n项的值,a为首项,r为公比。
2. 等比数列的前n项和公式等比数列的前n项和可以通过求和公式来计算,公式为:Sn = a(r^n - 1) / (r - 1)其中,Sn表示前n项和,n为项数,a为首项,r为公比。
3. 等比数列性质等比数列具有以下性质:- 任意三项成等比数列,当且仅当它们的比值相等。
- 等比数列中,如果知道了首项、末项和项数,就可以计算出公比。
或者前n项和。
三、数列的求和运算在高考数学中,常常会遇到需要计算数列前n项和的情况。
数列的求和运算可以通过特定的公式或者方法来实现。
1. 等差数列的求和等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
2024年高考数学数列易错知识点总结
2024年高考数学数列易错知识点总结在2024年高考中,数学数列是一个常见的考点,也是一道容易出错的题型。
为了帮助考生顺利应对数列相关的考试题目,下面总结了一些常见的易错知识点。
一、等差数列的通项公式:等差数列是指数列中任意两项之间的差相等的数列。
它的通项公式为:$a_n = a_1 + (n-1)d$。
对于等差数列来说,考生容易犯的错误有:1. 弄混公差和公比。
公差指的是等差数列中任意两项之间的差,公比指的是等比数列中任意两项之间的比值。
考生在计算等差数列的时候,应该注意区分这两个概念。
2. 弄混首项和通项。
首项指的是数列中的第一项,通项指的是数列中第n项的表达式。
在计算等差数列的时候,考生应该注意首项和通项的区别。
3. 对于计算等差数列的题目,考生有时会直接套用公式,而忽略对问题的分析和推理。
在解题过程中,不应只关注于公式的使用,还应注重思考问题的本质,并结合实际情况进行合理的推理和分析。
二、等差数列的前n项和公式:等差数列的前n项和公式为:$S_n = \\frac{n}{2}(a_1 +a_n)$。
在计算等差数列前n项和的过程中,考生容易犯的错误有:1. 弄混首项和末项。
求前n项和的公式中,首项$a_1$和末项$a_n$都是需要用到的。
考生容易弄混这两个项,在计算过程中应该注意清楚。
2. 计算公式时漏写除以2。
前n项和的公式是$\\frac{n}{2}(a_1 + a_n)$,但考生在计算的时候经常漏写除以2的操作,导致结果错误。
3. 求前n项和时,考生有时对问题的理解不准确。
在一些应用题中,需要根据题目给出的条件和要求来求解前n项和。
考生如果对问题的理解不准确,很容易在计算过程中出错。
三、等比数列的通项公式:等比数列是指数列中任意两项之间的比值相等的数列。
它的通项公式为:$a_n = a_1 \\times q^{(n-1)}$。
对于等比数列来说,考生容易犯的错误有:1. 弄混公比和公差。
2024年高考数学数列易错知识点总结
2024年高考数学数列易错知识点总结(____字)数列是高中数学中的重要内容之一,也是高考数学中的必考内容。
在2024年的高考中,关于数列的考点可能会有一些易错的地方,下面我将对2024年高考数学中数列的易错知识点进行总结。
一、概念和性质1. 数列的概念数列是指按照一定规律排列的一列数,数列中的每一个数称为数列的项。
数列可以用通项公式表示,例如等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,d为公差(等差数列)或公比(等比数列),n为项数。
2. 数列的递推公式数列的递推公式是指通过前一项和公式推导出后一项的公式,例如等差数列的递推公式为an=an-1+d,等比数列的递推公式为an=an-1*r。
3. 数列性质的判断判断一个数列是等差数列还是等比数列,可以通过计算相邻两项的比值(等比数列)或差值(等差数列)是否相等来进行判断。
二、常用数列类型1. 等差数列等差数列是指相邻两项之差都相等的数列。
求等差数列的通项公式可以通过计算相邻两项之差来得到,也可以通过已知首项和公差来得到。
在解题过程中,容易混淆首项和公差的顺序,需要注意。
2. 等比数列等比数列是指相邻两项之比都相等的数列。
求等比数列的通项公式可以通过计算相邻两项之比来得到,也可以通过已知首项和公比来得到。
在解题过程中,需要注意公比为零或负数时的特殊情况。
3. 斐波那契数列斐波那契数列是指从第3项开始,每一项都等于前两项之和的数列。
斐波那契数列的通项公式可以通过递推公式an=an-1+an-2得到。
4. 递推数列递推数列是指通过递推公式得到后一项的数列。
在解题过程中,容易出现递推公式写错或计算错误的情况,需要仔细注意。
三、数列的运算1. 数列的加法运算对于等差数列和等比数列,相同位置的项可以进行加法运算。
对于等差数列,可以通过逐项相加得到结果;对于等比数列,可以通过求和公式得到结果。
2. 数列的乘法运算对于等差数列和等比数列,相同位置的项可以进行乘法运算。
高三总复习数列知识点及题型归纳总结
高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
高中数列知识点、解题方法和题型大全
一 高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-, n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则m n p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-.二 解题方法1 求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,1134n n n n a S S --=-==……·(2)叠乘法如:数列{}n a 中,1131n n a n a a n +==+,,求n a解3212112123n n a a a n a a a n --=·……·……,∴11n a a n =又13a =,∴3n a n =.(3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭(5)倒数法如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·,∴21n a n =+(附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)2 求数列前n 项和的常用方法 (1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111111111111nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (1)21n n a S n ===-+…………,(2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nx S xx -=---,1x =时,()11232n n n S n +=++++=……(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x xx ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦(附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式练习:1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
(4)9,99,999,9999…(5)7,77,777,7777,…(6)8, 88, 888, 8888…2.数列{}n a中,已知21()3nn na n N++-=∈(1)写出,1a,2a,3a,1na+,2na;(2)2793是否是数列中的项?若是,是第几项?3.(2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内。
4、由前几项猜想通项:根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.5.观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是(),其通项公式为 .A.40个 B.45个 C.50个 D.55个2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点(1)(4)(7)()()二、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )6703.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)题型三、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA += a ,A ,b 成等差数列⇔2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(14全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .752.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B.2 C.4 D.8题型四、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 题型五、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。
(),(2为常数B A BnAn S n +=⇒{}n a 是等差数列 )递推公式:2)(2)()1(1na a n a a S m n m n n --+=+=例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )352.(2015湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.(2015全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=4.(2015重庆文)(2)在等差数列{}n a 中,1910a a +=,则5a 的值为( )(A )5 (B )6 (C )8 (D )105.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 6.已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 7.(2014全国卷Ⅱ理)设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 8.(2014全国)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=100. (Ⅰ)求数列{b n }的通项b n ;9.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )3132--..B A C.31 D.3210.(2015陕西卷文)设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a =11.(2013全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n 。
12.等差数列{}n a 的前n 项和记为n S ,已知50302010==a a , ①求通项n a ;②若n S =242,求n13.在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求题型六.对于一个等差数列:(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ② 1n n S aS a +=奇偶;(2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②1S nS n =-奇偶。
题型七.对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。
例:1.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2602.一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 4.设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== 5.(2015全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = A .310 B .13 C .18 D .19题型八.判断或证明一个数列是等差数列的方法: ①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列例:1.已知数列}{n a 满足21=--n n a a ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断2.已知数列}{n a 的通项为52+=n a n ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断3.已知一个数列}{n a 的前n 项和422+=n s n ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断4.已知一个数列}{n a 的前n 项和22n s n =,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断5.已知一个数列}{n a 满足0212=+-++n n n a a a ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 6.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ) ①求数列{}n a 的通项公式;7.(14天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列题型九.数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即:若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。