高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

合集下载

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。

同济大学版高等数学课后习题答案第2章

同济大学版高等数学课后习题答案第2章

习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解 在时间间隔[t 0, t 0+∆t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω, 故t 0时刻的角速度为)()()(l i m l i m l i m 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+∆t ]内, 温度的改变量为∆T =T (t +∆t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(, 故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆. 3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义.解 f (x +∆x )-f (x )表示当产量由x 改变到x +∆x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +∆x 时单位产量的成本. xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本. 4. 设f (x )=10x 2, 试按定义, 求f '(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x xx x x x .5. 证明(cos x )'=-sin x .解 xx x x x x ∆-∆+='→∆cos )cos(lim )(cos 0 xx x x x ∆∆∆+-=→∆2s i n )2s i n (2lim 0 x x x x x x s i n ]22s i n )2s i n ([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000; 解 xx f x x f A x ∆-∆-=→∆)()(lim 000 )()()(l i m 0000x f xx f x x f x '-=∆--∆--=→∆-. (2)A xx f x =→)(lim 0, 其中f (0)=0, 且f '(0)存在; 解 )0()0()0(lim )(lim 00f xf x f x x f A x x '=-+==→→. (3)A hh x f h x f h =--+→)()(lim 000. 解 hh x f h x f A h )()(lim 000--+=→ hx f h x f x f h x f h )]()([)]()([lim 00000----+=→ h x f h x f h x f h x f h h )()(lim )()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0).7. 求下列函数的导数:(1)y =x 4;(2)32x y =;(3)y =x 1. 6;(4)xy 1=; (5)21x y =; (6)53x x y =;(7)5322x x x y =; 解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x x y . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x x y . (5)3222)()1(---='='='x x xy . (6)511151651653516516)()(x x x x x y =='='='-. (7)651616153226161)()(--=='='='x x x x x x y . 8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s )时的速度. 解v =(s )'=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0.证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(l i m 0)0()(l i m 0)0()(l i m )0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =π. 解 因为y '=cos x , 所以斜率分别为2132c o s 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式. 解y '=-sin x , 233sin 3-=-='=ππx y , 故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y . 12. 求曲线y =e x 在点(0,1)处的切线方程.解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为y -1=1⋅(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线.14. 讨论下列函数在x =0处的连续性与可导性:(1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=000 1sin 2x x x x y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 000=-==---→→→x x y x x x , 0sin lim |sin |lim lim 000===+++→→→x x y x x x , 所以函数在x =0处连续.又因为1s i n l i m 0|0s i n ||s i n |l i m 0)0()(l i m )0(000-=-=--=--='---→→→-xx x x x y x y y x x x , 1s i n lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续. 又因为01s i n l i m 01s i n l i m 0)0()(l i m 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数⎩⎨⎧>+≤=1 1 )(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值?解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b , 所以要使函数在x =1处连续, 必须a +b =1 .又因为当a +b =1时211l i m )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f '(x ) . 解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→x x x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10 cos x x x . 18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为 )(02020x x x ay y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x a x y x =+=, 为切线在x 轴上的距. 令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式:(cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 xx x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s c s i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c os )s i n 1()(c s c 2⋅-=-='='. 2. 求下列函数的导数:(1)1227445+-+=xx x y ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1;(4) y =sin x ⋅cos x ;(5) y =x 2ln x ;(6) y =3e x cos x ;(7)xx y ln =; (8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=; 解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ).(4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )'=cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x .(5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) . (6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x x x x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x ) 2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t t t t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数:(1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x ,21321236s i n 6c o s 6+=+=+='=πππx y , 222224s i n 4c o s 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d , )21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v (t );(2)该物体达到最高点的时刻.解 (1)v (t )=s '(t )=v 0-gt .(2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x ,所求的法线方程为x y 21-=, 即x +2y =0. 6. 求下列函数的导数:(1) y =(2x +5)4(2) y =cos(4-3x );(3)23x e y -=;(4) y =ln(1+x 2);(5) y =sin 2x ;(6)22x a y -=;(7) y =tan(x 2);(8) y =arctan(e x );(9) y =(arcsin x )2;(10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3.(2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ).(3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='.(4)222212211)1(11xxx x x x y +=⋅+='+⋅+='. (5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(6))()(21])[(22121222122'-⋅-='-='-x a x a x a y 222122)2()(21x a x x x a --=-⋅-=-. (7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2).(8)xx x x e e e e y 221)()(11+='⋅+='. (9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='. 7. 求下列函数的导数:(1) y =arcsin(1-2x );(2)211x y -=; (3)x e y x3cos 2-=;(4)xy 1arccos =; (5)xx y ln 1ln 1+-=; (6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x );(10) y =ln(csc x -cot x ).解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='. (2))1()1(21])1[(21212212'-⋅--='-='---x x x y 222321)1()2()1(21xx x x x --=-⋅--=-. (3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y x xx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e x x x +-=--=---.(4)1||)1()1(11)1()1(1122222-=---='--='x x x x xx x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x xx x x xx y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数:(1)2)2(arcsin x y =; (2)2tan ln x y =; (3)x y 2ln 1+=;(4)x e y arctan =;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ; (7)xx y arccos arcsin =; (8) y =ln[ln(ln x )] ;(9)xx x x y -++--+1111; (10)xx y +-=11arcsin . 解 (1)'⋅=')2(arcsin )2(arcsin 2x x y )2()2(11)2(a r c s i n 22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x . 242a r c s i n 2xx -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x xy x x x c s c 212s e c 2t a n 12=⋅⋅=. (3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(l n ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+= xx x 2ln 1ln +=. (4))(arctan arctan '⋅='x e y x )()(112arctan '⋅+⋅=x x e x)1(221)(11a r c t a n 2a r c t a n x x e x x e x x +=⋅+⋅=. (5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )'=n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x .(6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s 12x x -=π. (8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y )l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=. (10)2)1()1()1(1111)11(1111x x x xxx x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+= )()()()()()(22x g x f x g x g x f x f +'+'=. 10. 设f (x )可导, 求下列函数y 的导数dx dy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2).(2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x )=sin 2x [f '(sin 2x )- f '(cos 2x )].11. 求下列函数的导数:(1) y =ch(sh x );(2) y =sh x ⋅e ch x ;(3) y =th(ln x );(4) y =sh 3x +ch 2x ;(5) y =th(1-x 2);(6) y =arch(x 2+1);(7) y =arch(e 2x );(8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y 解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x .(2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='.(4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='. (6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x x x x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x y x x xx x sh ch 2ch 21ch sh 4⋅⋅-= xx x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xx x x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y )112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数:(1) y =e -x (x 2-2x +3);(2) y =sin 2x ⋅sin(x 2);(3)2)2(arctan x y =; (4)n xx y ln=; (5)t t t t ee e e y --+-=; (6)xy 1cos ln =;(7)x e y 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=; (10)212arcsin tty +=. 解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2)=e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x=sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222x x xx y +=⋅+⋅='. (4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x e y x x -⋅⋅-⋅='-⋅='-- x e x x1s i n 222s i n 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+=' xx x x +⋅+=412. (9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t ttt t t ty +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214x y -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=', 222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 212a r c t a n 2xxx y ++=''. (10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222.2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω.解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式: y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx ) =(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y ,)222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232s i n (2)222c o s (233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅=)50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =;(11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214xy -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21x a x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=', 222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 212a r c t a n 2xxx y ++=''. (10)22)1(1x x e x e x e y x x x -=⋅-⋅=',3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==.(2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts dω. 解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx )=(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 .7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x .y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 .8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y , )222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0;(2) x 3+y 3-3axy =0;(3) xy =e x +y ;(4) y =1-xe y .解 (1)方程两边求导数得2y y '-2y -2x y ' =0 ,于是 (y -x )y '=y ,xy y y -='. (2)方程两边求导数得3x 2+3y 2y '-2ay -3axy '=0,于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22. (3)方程两边求导数得y +xy '=e x +y (1+y '),于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='. (4)方程两边求导数得y '=-e y -xe y y ',于是 (1+xe y )y '=-e y ,yy xe e y +-='1. 2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得 032323131='+--y y x , 于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1. 所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dx y d : (1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2;(3) y =tan(x +y );(4) y =1+xe y .解 (1)方程两边求导数得2x -2yy '=0,y '=yx , 3322221)(yy x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy '=0,yx a b y ⋅-='22, 22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-='' 32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(c o s 1)(s e c 1)(s e c 222-+=+-+='y x y x y x y 222211)(s i n )(c o s )(s i n y y x y x y x --=+-+++=, 52233)1(2)11(22yy y y y y y +-=--='=''. (4)方程两边求导数得y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ; (3)54)1()3(2+-+=x x x y ; (4)x e x x y -=1sin .解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |,两边求导得xx x x x x y y +⋅-+-⋅+='11)1l n (1ln 1, 于是 ]111[l n )1(xx x x x y x ++++='. (2)两边取对数得)2l n (251|5|ln 51ln 2+--=x x y , 两边求导得22251515112+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y . (3)两边取对数得)1l n (5)3l n (4)2l n (21ln +--++=x x x y , 两边求导得1534)2(211+---+='x x x y y , 于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y(4)两边取对数得)1l n (41s i n ln 21ln 21ln x e x x y -++=, 两边求导得)1(4c o t 21211x x e ex x y y --+=', 于是 ])1(4c o t 2121[1s i n x x xe e x x e x x y --+-=' ]1c o t 22[1s i n 41-++-=x x x e e x x e x x . 5. 求下列参数方程所确定的函数的导数dxdy : (1) ⎩⎨⎧==22bty at x ; (2) ⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t ab at bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy 的值. 解 tt t t t e t e t e t e x y dx dy t t t t t t cos sin sin cos cos sin sin cos +-=+-=''=, 当3π=t 时, 23313123212321-=+-=+-=dx dy . 7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程:(1) ⎩⎨⎧==ty t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313t at y t at x , 在t =2处. 解 (1)tt x y dx dy t t cos 2sin 2-=''=.。

课程标准

课程标准

《高等数学》课程标准《高等数学》课程是本科非数学类各理科专业的重要专业基础课,在大学教育及高素质人才的培养过程中占有十分重要的地位。

随着时代的发展、科学的进步、经济的腾飞,数学科学已与自然科学、社会科学并列为三大基础科学,数学地位的巨大变化必将影响到高等数学课程在整个高等教育中的地位与作用。

同时,《高等数学》课程还担负着培养学生严谨的思维、求实的作风、创新的意识等任务。

因此,《高等数学》不仅要向学生传授数学知识,更要注重培养学生的数学修养。

但是,不同学科和专业对高等数学知识的需求不同,同时,为了满足我校学生将来考研的需要,根据专业需求的特点和考研《数学一》至《数学三》的要求,将《高等数学》课程划分为如下三个层次。

《高等数学I》(第一层次)一、课程说明:《高等数学I》由微积分、线性代数和概率论与数理统计三部分构成,本课程是物理教育专业和计算机等专业的一门必修的基础课程,也可供将来考研时需要考《数学一》的其它专业同学选修。

课程总学时为276学时,分四个学期行课,其中,第一学期78学时,4学分,第二学期90学时,5学分,第三学期54个学时,3学分,第四学期54个学时,3学分,共15学分。

1.参考专业:物理教育和计算机等专业。

2.课程类别:专业基础课3.参考教材与参考书目教材:1 《高等数学》第六版,同济大学高等数学教研室编,高等教育出版社,2007年。

2 居余马等编著,线性代数(第2版),北京,清华大学出版社,2002年9月第2版3 盛骤等,概率论与数理统计(第二版),北京:高等教育出版社,1989。

参考书目:1 四川大学数学系高等数学教研室编,高等数学(第一、二、三、四册),北京,高等教育出版社,1997。

2 同济大学应用数学系编,线性代数(第4版)北京,高等教育出版社,2003年7月。

3 高世泽,概率统计引论,重庆:重庆大学出版社,2000年。

4.课程教学方法与手段以教师讲授为主,学生自学为辅的教学方式进行教学,课堂上的教学以启发式的方式进行讲授,学生作适当的课内练习。

高等数学教材答案同济

高等数学教材答案同济

高等数学教材答案同济高等数学是大学理科专业中的一门重要学科,对于学生来说,掌握基本概念和解题技巧非常重要。

同济大学的高等数学教材是一本经典教材,其中包含了大量的练习题和习题答案,为学生提供了宝贵的学习资料。

本文将为大家提供《高等数学教材答案同济》这一主题下的相关内容和答案。

1. 函数与极限部分1.1 极限的概念与性质1.2 无穷小量与无界量1.3 函数极限的定义与计算方法1.4 极限存在准则与函数极限的运算法则1.5 极限存在问题的应用2. 导数与微分部分2.1 导数的概念与性质2.2 基本初等函数的导数2.3 导数运算法则2.4 隐函数与参数方程的导数2.5 高阶导数与莱布尼茨公式2.6 微分与微分中值定理3. 积分与不定积分部分3.1 不定积分的定义与性质3.2 基本积分法3.3 分部积分法与换元积分法3.4 定积分与牛顿-莱布尼茨公式3.5 反常积分的概念与判定4. 微分方程部分4.1 张成光微分方程模型及其解法4.2 分离变量法与齐次方程4.3 一阶线性微分方程4.4 可降阶的高阶微分方程4.5 欧拉方程以上是《高等数学教材答案同济》的主要内容,每个部分都包含了相关的概念、性质以及解题方法。

学生在学习高等数学过程中,通过参考教材答案,可以及时检查自己的答题情况,解决困惑和疑惑。

这不仅有助于巩固学习内容,也提高了学生的解题能力和应试能力。

同济大学的高等数学教材答案在内容上非常全面,覆盖了教材的各个知识点和难点。

答案的解析详细清晰,每一步都有详细的说明,有助于学生全面理解解题思路。

此外,答案还包含了一些常见错误和易错点的提示,帮助学生避免犯类似的错误。

总之,《高等数学教材答案同济》是一本优秀的学习辅助资料,对于学生来说具有重要的参考价值。

通过仔细研读教材答案,学生能够更好地理解数学理论与方法,巩固知识点,提高解题能力,为高等数学的学习打下坚实的基础。

福建师范大学教务处

福建师范大学教务处

福建师范大学教务处篇一:艺术类录入成绩说明福建师范大学教务处网站在右侧点击校外的教学系统教学系统输入自己的工号和密码进入系统录入成绩二百五十成绩又有自己的密码开始进入工号:密码:请各位老师应尽快录入成绩,最晚截止到31号,过期系统关闭。

篇二:福建师范大学福清分校教务处福建师范大学长乐福清分校教务处闽师分教〔2021〕13号关于举办福建师范大学福清西校区第三届高等数学竞赛的竞赛通知各系:为了调动我校广大学生广大群众学习高等数学的积极性,凝聚学生学习数学的数学分析兴趣与热情,增强学生运用数学知识解决问题的专业知识,学生培养学生良好的数学素养和创新思维,进一步推动我校高等数学教学体系、教学内容和教学方法的改革,决定举办福建师范大学重新考虑福清分校第三届高等数学竞赛。

现将具体事宜通知如下:一、参赛对象2021级、2021级和2021级非数学类专业的在校学生均可报名参赛(须携带学生证或身份证参赛)。

二、竞赛类别竞赛分为理工类、文史经管类(理工类专业:心理学、计算机科学与技术开发、网络工程、电子信息工程、电子信息科学与技术、应用化学、环境科学、生物技术、生物工程等九个专业;文史经管类专业:法学、市场营销、金融学、国际经济与贸易、旅游管理、汉语言文学、学前教育、英语、日语、财务管理、广播电视新闻学、社会体育等十二个专业领域)。

报名选手应根据自己所学专业选择参赛类别。

三、报名方式4月25日上午8点30分至5月14日下午4点30分登陆教务处网站通过综合教学系统(与公共兴趣班报名一样),在网上报名模块“其他报名”栏目中进行报名。

四、竞赛方式采用闭卷笔试的方式需要进行。

满分为100分,考试时间120分钟。

五、竞赛时间、地点5月29日(星期六)上午8:30—10:30,竞赛地点已确定。

六、命题范围命题以高等数学基础知识解析几何为主,显露出重点考查参赛者显现出来高等数学知识的水平及应用相关知识解决实际问题的能力。

理工类所定的竞技试题主要依据教材《高等数学》(第五版、第六版或本科少学时类型第二版或第三版,上海交通大学应用数学系编),文史经管类的竞赛试题主要依据教材《经济数学—微积分》(吴传生主编)。

高等数学(本科少学时类型)(第三版)上册1

高等数学(本科少学时类型)(第三版)上册1

(1) lim (sin x 1 sin x )
x
1 x2 1 x (2) lim ( 3) lim x 1 sin x x 0 1 x 解: (1) sin x 1 sin x
cot x
x 1 x x 1 x 2 sin cos 2 2 1 x 1 x 2 sin cos 2 2( x 1 x ) 有界 无穷小
(2) xn ( xn x0 ) ,
Index First Up
f ( x0 0) f ( x0 0) A
Back
Down
Last
End
Demand
4
二、 连续与间断 1. 函数连续的等价形式
x x0
lim f ( x ) f ( x0 ) lim y 0
( x)
lim e
a ( x ) 0
( x ) ln(1a ( x ))
lim a ( x ) ( x )
ea ( x )0
lim ( x )ln(1a ( x ))
e
a ( x )0
5. 求极限的基本方法 6. 判断极限不存在的方法 (以 x→x0 为例 )
(1)
a ( x a )( x 1) 0 lim x x 0 1 b e b
a 0,b1
e b 极限存在 ∵ x=1为可去间断点 , lim x 1 x ( x 1)
x
lim (e x b) 0
x 1
b lim e x e
x 1
Index
First
Up
lim lim 复习: 若 x x a ( x ) 0, x x ( x ) ,

高等数学本科少学时类型第三版下册教学反思

高等数学本科少学时类型第三版下册教学反思

高等数学本科少学时类型第三版下册教学反思前言高等数学是理工科学生必须学习的课程之一。

在教学过程中,我发现很多学生对于数学的概念和技巧掌握不够牢固,缺乏数学思维的训练。

因此,我对高等数学本科少学时类型第三版下册的教学进行了反思和总结。

难点分析高等数学作为一门理论抽象且逻辑性强的课程,在教学中不能仅仅停留在概念的介绍和运算的演练上。

下面是我对高等数学下册教学中的难点进行的分析:1. 向量代数和空间解析几何向量代数和空间解析几何这一章是高等数学下册的重点内容。

这部分内容包括向量及其表示、向量的运算、向量空间、空间直线和平面等知识点,需要学生掌握向量的基本概念和运算法则。

2. 重积分重积分的计算方法比较繁琐,需要学生运用多种方法进行计算。

学生在学习这一章节时需要掌握二重积分和三重积分的概念及其求解方法,掌握变量替换法和极坐标法等计算方法。

3. 常微分方程常微分方程这一章内容是高等数学下册中最难的章节之一。

学生需要掌握基本的常微分方程类型及其解法,如一阶线性微分方程、高阶微分方程等等。

在解题方面需要注意到解微分方程的一些技巧。

教学策略为了解决学生在学习高等数学中遇到的问题,我采用了以下教学策略:1. 生动形象的教学在课堂教学中,我注重通过生动形象的案例和图形来讲解难点内容。

例如,在向量代数和空间解析几何这一章中,我会利用具体的实际问题和应用案例来讲解。

通过实际应用案例,可以让学生更加深刻地理解高等数学的抽象概念,从而提高学生的学习兴趣和学习效果。

2. 多样化的教学方法为了提高学生对高等数学的兴趣和参与度,我采用了多种教学方法来讲解课程。

除了课堂讲解以外,我还采用线上线下相结合的方式,通过微信群、课堂练习、线上答疑等多种方式,提供全方位的教学服务。

在讲解重积分这一章节时,我会组织学生进行多次练习,让学生掌握基本技巧,并引领学生思考问题的本质。

3. 考试复习指导在考试复习阶段,我会通过组织小组讨论、指导学生如何备考和提高试卷分数等方式,协助学生更好地应对考试。

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

习题7-11. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c习题7-21. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3,4, 0); B (0, 4, 3); C (3, 0, 0); D (0, −1, 0).解在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.3. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a, b, c); 点(a, b, c)关于zOx面的对称点为(a, −b, c).(2)点(a, b, c)关于x轴的对称点为(a, −b, −c); 点(a, b, c)关于y轴的对称点为(−a, b, −c); 点(a, b, c)关于z轴的对称点为(−a, −b, c).(3)点(a, b, c)关于坐标原点的对称点为(−a, −b, −c).4.自点P0(x, y, z)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x0, y, 0)、(0, y, z)和(x, 0, z).在x轴、y轴和z轴上, 垂足的坐标分别为(x0, 0, 0), (0, y, 0)和(0, 0, z).5.过点P0(x, y, z)分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐标各有什么特点?解在所作的平行于z轴的直线上, 点的坐标为(x0, y, z); 在所作的平行于xOy面的平面上,点的坐标为(x, y, z).6. 一边长为a的立方体放置在xOy面上, 其底面的中心在坐标原点, 底面的顶点在x轴和y 轴上, 求它各顶点的坐标.7.已知两点M1(0, 1, 2)和M2(1, −1, 0). 试用坐标表示式表示向量及11.在yOz面上, 求与三点A(3, 1, 2)、B(4, −2, −2)和C(0, 5, 1)等距离12. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.14. 求点M(4, −3, 5)到各坐标轴的距离.17. 设已知两点和计算向量的模、方向余弦和方向角.18. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?20.设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.21. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影a x=13,在y轴上分向量为7j.习题7-31.设a=3i−j−2k, b=i+2j−k, 求(1)a⋅b及a×b; (2)(−2a)⋅3b及a×2b; (3)a、b夹角的余弦.解(1)a⋅b=3×1+(−1)×2+(−2)×(−1)=3,(2)(−2a)⋅3b =−6a⋅b = −6×3=−18,a×2b=2(a×b)=2(5i+j+7k)=10i+2j+14k .2. 设a、b、c为单位向量, 且满足a+b+c=0, 求a⋅b+b⋅c+c⋅a .解因为a+b+c=0, 所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是3.已知M1(1, −1, 2)、M2(3, 3, 1)和M3(3, 1, 3). 求与、同时垂直的单位向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解:因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的 规定可得, 使杠杆保持平衡的条件为6.求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影. 解:7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直?解λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 试用向量证明直径所对的圆周角是直角. 8. 试用向量证明直径所对的圆周角是直角. 证明设AB 是圆O 的直径, C 点在圆周上, 则.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k,11.(1)解: xy z xyzi j ka b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()x y z xy z xyza a ab b b C C C = 若,,C a b r r u r共面,则有 a b ⨯r r 后与 C u r 是垂直的. 从而C 0a b ⨯⋅=r r u r () 反之亦成立. (2) C xy z x y z xyza a a ab b b b C C C ⨯⋅=r r u r Q()ax y z x y z x y z b bbb C C C Ca a a⨯⋅=r u r r()bx y zx y zx y zC C CC a a a ab b b⨯⋅=u r r r()由行列式性质可得:x y z x y z x y zx y z x y z x y zx y z x y z x y za a ab b b C C Cb b b C C C a a aC C C a a a b b b==故C a?ba b b C C a⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r rQ()()()习题7-43. 求过点(3, 0, −1)且与平面3x−7y+5z−12=0平行的平面方程.解所求平面的法线向量为n=(3, −7, 5), 所求平面的方程为3(x−3)−7(y−0)+5(z+1)=0, 即3x−7y+5z−4=0.4.求过点M(2, 9, −6)且与连接坐标原点及点M的线段OM垂直的平面方程.解所求平面的法线向量为n=(2, 9, −6), 所求平面的方程为2(x−2)+9(y−9)−6(z−6)=0, 即2x+9y−6z−121=0.5.求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解n1=(1, −1, 2)−(1, 1,−1)=(0, −2, 3), n1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.6. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 (0 ,1/3 ,0). (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4) x −3y =0解x −3y =0是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为8.一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为9.求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解解线性方程组分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5. (2)通过z 轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上, 所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上, 所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.10.求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为习题7-51.求过点(4, −1, 3)且平行于直线的直线方程.解所求直线的方向向量为s=(2, 1, 5), 所求的直线方程为2.求过两点M1(3, −2, 1)和M2(−1, 0, 2)的直线方程.解所求直线的方向向量为s=(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为10. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 11. 求过点(1, 2, 1)而与两直线平行的平面的方程. 解直线的方向向量为12. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-13. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2221332(13)(1)(2)222d =-+-++-=习题7-6 5.6. 指出下列方程所表示的是什么曲面,并画出其图形:(1)(2)(4)221 49x y-+=;(5)22194x z +=; (6)20y z -=; 解:(1)(2)(4)母线平行于z 轴的双曲柱面,如图7-8.图7-8(5)母线平行于y 轴的椭圆柱面,如图7-9. (6)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-107. 画出下列各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;(1)(2)习题8-11. 已知f (x , y )=x 2+y 2-xy tan xy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(4)u =+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>-> (4){(,,)|0,0,0}.D x y z x y z =>>>22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:22001(2)lim ;x y x y →→+ ()yx e lim 2x ln 32y 0y 1x ++→→)((2)xy xy y x 42lim 00+-→→ 解:(2)原式=+∞. (3)原式0ln 2.=(2)原式0014x y →→==- 6.证明:当(x ,y )→(0,0)函数f (x ,y )=yx y x -+lim 不存在极限.解令y kx =则0011lim limx x y y x yx kx k x yx kx k→→→→+++==---,不同的路径极限不同,故极限不存在。

高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案

高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案

第二章 导数与微分第一节 导数概念教材习题2--1答案(上册P91)1. 解:(1) 21110(1)(1)1022t g t g h V t t ⎛⎫⎛⎫+∆-+∆-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=1102g g t --⋅∆.(2) 10,dhgt dt=-∴'111lim(10)10,t tt t V h gt g ==→==-=-(3) 2200001110(1)(1)1022t g t t gt h V t t ⎛⎫⎛⎫+-+-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=01102gt g t --⋅∆.(4) 10,dhgt dt=-∴000lim(10)10.t t t t t t dh V gt gt dt==→==-=-2.解:2100(1)(1)10()201010lim lim x x x dy f x f x x dxx x=-∆→∆→-+∆--∆-⋅∆+-==∆∆ =0lim (1020)20.x x ∆→⋅∆-=-3.解:[]000()()lim lim lim .x x x a x x b ax b dy y a xa dx x xx ∆→∆→∆→+∆+-+∆∆====∆∆∆ 4.解:可导.令0()lim ,x f x a x →=0000()()(0)lim ()lim lim lim 00,x x x x f x f x f f x x x a x x→→→→====⋅='00()(0)()(0)limlim .0x x f x f f x f a x x→→-∴===- 5.解:(1)'34.y x =(2) '21'332.3y x x -⎛⎫== ⎪⎝⎭(3) ' 1.60.61.6.y x x ==(4) ''13'221.2y x x --⎛⎫===- ⎪⎝⎭(5) ()'''23212.y x x x --⎛⎫===- ⎪⎝⎭(6) ('1611''5516.5y x x x ⎛⎫=== ⎪⎝⎭(7) ''15'661.6y x x -⎛⎫=== ⎪⎝⎭ 6.解:物体在t 时刻的运动速度为:'()()2(/),v t h t t m s ==(2)224(/)v ms ∴=⋅= 7.证:'00()()cos()cos (cos )limlim x x f x x f x x x xx x x∆→∆→+∆-+∆-===∆∆00sin2lim sin()limsin .22x x x x x x x∆→∆→∆∆-+=-∆# 则''1()sin ,()sin,662f x x f ππ=-=-=-'()sin 33f ππ=-= 8.证:''00()(0)()(0)(0)limlim (0),00x x f x f f x f f f x x →→---==-=---- (()())f x f x -=注: ''2(0)=0(0)=0.f f ∴,即#9.解:(1)y sin ,x = ∴0lim sin sin 00,x x →==所以y sin x =在0x =处连续.'00sin 0sin y (0)limlim ,0x x x x x x→→-==- '00sin sin y (0)lim lim 1,x x x x x x +++→→∴==='00sin sin y (0)lim lim 1,x x x x x x-+-→→-===-故'sin y (0)limx xx→=不存在,即y sin x =在0x =处不可导. (2)1sin0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴01lim sin0(0),x x y x→==所以函数在0x =处连续. '001sin 01y (0)lim limsin ,0x x x x x x →→-==- 该极限不存在, ∴1sin 0y 0x x xx ⎧≠⎪=⎨⎪=⎩在0x =处不可导.(3)21sin 0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴201lim sin 0(0),x x y x →==所以函数在0x =处连续. 2'001sin 01y (0)lim lim sin 0,0x x x x x x x→→-===- 极限存在,∴1sin 0y 00x x xx ⎧≠⎪=⎨⎪=⎩在0x =处可导.10.解:()''sin cos ,y x x == ''2321cos,cos 1,32x x y y ππππ====-==-∴s i ny x =在23x π=处的切线斜率为1,2-在x π=处的切线斜率为-1. 11.解:抛物线2y x =上的两点为(1,1),(3,9),过此两点的直线的斜率为:914,31k -==- 而()''22,yxx ==令24,x =得 2.x =∴抛物线2y x =上过点(2,4)的切线平行于此割线.12.解:显然点1(,)32π在曲线cos y x =上.'33sin 2x x yxππ===-=- ∴c o sy x =在点1(,)32π处切线的斜率为 在点1(,)32π处法线的斜率为:3∴cos y x =在点1(,)32π处切线的方程为:1--223y x π=(). cos y x =在点1(,)32π处的法线方程为:1--233y x π=().13.解:设该物体在0t 时刻的角速度为0t ω.则0'0000()()lim ().t t t t t t tθθωθ∆→+∆-==∆ 14.解:该物体在t 时刻的变化速度为;'0()()()lim().t T t t T t V t T t t∆→+∆-==∆15.证:设00(,)x y 为双曲线2xy a =上任一点,则200,a y x = 过点00(,)x y 的切线斜率为:22'2(),x x a a xx ==-∴过点00(,)x y 的切线方程为: 20020(),a y y x x x -=--∴切线与两坐标轴所构成的三角形面积为:22001222.2a S x a x =⋅= 第二节 函数的和、积、商的求导法则教材习题2-2答案(上册P99) 1.解:(1)'2'2''34(3)(2)56.y x x x x-=-+=+(2)3'2'2'225()(2(22(24.2y x x x xx x =++=++=+ (3)()()'5'3357'4223(1)(1)523.2x x x x y x x x x --+-+==--(4)2'441,8 4.y x x y x =-+∴=-2.解:(1)'2'001()()().2v t h t v t gt v gt ==-=- (2)当物体达到最高点时速度为0,令()0,v t =即000.v v gt t g-=⇒=∴物体达到最高点的时刻为:.v g3.解:当0x =时,0,y =故所求的切线及法线均过原点.因为'2cos 2,y x x =+则切线斜率为'(0)2,y =法线斜率为1.2-所以切线及法线方程分别为:12,.2y x y x ==-4.解:令0y =即10x x -=得曲线1y x x =-与横轴的交点为(-1,0)和(1,0). '211,y x=+ 则点(-1,0)处切线的斜率为'(1)2,y -=点(1,0)处切线的斜率为'(1)2,y =∴过(-1,0)和(1,0)两点的切线方程分别为: 2(1),2(1).y x y x =+=- 5.解:设曲线32y x x =+-上点00(,)x y 处的切线与直线41y x =-平行. '231,y x =+ 则'200()31,y x x =+∴20031411x x +=⇒=-或,故曲线32y x x =+-上点(-1,-4)或(1,0)与直线41y x =-平行.6.证:(1) ()()()''''222cos sin sin cos cos 1cot csc sin sin sin x x x x x x x x x x -⎛⎫===-=- ⎪⎝⎭. (2) ()()'''2sin 1cos csc csc cot .sin sin sin sin x x x x x x x x x ⎛⎫==-=-=-⋅ ⎪⋅⎝⎭7.解:(1) ()''22'2cos (cos )2cos sin .y x x x x x x xx =+=-(2)'''sin ).ρϕϕϕ==(3)()()''''2tan tan 2(sec )tan sec 2sec tan .y x x x x x x x x x x =+-=+-(4)()()''22'42cos cos 12cos (sin )x x x xx y x x x x-==-+ (5)'''3(sin )13cos .u v v v =-=- (6)()''10'9(10)1010ln10.x x y x x=+=+(7)()''22'2(31)(31)(54).x x x y exx e x x e x x =+++++=++(8)()'''(cos sin )(cos sin )(cos sin cos ).x xxy ex x x e x x x e x x x x x =+++=++(9)'()()()()()().y x b x c x c x a x a x b =--+--+-- (10)'2cot )cos (1csc )cot )sin .y x x x x x x x x =-++-8.解:(1)()()()()()()()()()'''22211111112.1111x x x x x x x y x x x x -+-+-+---⎛⎫==== ⎪+⎝⎭+++,(2)()()()2'''1sin (1cos )1cos (1sin )1cos t t t t st ++-++=+ ()()22cos (1cos )sin (1sin )cos sin 1.1cos 1cos t t t t t t t t +++++==++(3)()()()()''222'2222csc (1)1csc csc cot (1)2csc 2211x x x xx x x x xy x x +-+-+-==++()2222csc cot (1)21x x x x x ⎡⎤-++⎣⎦=+.(4)()()()''22'232sin sin cos 2sin .x x x xx x xy x x --==(5)()()()()''533543'2233(2)22(5).22v v v v v v u vv----==--(6)()((()'''2cot 11cot 1x xy +-+==,()221csc cot .11x x+==-++(7)()()()'2'222221121.111x x x y x x x x x x +++⎛⎫==-=-⎪++⎝⎭++++,(8)'''y ==-,11== .(9)()''''2(tan csc )tan (csc )tan +sec csc cot .y x x x x x x x x x x x =-=-=+(10)()()'''2sin (1tan )(1tan )sin sin 1tan 1tan x x x x x x x x y x x +-+⎛⎫==- ⎪+⎝⎭+,()()22s i n c o s (1t a n )s i n s e c.1t a n x x x x x x x x ++-=+9.解:(1) ''(cos sin )cos2,y x x x == ''641cos 2,cos 20.624x x y y ππππ==∴=⋅==⋅=(2)'11(sin cos )sin cos ,22d d ρϕϕϕϕϕϕϕ=+=+41sin cos ).244442d d πϕρππππϕ=∴=+=+(3)()f t ==()()()()()'''21111()11tt t tf t t t -----∴==-- 故'41(4).18f =∴==-(4) ()()()''2'22532()3,5555x x x f x x x -⎛⎫=-+=+ ⎪--⎝⎭ ''317(0),(2).2515f f ∴== 第三节 反函数和复合函数的求导法则教材习题2-3答案(上册P107) 1.解:[][]'''''''()()(),(3)(3)(3)7(5)7.F x fg x g x F f g g f =∴===-[][]'''''''()()(),(3)(3)(3)2(5)248.G x g f x f x G gff g =∴==-=-⋅=- 2. 解: (1)()2''2'242()2(arctan ).11x xy x x x ===++(2)'''')arctan )y x x x x ==+=(3)''2arcsin (arcsin )y x x ==(4)'arcsin(ln )y x =(5) ()'2'224212.1(1)22x xy x x x -=-=+--+(6)'''1e y ex===+(7)''y ====(8) 'ar cc ar cc .y osx osx ==(9) ()''22221111.1111111x x x y x x x x x -+⎛⎫⎪--⎝⎭===-+++⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭(10)()()'''2arcsin arccos arc s arcsin (arccos )x x co x x y x -=-=. (11) ()()'''22ln ln 2ln .y x x x x x x x =+=+(12) ()()()()()()'''221ln 1ln 1ln 1ln 2.1ln 1ln x x x x yx x x -+-+-==-++ 3.解: (1)()''445(31)3115(31).y x x x =++=+(2)''3()3.x xy e x e --=-=-(3) ''cos()()cos().s A t t A t ωϕωϕωωϕ=++=+(4) ''112()().n n b b nb by n a a a x x x x--⎛⎫=++=-+ ⎪⎝⎭(5) 22'2'()2.x x y e x xe --=-=-(6) ''cos tan .cos x y x x==- (7) ''cos(2)(2)2cos(2)ln 2.xx xxy == (8) 'sin 'sin 2ln 2(sin )2cos ln 2.x x y x x ==(9) ''22sec (sec )2sec tan .y x x x x ==(10) '2'221111sc()sc .y c c x x x x=-=(11) ''1t y +⎛⎫ ⎪== (12) 2ln(1),ln x x y a ++= 2''22(1)21.(1)ln (1)ln x x x y x x a x x a +++∴==++++4.解(1) '2'22'tan sec ()sec 1tan 22222s .tan tan 2tan 2tan 2222x x x x x y c cx x x x x ⎛⎫+ ⎪⎝⎭=====(2)''x y +===(3) 2'22'2'tan y x x ====-(4) ''y ==(5) ()'''2cos(2)cos(2)2cos(2)sin(2)(2).s a t t a t t t ωϕωϕωϕωϕωϕ=++=-+++2s i n 2(2)a t ωωϕ=-+ (6) '''(ln ln )(ln )1.ln ln ln ln ln ln ln ln x x s x x x x x x===⋅⋅⋅ (7) ()'''22sin 2sin 22cos 2sin 2.x x x x x x x y x x --==(8) ()'''sin()cos()()t ty e t et t ααωϕωϕωϕ--=++++[]i n ()c o s ()c o s ()i n ().tt tes t e t e t st ααααωϕωωϕωωϕαωϕ---=-+++=+-+(9) '22''22x x y ⎛⎫== ⎪⎝⎭(10) ''ln ln 2ln 12ln 2()2ln 2.ln ln xxxxx x y x x-==⋅⋅(11) '22'4'224sec tan (tan )tan (tan )sec (1tan tan ).y x x x x x x x x =-+=-+(12) '22''tan sec sec 2x x xx y ⎛⎫ ⎪⎫===⎪⎭ 5.解:'22'''''()()f x g x y +===6.解:(1)2'22'2()()()2().dy d f x f x x x f x dx dx ===⋅ (2)2222((sin )(cos ))(sin )(cos )dy d d d f x f x f x f x dx dx dx dx=+=+ ()()'''2'2(sin )2sin sin (cos )2cos cos f x x x f x x x =+'2'2sin 2(sin )(cos ).x f x f x ⎡⎤=-⎣⎦7.解:222''()()()2'2222()(),2x a x a x a D D D x a y x ee D ------⎛⎫⎛⎫⎛⎫-==-=⎪⎪ ⎪⎪⎪⎝⎭⎭⎭令'()0,y x=即2()200.x a D x a x a --=⇒-=⇒=8.解:011()(),kt T t T T e T -=-+ ∴物体温度的变化速度为:'01()()(),kt v T t T T e k -==--即10().kt v k T T e -=-9.解:0(),kt m t m e -= ∴函数的变化率为:0().kt dm t km e dt-=- 10.解:当0x =时,(0) 1.y = '2'22,(0)2,xy e x y =+=∴ 过(0,1)点的法线方程的斜率为12-,法线方程:11(0),2y x -=--即220.x y +-=原点到法线的距离为:d ==第四节 高阶导数教材习题2-4答案(上册P112) 1. 解:(1)'''2114,4.y x y x x=+∴=- (2)'21'21''21(21)2,4.x x x y ex e y e ---=-=∴=(3)'''cos sin ,2sin cos .y x x x y x x x =-∴=--(4)'''cos sin ,2s .t t t y e t e t y e co t ---=-∴=- (5)2'''y y =∴=(6)13521'2''32221324,44,48.24y x xx y x x x y x x ------=++∴=--=++(7)()2'''22222(1),.11x x y y x x -+=∴=--- (8)'2''2sec ,2sec tan .y x y x x =∴= (9)()()23'''233336(21),.11x x x y y xx--=∴=++(10)'''22arctan 1,2(arctan ).1xy x x y x x=+∴=++ (11)22'''cos cos 2sin 2-sin 2ln ,2cos 2ln .x x x y x x y x x x x x =+∴=--- (12)2'''23(22),.x x x xe e e x x y y x x --+=∴= (13)222'2''22,2(32).x x x y e x e y xe x =+∴=+ (14)'''y y =∴=2.解: '5''4'''3'''36(10),30(10),120(10)(2)12012.y x y x y x y =+=+=+∴=⨯3.解:'2''''''22()()()()()(),()().()()()dy f x d y d dy d f x f x f x f x f x dx f x dx dx dx dx f x f x -=∴=== 4.解:由物体运动的规律sin s A t ω=得:物体运动的速度为:cos dsv A t dtωω==和加速度222sin .d sa A t dtωω==-下验证2220.d s s dtω+=左边=22sin sin 0A t A t ωωωω-+⋅==右边.5.解:由12x x y c e c e λλ-=+得: '''221212,,x x x x y c e c e y c e c e λλλλλλλλ--=-=+所以,左边=''2y y λ-=(2212x x c e c e λλλλ-+)212()x x c e c e λλλ--+=0=右边. 6.解:(1) ()()()00(1)21!.n n n yx n n n =++⋅⋅⋅+=-⋅⋅⋅⋅=(2) ()()'''2''sin sin 2,sin 22cos 2,y x x y x x ====''''(2c o s 2)4s i n 2,y x x ==-所以,一般地得: ()12sin 2+.2n n y x π-⎡⎤=⎢⎥⎣⎦(n-1) (3) ()()''''2312222221,,,11111x y y y x x x x x +-⋅⎛⎫==-+∴==-= ⎪+++⎝⎭++ ()'''4223,1y x ⋅⋅=-+所以,一般地得: ()()()12!1.1nn n n y x +⋅=-+(4) ()()()'11112'''11111,(1)1,m m m y x x y x mm m --⎡⎤=+=+=-+⎢⎥⎣⎦ 所以,一般地得:()1()111(1)(1)1.nn m yn x m m m-=-⋅⋅⋅-++ (5)由莱布尼兹公式得:()()()()1()01'l n (l n )(l n )00n n n n n n y x x c x x c x x -==⋅+⋅++⋅⋅⋅+()()1(l n )(l n ),n n x x n x -=⋅+'''''''231112(ln ),(ln ),(ln ),x x x x x x x ⎛⎫===-= ⎪⎝⎭一般地得:()()()11!(ln )(1).n n nn x x --=-()()()()()()()()112()11!2!ln (ln )(ln )(1)(1)n n n n n n nn n n ny x x x x n x x x ------∴==⋅+=-+-()12!(1)(2).nn n n x --=-≥()()1ln 1,(1)=.2!(1)(2)n n n x n y n n x -+=⎧⎪∴⎨--≥⎪⎩第五节 隐函数的导数以及由参数方程所确定的函数的导数教材习题2-5答案(上册P122)1.解:(1)方程2290y xy -+=两边分别对x 求导得: 2220,d y d y yy x d x d x --=解得: .dy y dx y x=- (2) 方程3330x y axy +-=两边分别对x 求导得:2222333()0.dy dy dy ay x x y a y x dx dx dx y ax-+-+=⇒=-(3) 方程x y xy e +=两边分别对x 求导得:(1).x y x yx ydy dy dy e y y x e dx dx dx x e +++-+=+⇒=- (4) 方程1y y xe =-两边分别对x 求导得:.1y y y ydy dy dy e e xe dx dx dx xe=--⇒=-+ 2.解: 方程222333x y a +=两边分别对x 求导得: 1133.dyx y dx-=- ∴曲线上点44⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为: 1.dydx ⎝⎭=-该点的切线方程为: 1(),44y x -=--即0.2x y +-= 该点的法线方程为: (),44y x -=-0.x y -= 3.解:(1) 方程sin()y x y =+两边分别对x 求导得:cos(),1cos()dy x y dx x y +=-+ 所以22cos()()1os()d y d x y dx dx c x y +=-+[][]2s i n ()(1)1o s ()c o s ()s i n ()(1),1c o s ()d y d yx y c x y x y x y d x d x x y -++-+-+++=-+把cos()1cos()dy x y dx x y +=-+代入即得[]232sin().os()1d y x y dx c x y +=+- (2) 方程221x y -=两边分别对x 求导得:,dy xdx y=所以222(),dyy xd y d dy d x dx dx dx dx dx y y -⎛⎫=== ⎪⎝⎭将dy x dx y=代入即得2222233()1.xy x d y y x ydx y y y---=== 4.解:(1)方程1xx y x ⎛⎫= ⎪+⎝⎭两边取以e 为底的对数得:ln ln ,1x y x x =+ 两边分别对x 求导得:'''111ln ln .11111xx x x x x y x y y x x x x x x +⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭(2)方程()cot 2tan 2xy x =两边取以e 为底的对数得:ln cotln tan 2,2xy x = 两边分别对x 求导'22cot112csc ln tan 22sec 222tan 2xx y x x y x=-+⇒cot2'2(tan 2)(csc ln tan 28cot csc 4).222x x x xy x x ⇒=-- (3)方程y =e 为底的对数得:211ln ln(5)ln(2)55y x x ⎡⎤=--+⎢⎥⎣⎦, 两边分别对x 求导整理得:2'426252531010.25(2)x x y x ++=-+(x-5(4)方程y =两边取以e 为底的对数 得:1l nl n (2)4l n (3)5l n (1)2y x x x =++--+,两边分别对x 求导整理得:4'5)145.(1)2(2)31x y x x x x ⎡⎤-=--⎢⎥++-+⎣⎦5.解:(1)由2223332,3,.22dyx at dx dy dy bt bt dt at bt dt dt dx at a y btdt⎧=⇒==⇒===⎨=⎩ (2)由(1sin )1sin cos ,cos sin cos x dx dyy d d θθθθθθθθθθθθ=-⎧⇒=--=-⎨=⎩cos sin .1sin cos dy dy d dx dx d θθθθθθθθ-⇒==--6.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒=+=-⇒⎨=⎩)() sin +cos cos sin dydy t tdt dx dx t t dt==-. 所以,33sin +cos 2cos sin t t dy t t dxt tππ====--7.解:(1)当 4t π=时,曲线上对应的点为2⎛⎫ ⎪ ⎪⎝⎭,2sin 24sin ,cos dydy t dt t dx dxt dt-===-44s i n 24t dy dxππ=∴=-=-⎫⎪⎪⎝⎭的切线斜率. 则切线方程为:0(),2y x -=--即20,y +-=法线方程为0(42y x -=-410.y --=(2) 当 0t =时,曲线上对应的点为()2,1,2,22t tt dydy e e dt dx dx e dt---===-12t dy dx =∴=-为过点()2,1的切线斜率. 则切线方程为: 11(2),2y x -=-- 即240,x y +-=法线方程为12(2),y x -=-即230.x y --=8.解:(1)由2,1,21t x dx dy t dt dt y t⎧=⎪⇒==-⎨⎪=-⎩1,dy dy dt dx dx t dt⇒==- 222311111()()().d y d d y d d y d t d dx dx dx dx dt dx dx dt t t t t dt⇒===-== (2)由cos sin ,cos ,sin x a t dx dya tb t y b tdt dt =⎧⇒=-=⎨=⎩cos cot ,sin dy b t b t dx a t a ⇒==-- 22231()()(cot ).sin d y d dy d dy dt d b bt dx dx dx dx dt dx dx dt a a t dt⇒===-=- 9.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒==-⇒⎨=⎩)() 22cos sin sin +cos dydy t t d y d dy d dy dtdt dx dx t t dx dx dx dt dx dxdt-⎛⎫⎛⎫==⇒== ⎪ ⎪⎝⎭⎝⎭cos sin 1sin +cos d dy dt d t t dxdt dx dx dt t t dt-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 23212,(cos sin )(sin +cos )(cos sin )t t t t e t t e t t --==++则 左边222()d y x y dx =+=2322(sin cos ),(cos sin )cos sin t t t t e e t e t e t t t t --+=++ 右边=cos sin 22()2(sin cos )sin +cos cos sin t tt dy t t e x y e t e t dx t t t t---=-=+, 左边=右边第六节 变化率问题举例及相关变化率教材习题2-6答案(上册P130)1. 解:速度函数是位置函数的导数.由于32() 1.5,s f t t t t ==+-所以速度2()33 1.dsv t t t dt==+-当()5v t =时,即233151(0).t t t t +-=⇒=> 2.解:由题意得: 3sin ,x θ=则33cos 3cos1.5(/).3dx dx m rad d d πθπθθθ==⇒==3.解:设细棒AB 上任意一点M 处的坐标为,x 质量为(),m m x =则2(0),m kx k =>为比例系数因为当2l =时8,m =即2822k k =⋅⇒=,所以22(0).m x k =>为比例系数故细棒AB 上任意一点M 处的密度为4(/).dmx g cm dx = 4.解:由21000(1)50(1)(040),4040t dV tV t dt =-⇒=--≤≤所以 5550(1)43.75(/m i n )40t dV L dt ==--=-(负号表示容器内的水在减少), 101050(1)37.5(/min)40t dV L dt ==--=-, 202050(1)25(/min)40t dV L dt ==--=- . 5.解:(1)由()2(sin cos ),sin cos sin cos W dF W F d μμθμθμθθθμθθ-=⇒=++ (2)令0,dF d θ=即 ()2(s i n c o s )0t a n t a n .s i n c o s W a r c μθμθθμθμμθθ-=⇒=⇒=+ 6.解:由2.c dv cpv c v p dp p=⇒=⇒=- 7.解:由22111.()fq dp f p f p q q f dq q f =+⇒=⇒=--- 8.解:由2150.020.040.04.t dm dmm t t dt dt==-⇒=-⇒=-9.解:(1) 由2'()420 1.50.002() 1.50.004C x x x C x x =++⇒=+得:'(100)1.90,C =(101)(100) 1.C C -≈(2) 由23'2()200030.010.0002()30.020.0006C x x x x C x x x =+++⇒=++得:'(100)11,C =(101)(100)11.07C C -≈10.解: 由3432D V π⎛⎫= ⎪⎝⎭=36D V π= (其中V 为雪球体积, D 为雪球直径),两边对间t 求导得:22dV D dDdt dtπ=,当1,10dV D dt ==时, dD dt =211.450dV dt D ππ=11.解:设飞机与雷达站的距离为S ,则经过时间t 后,S =,则6dS dt =,又两者相距4km时的时间1000t =,则t dS dt =.12.解:解:记12:00整时0.t =设经过时间t 后两船相距S ,则S =则dSdt=,经过4个小时即16:00时472013t dS dt==13.解:设圆锥形容器中溶液的深度为h ,溶液表面的半径为r ,则h ,r 都是时间t 的函数。

同济大学 高等数学(本科少学时)第三版第一章

同济大学 高等数学(本科少学时)第三版第一章

阶梯曲线
(3) 狄利克雷函数
y

D(
x)

1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{x x a }称为点a的邻域 ,
例如,
2x 1,
f
(
x)


x2

1,
x0 x0
y x2 1
y 2x 1
例1
设f
(
x)

1 2
0

x

1 ,
求函数
f
(
x

3)的定义域.
1 x2


f (x)
1 2
0 x1 1 x2

f
(x

3)

1 2
0 x31 1 x32
点a叫做这邻域的中心, 叫做这邻域的半径 .

高等数学教材第三版答案

高等数学教材第三版答案

高等数学教材第三版答案为了方便广大高等数学学习者更好地学习,我特意整理了高等数学教材第三版的答案,希望能对大家的学习有所帮助。

下面是对教材中各章节习题的答案解析。

第一章微分学1.1 函数与极限1.2 导数与微分1.3 微分中值定理与导数的应用第二章积分学2.1 定积分2.2 反常积分2.3 定积分的应用第三章无穷级数3.1 数项级数3.2 幂级数3.3 函数项级数第四章高次方程及其解法4.1 代数方程与代数方程的根4.2 高次代数方程的整数根与有理根4.3高次代数方程的正根与实根4.4高次代数方程的复根第五章傅立叶级数5.1 傅立叶级数的定义与性质5.2 奇延拓与偶延拓5.3 傅立叶级数的收敛性第六章偏微分方程6.1 偏导数与偏微分方程6.2 一阶线性偏微分方程6.3 高阶线性偏微分方程第七章多元函数微分学7.1 多元函数的极限与连续7.2 一阶偏导数与全微分7.3 高阶偏导数与多元函数微分学应用第八章向量代数与空间解析几何8.1 向量代数8.2 空间解析几何8.3 平面与直线的夹角与距离第九章多元函数积分学9.1 二重积分9.2 三重积分9.3 三重积分的应用第十章曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 曲面积分第十一章广义重积分与格林公式11.1 广义重积分11.2 格林公式及其应用11.3 闭曲线上格林公式的应用第十二章级数的一致收敛性12.1 函数项级数的一致收敛性12.2 幂级数的一致收敛性12.3 一致收敛性的应用第十三章线性代数初步13.1 行列式13.2 向量空间与线性方程组13.3 特征值与特征向量第十四章线性代数进阶14.1 线性空间与线性映射14.2 矩阵与线性映射14.3 特征多项式与相似矩阵注意:以上只是教材中各章节的题目答案简要解析,建议在学习过程中,除了参考答案之外,还需要仔细研读教材中的知识点,并通过大量的练习来巩固和加深理解。

高等数学(本科少学时类型)

高等数学(本科少学时类型)

高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大 【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第一节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0limb a x q x p x m n m n m n >=< ()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim23--→x x x【求解示例】36x →==第一节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx ∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第一节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第二节 函数的连续性 ○函数连续的定义(★) ()()()00lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第五节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+ ⎝⎛⎫⎪ ⎝⎭解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx--'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦ ……()1(1)(1)(1)n n n y n x --=-⋅-⋅+!第一节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅ ∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''=2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第二节 变化率问题举例及相关变化率(不作要求)第三节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】 1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x '=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅ 第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln limlimlim111lim 0x x L x x x x xx x x x x xxx a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)【题型示例】求值:011lim sin x x x →⎛⎫- ⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解: ()()()()00002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0lim ln lim ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x x x x L x x yy x x x x y x x y xx x y x y x x x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫ ⎪⎝⎭【求解示例】()()tan 0020002220011,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim lim lim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x x x x x x x x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫- ⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得 ○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式)⑶取对数获得乘积式(通过对数运算将指数提前)第一节 泰勒中值定理(不作要求) 第二节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞;单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+ 【证明示例】 1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >) ∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】 1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩-(1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第一节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈ 则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =; 【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()()()12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====-第一节 函数图形的描绘(不作要求) 第二节 曲率(不作要求)第三节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★) ()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求221dx a x +⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】()()121212x x C=+=+= ○第二类换元法(去根式)(★★) (()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈):t =,于是2t bx a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式)【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第一节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰ 【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰ 【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x x x x x x x x x x x x e xdx e d x e x xd e e x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第一节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a==⑵则设有理函数()()P x Q x 的分拆和式为: ()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中()()()()1122...k k k P x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第一节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间) ○定积分的性质(★★★) ⑴()()bba af x dx f u du =⎰⎰ ⑵()0aa f x dx =⎰⑶()()bba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)()()()()1212b b baa a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b af x dx >⎰; (推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baa f x dx g x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★) (定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dx ϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x xx L x d e dt e dt dx x x--'→→='⎰⎰ ()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin lim lim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122x xx x xL x x x x x x e e x x e x xd xe dx x x e x e x xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅= 第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx tt t dt t dt t x t =-====+→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)第六章 如:不定积分公式21arctan 1dx x C x =++⎰的证明。

高等数学(本科少学时类型)同济第三、四版课后习题答案选解2

高等数学(本科少学时类型)同济第三、四版课后习题答案选解2

高等数学(本科少学时类型)同济第三、四版课后习题答案选解2第五章定积分及其应用5.1定积分的概念与性质P.267习题5.11.解:就是下面1.(2).5.2微积分基本定理P.274习题5.25.3定积分的换元法及分部积分法P.284习题5.35.4定积分在几何上的应用P.300习题5.46.解:)1,0(,)(01∈=⎰t dy y t S t ;)1,0(,)1()(12∈-=⎰t dy y t S t ;则)1,0(,)1()()()(1021∈-+=+=⎰⎰t dy y dy y t S t S t S t t ;求导得)1,0(,121()('∈-=--=t t t t t S ;令0)('=t S ,解得41=t ;所以当41=t 时)()()(21t S t S t S +=有最小值,最小值为41)4113234()1()41()41()41(412314141021=-+-=-+=+==⎰⎰t t dy y dy y S S S .5.5定积分在物理上的应用P.307习题5.5第五章复习题一、概念复习P.317二、综合练习P.319第六章微分方程6.1微分方程的基本概念P.325习题6.11.(2);y x y y x -=-2')2(,由方程C y xy x =+-22确定的隐函数)(x y y =;(4))1sec(ln ,'1''2+=+=x y y y ;解:(2)对C y xy x =+-22两边求导得0'2'2=+--yy xy y x ,即y x y y x -=-2')2(,故由方程C y xy x =+-22确定的隐函数)(x y y =是微分方程y x y y x -=-2')2(的解.(4)由)1sec(ln +=x y 求导得,'1)1(sec ''),1tan()1sec()1tan()1sec('22y x y x x x x y +=+=+=+++=故)1sec(ln +=x y 是微分方程2'1''y y +=的解.3.4.5.解:x e C x C y 21+=;x e C C y 21'+=;xe C y 2"=;代入方程得0)()()1('")1(21212=+-++-=-+-x x x e C x C e C C x e C x y xy y x ,即x e C x C y 21+=是微分方程的解,又有两个独立的任意常数C ;所以是通解;令0=x :由1';100=-===x x y y 解得1,221-==C C ;所以,所求的特解为x e x y -=2.6.2可分离变量的微分方程P.335习题6.22.3.4.5.6.7.6.3一阶线性微分方程P.341习题6.36.4可降阶的高阶微分方程P.349习题6.46.5二阶常系数齐次线性微分方程P.358习题6.56.6二阶常系数非齐次线性微分方程P.365习题6.6。

同济高数下册习题答案

同济高数下册习题答案

同济高数下册习题答案同济高数下册习题答案高等数学是大多数理工科专业的必修课程,对于学生来说,同济高数下册是其中的一本教材。

这本教材中的习题是帮助学生巩固知识、提高解题能力的重要资源。

然而,由于同济高数下册习题较多,有时候难以找到答案,带来了一定的困扰。

本文将为大家提供一些同济高数下册习题的答案,希望能够帮助到大家。

1. 第一章函数与极限1.1 习题1答案:略1.2 习题2答案:略1.3 习题3答案:略2. 第二章导数与微分2.1 习题1答案:略2.2 习题2答案:略2.3 习题3答案:略3. 第三章微分中值定理与导数的应用答案:略3.2 习题2答案:略3.3 习题3答案:略4. 第四章不定积分4.1 习题1答案:略4.2 习题2答案:略4.3 习题3答案:略5. 第五章定积分与反常积分5.1 习题1答案:略5.2 习题2答案:略5.3 习题3答案:略6. 第六章微分方程6.1 习题16.2 习题2答案:略6.3 习题3答案:略通过以上的习题答案,希望能够帮助到同济高数下册的学习者。

然而,仅仅依靠答案是远远不够的,学习者还需要通过自己的努力来理解和掌握相关的知识点。

建议学习者在做完习题后,可以对比答案,查找错误,并思考解题过程中的思路和方法,以便更好地掌握知识。

此外,同济高数下册习题答案仅仅是学习的辅助工具,不能完全依赖答案来完成习题。

学习者还应该多做一些类似的题目,提高自己的解题能力和理解能力。

同时,建议学习者积极参加课堂讨论和辅导班,与老师和同学们一起学习,互相交流和分享解题思路,共同进步。

总之,同济高数下册习题答案是学习者在学习过程中的一项重要资源,但仅仅依靠答案是远远不够的。

学习者还需要通过自己的努力和思考来理解和掌握相关的知识点。

希望以上的答案和建议能够对同济高数下册的学习者有所帮助。

祝大家在学习中取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题7-11. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c习题7-21. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3,4, 0); B (0, 4, 3); C (3, 0, 0); D (0, −1, 0).解在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.3. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a, b, c); 点(a, b, c)关于zOx面的对称点为(a, −b, c).(2)点(a, b, c)关于x轴的对称点为(a, −b, −c); 点(a, b, c)关于y轴的对称点为(−a, b, −c); 点(a, b, c)关于z轴的对称点为(−a, −b, c).(3)点(a, b, c)关于坐标原点的对称点为(−a, −b, −c).4.自点P0(x, y, z)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x0, y, 0)、(0, y, z)和(x, 0, z).在x轴、y轴和z轴上, 垂足的坐标分别为(x0, 0, 0), (0, y, 0)和(0, 0, z).5.过点P0(x, y, z)分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐标各有什么特点?解在所作的平行于z轴的直线上, 点的坐标为(x0, y, z); 在所作的平行于xOy面的平面上,点的坐标为(x, y, z).6. 一边长为a的立方体放置在xOy面上, 其底面的中心在坐标原点, 底面的顶点在x轴和y 轴上, 求它各顶点的坐标.7.已知两点M1(0, 1, 2)和M2(1, −1, 0). 试用坐标表示式表示向量及11.在yOz面上, 求与三点A(3, 1, 2)、B(4, −2, −2)和C(0, 5, 1)等距离12. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.14. 求点M(4, −3, 5)到各坐标轴的距离.17. 设已知两点和计算向量的模、方向余弦和方向角.18. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?20.设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.21. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影a x=13,在y轴上分向量为7j.习题7-31.设a=3i−j−2k, b=i+2j−k, 求(1)a⋅b及a×b; (2)(−2a)⋅3b及a×2b; (3)a、b夹角的余弦.解(1)a⋅b=3×1+(−1)×2+(−2)×(−1)=3,(2)(−2a)⋅3b =−6a⋅b = −6×3=−18,a×2b=2(a×b)=2(5i+j+7k)=10i+2j+14k .2. 设a、b、c为单位向量, 且满足a+b+c=0, 求a⋅b+b⋅c+c⋅a .解因为a+b+c=0, 所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是3.已知M1(1, −1, 2)、M2(3, 3, 1)和M3(3, 1, 3). 求与、同时垂直的单位向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解:因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的 规定可得, 使杠杆保持平衡的条件为6.求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影. 解:7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直?解λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 试用向量证明直径所对的圆周角是直角. 8. 试用向量证明直径所对的圆周角是直角. 证明设AB 是圆O 的直径, C 点在圆周上, 则.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k,11.(1)解: xy z xyzi j ka b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()x y z xy z xyza a ab b b C C C = 若,,C a b r r u r共面,则有 a b ⨯r r 后与 C u r 是垂直的. 从而C 0a b ⨯⋅=r r u r () 反之亦成立. (2) C xy z x y z xyza a a ab b b b C C C ⨯⋅=r r u r Q()ax y z x y z x y z b bbb C C C Ca a a⨯⋅=r u r r()bx y zx y zx y zC C CC a a a ab b b⨯⋅=u r r r()由行列式性质可得:x y z x y z x y zx y z x y z x y zx y z x y z x y za a ab b b C C Cb b b C C C a a aC C C a a a b b b==故C a?ba b b C C a⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r rQ()()()习题7-43. 求过点(3, 0, −1)且与平面3x−7y+5z−12=0平行的平面方程.解所求平面的法线向量为n=(3, −7, 5), 所求平面的方程为3(x−3)−7(y−0)+5(z+1)=0, 即3x−7y+5z−4=0.4.求过点M(2, 9, −6)且与连接坐标原点及点M的线段OM垂直的平面方程.解所求平面的法线向量为n=(2, 9, −6), 所求平面的方程为2(x−2)+9(y−9)−6(z−6)=0, 即2x+9y−6z−121=0.5.求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解n1=(1, −1, 2)−(1, 1,−1)=(0, −2, 3), n1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.6. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 (0 ,1/3 ,0). (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4) x −3y =0解x −3y =0是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为8.一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为9.求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解解线性方程组分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5. (2)通过z 轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上, 所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上, 所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.10.求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为习题7-51.求过点(4, −1, 3)且平行于直线的直线方程.解所求直线的方向向量为s=(2, 1, 5), 所求的直线方程为2.求过两点M1(3, −2, 1)和M2(−1, 0, 2)的直线方程.解所求直线的方向向量为s=(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为10. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 11. 求过点(1, 2, 1)而与两直线平行的平面的方程. 解直线的方向向量为12. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-13. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2221332(13)(1)(2)222d =-+-++-=习题7-6 5.6. 指出下列方程所表示的是什么曲面,并画出其图形:(1)(2)(4)221 49x y-+=;(5)22194x z +=; (6)20y z -=; 解:(1)(2)(4)母线平行于z 轴的双曲柱面,如图7-8.图7-8(5)母线平行于y 轴的椭圆柱面,如图7-9. (6)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-107. 画出下列各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;(1)(2)习题8-11. 已知f (x , y )=x 2+y 2-xy tan xy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(4)u =+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>-> (4){(,,)|0,0,0}.D x y z x y z =>>>22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:22001(2)lim ;x y x y →→+ ()yx e lim 2x ln 32y 0y 1x ++→→)((2)xy xy y x 42lim 00+-→→ 解:(2)原式=+∞. (3)原式0ln 2.=(2)原式0014x y →→==- 6.证明:当(x ,y )→(0,0)函数f (x ,y )=yx y x -+lim 不存在极限.解令y kx =则0011lim limx x y y x yx kx k x yx kx k→→→→+++==---,不同的路径极限不同,故极限不存在。

相关文档
最新文档