初一下学期数学期末复习北京课改版
京改版七年级下册数学期末测试卷及含答案

京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、方程组:的解是()A. B. C. D.2、()= 4a4-9b4,括号内应填()A.2a 2+3b 2B.2a 2-3b 2C.-2a 2-3b 2D.-2a 2+3b 23、一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程少40千米.如果设轿车平均速度为a千米/小时,卡车的平均速度为b千米/小时,则( )A.2a=3b+40B.3b=2a-40C.2a=3b-40D.3b=40-2a4、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3bC.-5a>-5bD. >5、我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的()A.众数B.平均数C.方差D.中位数6、下列因式分解结果正确的是()A.2a 2﹣4a=a(2a﹣4)B.C.2x 3y﹣3x 2y 2+x 2y=x 2y(2x﹣3y)D.x 2+y 2=(x+y)27、下列计算结果正确的是()A.(a+b)2=a 2+b 2B.a m•a n=a mnC.(﹣a 2)3=(﹣a 3)2 D.(a﹣b)3•(b﹣a)2=(a﹣b)58、下列运算正确的是()A.﹣(x﹣y)2=﹣x 2﹣2xy﹣y 2B.a 2+a 2=a 4C.a 2•a 3=a6 D.(xy 2)2=x 2y 49、下列计算正确的是()A.a 2•a 3=a 6B.(﹣m 2)3=﹣m 6C.b 6÷b 3=b2 D.3a+3b=6ab10、不等式组的解集在数轴上表示正确的是()A. B. C. D.11、下列计算错误的是()A.(a 3b)·(ab 2)=a 4b 3B.xy 2-xy 2=xy 2C.a 5÷a 2=a 3D.(-mn 3)2=m 2n 512、下列方程组中,二元一次方程组一共有()个.( 1 ),(2),(3),(4).A.1个B.2个C.3个D.4个13、能被()整除A.76B.78C.79D.8214、下列调查中,最适合采用全面调查的是()A.对某池塘中现有鱼的数量的调查B.对某鞋厂生产的鞋底能承受的弯折次数的调查C.对全国中学生视力情况的调查D.对某班学生的身高情况的调查15、小刚用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小刚最多能买钢笔( )A.12支B.13支C.14支D.15支二、填空题(共10题,共计30分)16、因式分解:________17、若9x2+mxy+16y2是一个完全平方式,则m的值是________.18、分解因式:ab2﹣2ab+a=________.19、某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是________.20、一组数2、a、4、6、8的平均数是5,这组数的中位数是________.21、不等式3x-6≤9的解是________.22、如果实数x、y满足方程组,那么x2﹣y2=________.23、因式分解:3a2﹣3b2=________ 。
北京课改版初中数学七年级下册期末测试卷1【精校】.doc

【试题答案】
一、选择题(本题共 30 分,每小题 3 分。)
1. B 2. D 3. D 4. C 5. B 6. D 7. A 8. A 9. C 10. A
二、填空题(本题共 24 分,每空 2 分。)[
11. 4 或- 8
12. ①②③
13. 2
14. 6
16. (2,± 5) 17. 38
B. 25 °
C. 20 °
D. 15 °
5. 在平面直角坐标系中,点 ( 1,m2 1) 一定在
()
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
6. 下列说法正确的是
()
A. 同位角相等
B. 过一点有且只有一条直线与已知直线垂直
C. 过一点有且只有一条直线与已知直线平行
D. 对于直线 a、 b、 c,若 a∥ b,b∥ c,则 a∥ c
9. 某队 17 名女运动员参加集训,住宿安排有 2 人间和 3 人间,若要求每个房间都要住满,共有几种租
住方案
()
A. 5 种
B. 4 种
C. 3 种
D. 2 种
10. 图中直线 l 、 n 分别截∠ A 的两边,且 l ∥ n,∠ 3=∠ 1+∠4。根据图中标示的角,判断下列各角的度
数关系中正确的是
7. 已知点 P( 2 a 1,1 a )在第二象限,则 a 的取值范围在数轴上表示正确的是
()
8. 下列说法正确的是
()
A. x 1, y 1是方程 2x 3y 5 的一个解
x 1.3 20x
10x 13 20x
B. 方程
1可化为
1
0.7 0.3
7
3
〖京教版〗七年级数学下册期末复习考试试卷862

〖京教版〗七年级数学下册期末复习考试试卷创作人:百里第三创作日期:2021.04.01审核人:北堂季第创作单位:北京市智语学校一、选择题(每小题3分,共30分)1.一个数的平方根与立方根都是它本身,这个数是()A.1 B.﹣1 C.0 D.±1,02.若a2=9, =﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.﹣5或﹣113.如果a>b,那么下列各式一定正确的是()A.a2>b2B.C.﹣2a<﹣2b D.a﹣1<b﹣14.实数a,b在数轴上的位置如图所示,则化简﹣+b的结果是()A.1 B.b+1 C.2a D.1﹣2a5.若点A(3﹣m,n+2)关于原点的对称点B的坐标是(﹣3,2),则m,n 的值为()A.m=﹣6,n=﹣4 B.m=O,n=﹣4 C.m=6,n=4 D.m=6,n=﹣4 6.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%7.如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB ∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°8.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°9.如果二元一次方程ax+by+2=0有两个解与,那么,下面四个选项中仍是这个方程的解的是()A .B .C .D .10.如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第次相遇地点的坐标是()A.(1,﹣1)B.(2,0) C.(﹣1,1)D.(﹣1,﹣1)二、填空题(每小题3分,共18分)11.的绝对值是.12.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于度.13.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫作点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1,A2,A3,A4…,若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.14.若|x﹣2y+1|+|x+y﹣5|=0,则x=,y=.15.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20201695频数(通话次数)则通话时间不超过10min的频率为.16.若关于x 的不等式组无解,则a的取值范围是.三、解答题(17-20题各8分,第21-22题各9分,第23题10分,第24题12分,共72分)17.解方程组或不等式组:①②.18.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.19.某校食堂的中餐与晚餐的资费标准如下:种类单价米饭 0.5元/份A类套餐菜 3.5元/份B类套餐菜 2.5元/份小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元.请问小杰在这五天内,A,B类套餐菜各选用了多少次?20.为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.21.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)求出△ABC的面积.(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.22.若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.23.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H 是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.24.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.参考答案与试题解析一、选择题(每小题3分,共30分)1.一个数的平方根与立方根都是它本身,这个数是()A.1 B.﹣1 C.0 D.±1,0【考点】24:立方根;21:平方根.【分析】利用平方根及立方根定义判断即可.【解答】解:一个数的平方根与立方根都等于它本身,这个数是0,故选C2.若a2=9, =﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.﹣5或﹣11【考点】2C:实数的运算.【分析】利用平方根及立方根定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9, =﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选C3.如果a>b,那么下列各式一定正确的是()A.a2>b2B.C.﹣2a<﹣2b D.a﹣1<b﹣1【考点】C2:不等式的性质.【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、两边相乘的数不同,错误;B、不等式两边都除以2,不等号的方向不变,错误;C、不等式两边都乘﹣2,不等号的方向改变,正确;D、不等式两边都减1,不等号的方向不变,错误;故选C.4.实数a,b在数轴上的位置如图所示,则化简﹣+b的结果是()A.1 B.b+1 C.2a D.1﹣2a【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】利用数轴得出a﹣1<0,a﹣b<0,进而利用二次根式的性质化简求出即可.【解答】解:由数轴可得:a﹣1<0,a﹣b<0,则原式=1﹣a+a﹣b+b=1.故选:A.5.若点A(3﹣m,n+2)关于原点的对称点B的坐标是(﹣3,2),则m,n 的值为()A.m=﹣6,n=﹣4 B.m=O,n=﹣4 C.m=6,n=4 D.m=6,n=﹣4【考点】R6:关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点A(3﹣m,n+2)关于原点的对称点B的坐标是(﹣3,2),∴3﹣m=3,n+2=﹣2,m=0,n=﹣4,故选:B.6.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%【考点】VB:扇形统计图.【分析】根据扇形统计图可知各部分占总体的百分比.根据总体求部分用乘法;求各部分的圆心角的度数,即百分比×360°.【解答】解:A、根据扇形统计图,得捐赠款占60%,所以该学生捐赠款为0.6a元,故正确;B、捐赠款所对应的圆心角=60%×360°=216°,故错误;C、根据捐赠款占60%,购书款占30%,所以捐赠款是购书款的2倍,故正确;D、根据扇形统计图,得其他消费占1﹣60%﹣30%=10%,故正确.故选B.7.如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB ∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一分析即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项正确;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠5=∠C,∴AB∥CD,故本选项错误;D、∵∠1+∠3+∠A=180°,∴AB∥CD,故本选项错误.故选A.8.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,同旁内角互补解答.【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.9.如果二元一次方程ax+by+2=0有两个解与,那么,下面四个选项中仍是这个方程的解的是()A.B.C.D.【考点】92:二元一次方程的解.【分析】把二元一次方程ax+by+2=0的两个解分别代入方程得到,解方程组得到求得a、b的值,得到二元一次方程;然后把四个选项代入方程检验,能使方程的左右两边相等的x,y的值即是方程的解.【解答】解:将与代入ax+by+2=0中,得到关于a和b的二元一次方程组,解得.把代入二元一次方程得到﹣x+y+2=0,把四个选项分别代入二元一次方程,使得方程左右两边相等的x,y的值就是方程的解,其中A中,左边=﹣++2=0=右边,则是方程的解.故选A.10.如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第次相遇地点的坐标是()A.(1,﹣1)B.(2,0) C.(﹣1,1)D.(﹣1,﹣1)【考点】D2:规律型:点的坐标.【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵÷3=672…2,∴两个物体运动后的第次相遇地点的是DE边相遇,且甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,此时相遇点的坐标为:(﹣1,﹣1),故选D.二、填空题(每小题3分,共18分)11.的绝对值是﹣2.【考点】28:实数的性质.【分析】首先判断﹣2的正负情况,然后利用绝对值的定义即可求解.【解答】解:∵﹣2>0,∴|﹣2|=﹣2.故答案为:﹣2.12.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于48度.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【解答】解:∵∠EFB=66°,∴∠EFC=180°﹣66°=114°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°﹣∠EFC=180°﹣114°=66°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°﹣66°﹣66°=48°,故答案为:48.13.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫作点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1,A2,A3,A4…,若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1,0<b<2.【考点】D2:规律型:点的坐标.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用n除以4,根据商和余数的情况可确定点A n的坐标;写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【解答】解:∵A1的坐标为(4,5),∴A2(﹣4,5),A3(﹣4,﹣3),A4(4,﹣3),A5(4,5),…,依此类推,每4个点为一个循环组依次循环,∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:﹣1<a<1,0<b<2.14.若|x﹣2y+1|+|x+y﹣5|=0,则x=3,y=2.【考点】98:解二元一次方程组;16:非负数的性质:绝对值.【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”可得:x﹣2y+1=0,x+y﹣5=0,把两个等式联立成方程组,再解方程组即可.【解答】解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,①﹣②得,﹣3y+6=0,解得:y=2,把y=2代入①解得:x=3,∴方程组的解为:,故答案为:3,2.15.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20201695频数(通话次数)则通话时间不超过10min 的频率为.【考点】V7:频数(率)分布表.【分析】求出第一、二组与总次数的比值即可求解.【解答】解:通话时间不超过10min的频率为==.故答案是:.16.若关于x的不等式组无解,则a的取值范围是a≥﹣2.【考点】CB:解一元一次不等式组.【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、解答题(17-20题各8分,第21-22题各9分,第23题10分,第24题12分,共72分)17.解方程组或不等式组:①②.【考点】CB:解一元一次不等式组;98:解二元一次方程组.【分析】(1)首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.(2)首先把两个方程分别去分母得2x﹣3y=18③,x+2y=30④,再利用①﹣②×2可得y的值,然后把y的值代入④,可得x的值.【解答】解:①,由①得:x<2,由②得:x>﹣1,不等式组的解集为:﹣1<x<2;②,由①得:2x﹣3y=18③,由②得:x+2y=30④,①﹣②×2得:﹣7y=﹣42,y=6,把y=6代入④得:x+12=20,x=18,∴方程组的解为:.18.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】首先根据∠1=∠2,可得AD∥BF,进而得到∠D=∠DBF,再由∠3=∠D,可以推出∠3=∠DBF,进而根据平行线的判定可得DB∥CF.【解答】解:BD∥CF,理由如下:∵∠1=∠2,∴AD∥BF,∴∠D=∠DBF,∵∠3=∠D,∴∠3=∠DBF,∴BD∥CF.19.某校食堂的中餐与晚餐的资费标准如下:种类单价米饭 0.5元/份A类套餐菜 3.5元/份B类套餐菜 2.5元/份小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元.请问小杰在这五天内,A,B类套餐菜各选用了多少次?【考点】9A:二元一次方程组的应用.【分析】设小杰在这五天内,A类套餐菜选用了x次,B类套餐菜选用了y 次,根据:A套餐次数+B套餐次数=10、A套餐费用+B套餐费用+米饭费用=36,列方程组求解即可得.【解答】解:设小杰在这五天内,A类套餐菜选用了x次,B类套餐菜选用了y 次,根据题意,得:,解得:,答:小杰在这五天内,A类套餐菜选用了6次,B类套餐菜选用了4次.20.为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的人数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;(4)利用样本估计总体,即可求出全年级对奥运知识“了解较多”的学生.【解答】解:(1)20÷50%=40,∴该班共有40名学生;(2)表示“一般了解”的人数为40×20%=8人,补全条形图如下:(3)“了解较多”部分所对应的圆心角的度数为360°×=108°;(4)1000×=300(人),答:估算全年级对奥运知识“了解较多”的学生人数为300人.21.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)求出△ABC的面积.(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.【考点】Q4:作图﹣平移变换.【分析】(1)根据各点在坐标系中的位置写出各点坐标即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可.【解答】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3);=4×5﹣×2×4﹣×1×3﹣×3×5(2)S△ABC=20﹣4﹣﹣=7;(3)如图,△A′B′C′即为所求,A′(1,1),B′(6,4),C′(3,5).22.若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】KH:等腰三角形的性质;97:二元一次方程组的解;K6:三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=4,能组成等腰三角形,∴a的值是2.23.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H 是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.24.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设购买甲种树苗x株,则乙种树苗y株,列出方程组即可解决问题.(2)根据甲、乙两种树苗的成活的棵数≥800×88%,列出不等式即可解决问题.(3)设购买两种树苗的费用之和为m,则m=12z+15=12000﹣3z,利用一次函数的性质即可解决问题.【解答】解:(1)设购买甲种树苗x株,则乙种树苗y株,由题意得:,解得,答:购买甲种树苗500株,乙种树苗300株.(2)设甲种树苗购买z株,由题意得:85%z+90%≥800×88%,解得z≤320.答:甲种树苗至多购买320株.(3)设购买两种树苗的费用之和为m,则m=12z+15=12000﹣3z,在此函数中,m随z的增大而减小所以当z=320时,m取得最小值,其最小值为12000﹣3×320=11040元答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为11040元.。
〖京教版〗七年级数学下册期末复习(四) 二元一次方程组

〖京教版〗七年级数学下册期末复习(四) 二元一次方程组【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( )±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a +=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值. 考点二 二元一次方程组的解法 【例2】解方程组:128.x y x y =++=⎧⎨⎩,①② 【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①② 对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①② 考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h,乙的速度为y km/h,则得方程组为( )A.6336x yx y+=+=⎧⎨⎩B.636x yx y+=-=⎧⎨⎩C.6336x yx y-=+=⎧⎨⎩D.6336x yx y+=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a、b满足方程组22,26,a ba b-=+=⎧⎨⎩则3a+b的值为( )A.8B.4C.-4D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.1 5.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 143415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
新北京课改版北京市七年级数学下册期末模拟试卷及答案解析.docx

(新课标)京改版七年级数学下册期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.22.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)23.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a64.计算的结果是()A.﹣1 B.1 C.D.25.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°6.化简分式的结果为()A.B.C.D.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.010.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是.12.分解因式:12m2﹣3= .13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.14.若4x=2,4y=3,则4x+y= .15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是(写出所有你认为正确的答案).16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题(本题共30分,每小题5分)17.计算:.18.解方程:.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.20.先化简,再选一个你喜爱的数代入求值:.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 ()∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:(等量代换),∴.()(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示;乙:x表示,y表示.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片①张,卡片②张,卡片③张.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.2【考点】零指数幂.【分析】根据零指数幂的运算法则求出(﹣2)0的值【解答】解:(﹣2)0=1.故选C.【点评】考查了零指数幂:a0=1(a≠0),由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)2【考点】因式分解的意义.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是多项式乘法,不是因式分解,错误;B、左边是单项式,不是因式分解,错误;C、右边不是积的形式,错误;D、是因式分解,正确.故选D.【点评】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.3.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法,可判断A,根据完全平方公式,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、和的平方等于平方和加积的二倍,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.计算的结果是()A.﹣1 B.1 C.D.2【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==﹣=﹣1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠2=∠1=55°.【解答】解:∵a∥b,∴∠2=∠1=55°.故选C.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等.6.化简分式的结果为()A.B.C.D.【考点】约分.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:原式=.故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等【考点】垂线;对顶角、邻补角.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.【考点】同类项;解二元一次方程组.【专题】计算题.【分析】根据同类项的定义得到,然后解方程组即可.【解答】解:∵x a﹣1y3与﹣5x﹣b y2a+b是同类项,∴,∴.故选A.【点评】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【考点】完全平方公式.【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4 =[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.10.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49【考点】二元一次方程组的应用.【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.【解答】解:A、因为正方形图案的边长7,同时还可用(x+y)来表示,故此选项正确;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x﹣y,故此选项正确;C、根据A、B可知x+y=7,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=14,故此选项错误;D、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项正确;故选:C.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是x≠5 .【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义.【解答】解:分式有意义,得x﹣5≠0.解得x≠5,故答案为:x≠5.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.分解因式:12m2﹣3= 3(2m+1)(2m﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用平方差公式分解因式得出即可.【解答】解:12m2﹣3=3(4m2﹣1)=3(2m+1)(2m﹣1).故答案为:3(2m+1)(2m﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若4x=2,4y=3,则4x+y= 6 .【考点】同底数幂的乘法.【分析】根据同底数幂的乘法的逆运算,可得4x+y=4x•4y,代入求解即可.【解答】解:∵4x=2,4y=3,∴4x+y=4x•4y=2×3=6.【点评】此题主要考查同底数幂的乘法的逆运算:a m+n=a m•a n.15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是4x,﹣4x,4x4(写出所有你认为正确的答案).【考点】完全平方式.【专题】开放型.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:根据题意得:4x2+4x+1=(2x+1)2;4x2﹣4x+1=(2x﹣1)2;4x2+4x4+1=(2x2+1)2,故答案为:4x,﹣4x,4x4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于A a b(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到A a b(b<a)中的最大因数,最小因数.三、解答题(本题共30分,每小题5分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果.【解答】解:原式=1﹣2+(×)3×=﹣1+=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(2x﹣3).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘(2x﹣3),得x﹣5=4(2x﹣3),解得x=1.检验:当x=1时,2x﹣3≠0.∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.【考点】整式的混合运算.【分析】先算乘方,再算乘法,最后合并同类项即可.【解答】解:原式=2a12+4a6•(﹣a6)+a12=3a12﹣4a12=﹣a12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行计算是解此题的关键,注意运算顺序.20.先化简,再选一个你喜爱的数代入求值:.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=•=•=x+1,当x=2时,原式=3(此处答案不唯一,但x≠±1,且x≠0).【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=n2﹣4+2n2﹣3n+6n﹣9=3n2+3n﹣13=3(n2+n)﹣13,∵n2+n=1,∴原式=3×1﹣13=﹣10.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:(x2+1)2﹣4x(x2+1)+4x2=[(x2+1)﹣2x]2=(x﹣1)4.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等)∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6 (等量代换),∴m∥n .(内错角相等,两直线平行)(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= 90 °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)【考点】平行线的判定与性质.【专题】应用题;跨学科.【分析】(1)求出∠5=∠6,根据平行线的判定得出即可;(2)根据三角形内角和定理求出∠2+∠3=90°,求出∠EAC+∠FCA=180°,根据平行线的判定得出即可.【解答】(1)证明:如图2,∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6(等量代换),∴m∥n (内错角相等,两直线平行).故答案为:两直线平行,内错角相等,∠5=∠6,m∥n,内错角相等,两直线平行;(2)∠ABC=90°,理由是:如图3,∵∠ABC=90°,∴∠2+∠3=180°﹣90°=90°,∵∠1=∠2,∠3=∠4(已知),∴∠1+∠2+∠3+∠4=80°,∴∠EAC+∠FCA=180°+180°﹣180°=180°,∴AE∥CF.故答案为:90.【点评】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?【考点】二元一次方程组的应用.【分析】(1)根据甲、乙两名同学所列的方程组可得,甲:x表示A 队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y 表示B队的工作量,补全方程组即可;(2)根据二元一次方程组的解法求解方程组甲.【解答】解:(1)甲:;乙:;甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量;(2)由方程组甲得:,则24x=120,16y=240,答:A队整治河道120米,B队整治河道240米.故答案为:A队的工作时间,B队的工作时间;A队的工作量,B队的工作量.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.【考点】平行线的判定与性质.【分析】由平行线的判定定理得到AB∥CD,然后由该平行线的关系、已知条件结合等量代换得到∠3=∠D,易得BH∥ED,故由“两直线平行,同旁内角互补”得到∠1+∠2=180°.【解答】解:∠1与∠2的数量关系是∠1+∠2=180°.理由如下:∵∠A=∠C(已知),∴AB∥CD(内错角相等,两直线平行),∴∠B=∠3(两直线平行,内错角相等).∵∠B=∠D (已知),∴∠3=∠D,∴BH∥ED(同位角相等,两直线平行),∴∠1+∠2=180°(两直线平行,同旁内角互补).【点评】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是a+3b ;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片① 3 张,卡片②7 张,卡片③ 2 张.【考点】多项式乘多项式.【专题】计算题.【分析】(1)根据图形列出关系式,利用完全平方公式化简,即可确定出正方形的边长;(2)利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:(1)根据题意得:a2+6ab+9b2=(a+3b)2,则拼出的新正方形的边长是a+3b;(2)根据题意得:(3a+b)(a+2b)=3a2+7ab+2b2,需要卡片①3 张,卡片②7 张,卡片③2 张.故答案为:(1)a+3b;(2)3,7,2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?【考点】分式的混合运算.【专题】阅读型.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x的值.【解答】解:(1)==1+,==x2+2﹣;(2)==2﹣,当x+2=1,5,﹣1,﹣5,即x=﹣1,3,﹣3,﹣7时,分式的值也为整数.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。
〖京教版〗七年级数学下册期末复习考试试卷348

〖京教版〗七年级数学下册期末复习考试试卷创作人:百里第三创作日期:2021.04.01审核人:北堂季第创作单位:北京市智语学校一、选择题(共10小题,每小题3分,满分30分)1.同一个平面内,若a⊥b,c⊥b,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°3.既是方程2x﹣y=3的解,又是方程3x+4y=10的解是()A.B.C.D.4.下列说法正确的是()A.1的平方根是1 B.1的算术平方根是1C.﹣2是2的算术平方根D.﹣1的平方根是﹣15.下列各式正确的是()A.()2=B. =1C. =2+=2D. =13﹣7=66.已知点A(x,y)且xy≥0,则点A的位置是()A.在x轴上B.在y轴上C.在一、三象限D.在两坐标轴上或一、三象限7.下列结论不正确的是()A.若a>b,c=d,则a﹣c>b﹣d B.若a2+b2=0,则a=b=0C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b8.不等式的解集x<﹣2在数轴上表示为()A.B.C.D.9.平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四10.有以下三个说法:①对顶角相等是真命题;②连接直线外一点与直线上个各点的所有线段中,垂线段最短;③平面直角坐标系内的所有点都分别属于四个象限;④经过一点有且只有一条直线与已知直线平行;其中错误的有()个.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.在下列四幅图中,哪几幅图是可以经过平移变换得来的.12.若81x2=49,则x=.13.若点M(a﹣2,2a+3)是x轴上的点,则a的值是.14.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为.15.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y 元,写出以x和y为未知数的方程为.17.已知点A(﹣4,﹣6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为.18.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.19.观察下列数表:根据数表所反映的规律,猜想第n行与第n列交叉点上的数为.20.如果∠1两边与∠2的两边互相平行,且∠1=(3x+20)°,∠2=(8x﹣5)°,则∠1的度数为.三、解答题(共7小题,满分60分)21.(7分)解方程组:(1)(2).22.(7分)如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.23.(8分)如图直线AB⊥CD,垂足为O,直线EF过点O,且∠1=30°,求∠2、∠3的度数.24.(8分)已知x、y、z满足:|4x﹣4y+1|+(z﹣)2=﹣,求(y+z)•x2的值.25.(10分)如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC 吗?请说明理由.26.(10分)甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇;若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度.(2)若甲乙两车同时按原速度行驶1小时以后,甲车发生故障不动了,则乙车至少再以多大的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇?27.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.同一个平面内,若a⊥b,c⊥b,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【考点】平行线的判定.【分析】由已知a⊥b,c⊥b进而得出a与c的关系.【解答】解:∵a⊥b,c⊥b,∴a∥c.故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.3.既是方程2x﹣y=3的解,又是方程3x+4y=10的解是()A.B.C.D.【考点】二元一次方程的解.【分析】根据题意即可得到方程组:,解方程组即可求解.【解答】解:根据题意得:,①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选B.【点评】本题主要考查了一元一次方程组的解法,正确根据方程组的解的定义,转化为解方程组的问题是解题关键.4.下列说法正确的是()A.1的平方根是1 B.1的算术平方根是1C.﹣2是2的算术平方根D.﹣1的平方根是﹣1【考点】算术平方根;平方根.【分析】根据平方根、算术平方根,即可解答.【解答】解:A、1的平方根是±1,故错误;B、1的算术平方根是1,正确;C、是2的算术平方根,故错误;D、﹣1没有平方根,故错误;故选:B.【点评】本题考查了算术平方根、平方根,解决本题的关键是熟记算术平方根,平方根的平方根.5.下列各式正确的是()A.()2=B. =1C. =2+=2D. =13﹣7=6【考点】算术平方根;有理数的乘方.【分析】根据算术平方根得定义和有理数的乘方法则分别对每一项进行分析,即可得出答案.【解答】解:A、()2=,故本选项错误;B、=1,故本选项正确;C、=,故本选项错误;D、=2,故本选项错误;故选B.【点评】此题考查了算术平方根和有理数的乘方,掌握算术平方根的定义和有理数的乘方的法则是本题的关键,是一道基础题.6.已知点A(x,y)且xy≥0,则点A的位置是()A.在x轴上B.在y轴上C.在一、三象限D.在两坐标轴上或一、三象限【考点】点的坐标.【分析】根据同号得正判断出x、y同号,再考虑x、y等于0的情况,然后根据各象限内点的坐标特征以及坐标轴上的点的特征解答.【解答】解:∵xy≥0,∴x、y同号或x=0或y=0或x=y=0,当x、y同号时,点A在第一三象限,当x=0时,点A在y轴上,当y=0时,点A在x轴上,当x=y=0,点A为坐标原点,综上所述,点A在两坐标轴上或一、三象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.下列结论不正确的是()A.若a>b,c=d,则a﹣c>b﹣d B.若a2+b2=0,则a=b=0C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】不等式的性质;非负数的性质:偶次方.【分析】根据不等式的性质分别对每一项进行分析,即可得出答案.【解答】解:A、若a>b,c=d,则a﹣c>b﹣d,正确;B、若a2+b2=0,则a=b=0,正确;C、若a>b,当c>0时,得出ac2>bc2,故本选项错误;D、若ac2>bc2,则a>b,正确;故选C.【点评】本题考查了不等式性质,注意:①不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.不等式的解集x<﹣2在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】将已知解集表示在数轴上即可.【解答】解:不等式的解集x<﹣2在数轴上表示为,故选D【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点A(﹣1,﹣3)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.有以下三个说法:①对顶角相等是真命题;②连接直线外一点与直线上个各点的所有线段中,垂线段最短;③平面直角坐标系内的所有点都分别属于四个象限;④经过一点有且只有一条直线与已知直线平行;其中错误的有()个.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵对顶角相等是真命题,∴选项①正确;∵连接直线外一点与直线上个各点的所有线段中,垂线段最短,∴选项②正确;∵坐标轴上的点是不属于任何象限的,∴选项③不正确;∵经过直线外一点,有且只有一条直线与这条直线平行,∴选项④不正确.综上,可得错误的说法有2个:③、④.故选:B.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(共10小题,每小题3分,满分30分)11.在下列四幅图中,哪几幅图是可以经过平移变换得来的①②④.【考点】利用平移设计图案.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.【解答】解:根据平移的定义可得①②④是由平移得到的,③利用旋转可以得到.故答案为:①②④.【点评】此题主要考查了生活中的平移,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.12.若81x2=49,则x=±.【考点】平方根.【分析】先求出x2的值,再根据平方根的定义解答.【解答】解:由81x2=49得:x2=,直接开平方,得:x=±,故答案为:±.【点评】本题考查了利用平方根求未知数的值,熟练掌握平方根的定义是解题的关键.13.若点M(a﹣2,2a+3)是x轴上的点,则a的值是﹣.【考点】点的坐标.【分析】根据x轴上的点的坐标的特点解答即可.【解答】解:∵点M(a﹣2,2a+3)是x轴上的点,∴这点的纵坐标是0,即2a+3=0,解得:a=﹣.故答案填:﹣.【点评】本题主要考查了x轴上的点的坐标的特点,即纵坐标等于0.14.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为x<﹣4.【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x<﹣4时,的图象都在y=kx的图象上方,即>kx.【解答】解:当x<﹣4时,的图象都在y=kx的图象上方,所以关于x的不等式>kx的解集为x<﹣4.故答案为:x<﹣4.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是70°.【考点】平行线的性质;三角形内角和定理.【分析】连接AC,根据平行线的性质得到∠BAC+∠ACD=180°,求出∠CAE+∠ACE=110°,根据三角形的内角和定理即可求出答案.【解答】解:连接AC,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAE=25°,∠ECD=45°,∴∠CAE+∠ACE=180°﹣25°﹣45°=110°,∵∠E+∠CAE+∠ACE=180°,∴∠E=180°﹣110°=70°,故答案为:70°.【点评】本题主要考查对平行线的性质,三角形的内角和定理等知识点的理解和掌握,正确作辅助线并利用性质进行计算是解此题的关键.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y 元,写出以x和y为未知数的方程为14x+6y=5.4.【考点】由实际问题抽象出二元一次方程.【分析】等量关系为:14支铅笔总价钱+6本练习本总价钱=5.4,把相关量代入即可.【解答】解:铅笔每支x元,14支铅笔需14x元;练习本每本y元,6本练习本需付6y元,共用5.4元,可列方程为:14x+6y=5.4.【点评】根据共用去的钱得到相应的等量关系是解决问题的关键,注意单价与数量要保持对应关系.17.已知点A(﹣4,﹣6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为(0,0).【考点】坐标与图形变化-平移.【分析】让点A的横坐标加4,纵坐标加6即可得到A′的坐标.【解答】解:由题中平移规律可知:A′的横坐标为﹣4+4=0;纵坐标为﹣6+6=0;∴A′的坐标为(0,0).故答案填:(0,0).【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.18.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了九折优惠.【考点】一元一次方程的应用.【分析】本题的等量关系是:售价﹣优惠后的价钱=节省下来的钱数.根据等量关系列方程求解.【解答】解:设用贵宾卡又享受了x折优惠,依题意得:10000﹣10000×80%×=2800解之得:x=9即用贵宾卡又享受了9折优惠.故答案为:九.【点评】此题关键是掌握公式:现价=原价×打折数,找出等量关系列方程.19.观察下列数表:根据数表所反映的规律,猜想第n行与第n列交叉点上的数为3n.【考点】规律型:数字的变化类.【分析】根据第1行与第1列、第2行与第2列以及第3行与第3列交叉点上的数的大小,猜想第n行与第n列交叉点上的数为多少即可.【解答】解:第1行与第1列交叉点上的数是3(3=3×1),第2行与第2列交叉点上的数是6(6=3×2),第3行与第3列交叉点上的数是9(9=3×3),…,∴猜想第n行与第n列交叉点上的数等于3的n倍,为3n.故答案为:3n.【点评】此题主要考查了探寻数字变化规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律.20.如果∠1两边与∠2的两边互相平行,且∠1=(3x+20)°,∠2=(8x﹣5)°,则∠1的度数为35°或65°.【考点】平行线的性质.【分析】根据:∠1两边与∠2的两边互相平行得出∠1=∠2或∠1+∠2=180°,代入求出x,即可得出答案.【解答】解:∵∠1两边与∠2的两边互相平行,∴∠1=∠2或∠1+∠2=180°,∵∠1=(3x+20)°,∠2=(8x﹣5)°,∴3x+20=8x﹣5或3x+20+8x﹣5=180,解得:x=5,或x=15,当x=5时,∠1=35°,当x=15时,∠1=65°,故答案为:35°或65°.【点评】本题考查了平行线的性质的应用,能知道“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补”是解此题的关键.三、解答题(共7小题,满分60分)21.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①+②×5得:13x=13,即x=1,把x=1代入②得:y=1,则方程组的解为;(2)方程组整理得:,①×3+②×4得:17x=34,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.【考点】作图-平移变换.【分析】(1)根据图形平移不变性的性质画出平移后的三角形即可;(2)利用正方形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;=4×4﹣×2×4﹣×2×2﹣×2×4=16﹣4﹣2﹣4=6.(2)S△ABO【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图直线AB⊥CD,垂足为O,直线EF过点O,且∠1=30°,求∠2、∠3的度数.【考点】垂线.【分析】根据对顶角相等可得∠3=∠1=30°,根据邻补角互补可得∠EOB=150°,再由垂直可得∠BOD=90°,根据∠2=90°﹣∠1即可算出度数.【解答】解:∵直线AB和EF交于点O,∠1=30°,∴∠3=∠1=30°,∵AB⊥CD,∴∠BOD=90°,∴∠2=90°﹣30°=60°.【点评】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.24.已知x、y、z满足:|4x﹣4y+1|+(z﹣)2=﹣,求(y+z)•x2的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出x、y、z的值,代入计算即可.【解答】解:由题意得,4x﹣4y+1=0,z﹣=0,2y+z=0,解得,x=﹣,y=﹣,z=则(y+z)•x2=×=.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.(10分)(春•双城市期末)如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC吗?请说明理由.【考点】平行线的判定与性质.【分析】先根据垂直的性质得出∠AD=∠EFC=90°,故可得出AD∥EF,由平行线的性质即可得出结论.【解答】解:AD平分∠BAC.理由:∵AD⊥BC,EF⊥BC,∴∠AD=∠EFC=90°,∴AD∥EF,∴∠CAD=∠E,∠BDA=∠1.∵∠E=∠1,∴∠CAD=∠BAD,∴AD平分∠BAC.【点评】本题考查的是平行线的判定与性质,先根据题意得出AD∥EF是解答此题的关键.26.(10分)(春•双城市期末)甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇;若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度.(2)若甲乙两车同时按原速度行驶1小时以后,甲车发生故障不动了,则乙车至少再以多大的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲车的速度为xkm/h,乙车的速度为ykm/h,利用路程等于时间乘以速度列方程组,然后解方程组即可;(2)设乙车再以akm/h的速度行驶,则乙以akm/h的速度行驶的时间为(3﹣1)=2小时,利用甲乙行驶的路程和不小于200列不等式,然后解不等式后求出不等式的最大解即可.【解答】解:(1)设甲车的速度为xkm/h,乙车的速度为ykm/h,根据题意得,解得,答:甲车的速度为40km/h,乙车的速度为40km/h;(2)设乙车再以akm/h的速度行驶,根据题意得40×1+40×1+(3﹣1)a≥200,解得a≥60,答:乙车至少再以60km/h的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.也考查了二元一次方程组的应用.27.(10分)(春•双城市期末)如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.【考点】垂线;对顶角、邻补角.【分析】(1)根据∠AOC+∠AOD=180°可得∠AOC和∠AOD的度数,根据对顶角相等可得∠BOD=70°,再利用角平分线定义可得∠DOE=35°,再根据邻补角定义可得∠COE的度数;(2)分两种情况画图,进而求出∠COF的度数.【解答】解:(1)∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°,∵∠BOD=∠AOC,∴∠BOD=70°,∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣∠DOE=145°;(2)分两种情况,如图1,∵OF⊥OE,∴∠EOF=90°,∴∠COF=∠COE﹣∠EOF=145°﹣90°=55°,如图2,∠COF=∠360°﹣∠COE﹣∠EOF=125°.【点评】此题主要考查了垂线、邻补角、对顶角,关键是掌握对顶角相等,邻补角互补.。
初一下学期数学期末复习(北京课改版)

初一下学期数学期末复习一、选择1.下列运算中正确的是A 。
1243a a a =⋅ B 。
()2422b a ba = C 。
()743a a = D 。
6321553x x x =⋅ 2 若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <23.已知21x y =-⎧⎨=⎩是方程mx+y=3的解,m 的值是( )A .2B .-2C .1D .-1 4.如右图所示,下列条件中,不能判断l 1∥l 2的是( ) A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=180°5.为了解我市中学生中15岁女生的身高状况,随机抽商了10个学校的200名15岁女生的身高,则下列表述正确的是( )A .总体指我市全体15岁的女中学生B .个体是10个学校的女生C .个体是200名女生的身高D .抽查的200名女生的身高是总体的一个样本 6.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有( )A .4个B .5个C .6个D .无数个 7、在数轴上表示不等式组⎩⎨⎧<-≥4x ,2x 的解集,正确的是( )。
8、若31=+x x ,则221xx +的值为( ) A 、9 B 、7 C 、11 D 、6 9、若229y mxy x +-是一个完全平方式,则m 的值是( )A 、8B 、6C 、±8D 、±6 10若53=x,43=y,则yx -23等于( )A.254; B.6 ; C.21; D.20。
11、已知2=+b a ,3-=ab ,则22b ab a +-的值为( )A 、11B 、12C 、13D 、1412、下列各式中正确的是( )A 、(a +4)(a -4)=a 2-4B 、(5x -1)(1-5x )=25x 2-1C 、(-3x +2)2=4-12x +9x 2D 、(x -3)(x -9)=x 2-2713、如果 中的解x 、y 相同,则m 的值是( )A、1 B、-1 C、2 D、-214、因式分解x 2+2xy+y 2—4的结果是( ) A .(x+y+2)(x+y —2) B .(x+y+4)(x+y —1) C .(x+y —4)(x+y+1) D .不能分解 15、满足0106222=+-++n m n m 的是( )(A )3,1==n m (B )3,1-==n m (C )3,1=-=n m (D )3,1-=-=n m 16、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形二、填空1、_______+49x 2+y 2=(_______-y)2.2、若)4)(2(2-+=++x x q px x ,则p = ,q = 。
〖京教版〗七年级数学下册期末复习考试试卷796

〖京教版〗七年级数学下册期末复习考试试卷创作人:百里第三创作日期:2021.04.01审核人:北堂季第创作单位:北京市智语学校一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是()A. 3﹣2=6 B. m3•m5=m15 C.(x﹣2)2=x2﹣4 D. y3+y3=2y32.在﹣、、π、3.212212221…这四个数中,无理数的个数为()A. 1 B. 2 C. 3 D. 43.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()A. 10cm B. 30cm C. 50cm D. 70cm4.下列语句中正确的是()A.﹣9的平方根是﹣3 B. 9的平方根是3C. 9的算术平方根是±3 D. 9的算术平方根是35.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折 B. 7折 C. 8折 D. 9折6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有() A. 4个 B. 3个 C. 2个 D. 1个二、填空题(每小题3分,共30分)7.﹣8的立方根是.8.x2•(x2)2=.9.若a m=4,a n=5,那么a m﹣2n=.10.请将数字0.000 012用科学记数法表示为.11.如果a+b=5,a﹣b=3,那么a2﹣b2=.12.若关于x、y的方程2x﹣y+3k=0的解是,则k=.13.n边形的内角和比它的外角和至少大120°,n的最小值是.14.若a,b为相邻整数,且a<<b,则b﹣a=.15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.16.若不等式组有解,则a的取值范围是.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣)0+()﹣2+(0.2)×5﹣|﹣1|18.因式分解:(1)x2﹣9b3﹣4b2+4b.19.解方程组:①;②.20.解不等式组:,并在数轴上表示出不等式组的解集.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.24.若不等式组的解集是﹣1<x<3,(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):.结论(求证):.证明:.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?参考答案与试题解析一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是()A. 3﹣2=6 B. m3•m5=m15 C.(x﹣2)2=x2﹣4 D. y3+y3=2y3考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.解答:解:A、,故错误;B、m3•m5=m8,故错误;C、(x﹣2)2=x2﹣4x+4,故错误;D、正确;故选:D.点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.2.在﹣、、π、3.212212221…这四个数中,无理数的个数为()A. 1 B. 2 C. 3 D. 4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:﹣是分数,是有理数;和π,3.212212221…是无理数;故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()A. 10cm B. 30cm C. 50cm D. 70cm考点:三角形三边关系.分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.解答:解:根据三角形的三边关系,得第三根木棒的长度应大于10cm,而小于50cm.故选B点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.4.下列语句中正确的是()A.﹣9的平方根是﹣3 B. 9的平方根是3C. 9的算术平方根是±3 D. 9的算术平方根是3考点:算术平方根;平方根.分析: A、B、C、D分别根据平方根和算术平方根的定义即可判定.解答:解:A、﹣9没有平方根,故A选项错误;B、9的平方根是±3,故B选项错误;C、9的算术平方根是3,故C选项错误.D、9的算术平方根是3,故D选项正确.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折 B. 7折 C. 8折 D. 9折考点:一元一次不等式的应用.分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.解答:解:设打x折销售,每件利润不少于2元,根据题意可得:15×﹣10≥2,解得:x≥8,答:最多打8折销售.故选:C.点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有() A. 4个 B. 3个 C. 2个 D. 1个考点:平行线的性质;余角和补角.分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.解答:解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(每小题3分,共30分)7.﹣8的立方根是﹣2.考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.8.x2•(x2)2=x6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.解答:解:x2•(x2)2=x2•x4=x6.故答案为:x6.点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.若a m=4,a n=5,那么a m﹣2n=.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.解答:解:a m﹣2n=,故答案为:.点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.10.请将数字0.000 012用科学记数法表示为 1.2×10﹣5.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 012=1.2×10﹣5.故答案为:1.2×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.如果a+b=5,a﹣b=3,那么a2﹣b2=15.考点:因式分解-运用公式法.分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.解答:解:∵a2﹣b2=(a+b)(a﹣b),∴当a+b=5,a﹣b=3时,原式=5×3=15.故答案为:15.点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.12.若关于x、y的方程2x﹣y+3k=0的解是,则k=﹣1.考点:二元一次方程的解.专题:计算题.分析:把已知x与y的值代入方程计算即可求出k的值.解答:解:把代入方程得:4﹣1+3k=0,解得:k=﹣1,故答案为:﹣1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.n边形的内角和比它的外角和至少大120°,n的最小值是5.考点:多边形内角与外角.分析: n边形的内角和是(n﹣2)•180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)•180﹣360>120,就可以求出n的范围,从而求出n的最小值.解答:解:(n﹣2)•180﹣360>120,解得:n>4.因而n的最小值是5.点评:本题已知一个不等关系,就可以利用不等式来解决.14.若a,b为相邻整数,且a<<b,则b﹣a=.考点:估算无理数的大小.分析:估算的范围,即可确定a,b的值,即可解答.解答:解:∵,且<<b,∴a=2,b=3,∴b﹣a=,故答案为:.点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55°.考点:平行线的性质.分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.解答:解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.∵∠1=35°,∴∠4=∠1=35°,∴∠3=90°﹣35°=55°.∵AB∥EF,∴∠2=∠3=55°.故答案为:55.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.16.若不等式组有解,则a的取值范围是a>1.考点:不等式的解集.分析:根据题意,利用不等式组取解集的方法即可得到a的范围.解答:解:∵不等式组有解,∴a>1,故答案为:a>1.点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣)0+()﹣2+(0.2)×5﹣|﹣1|考点:整式的混合运算.分析:(1)先算幂的乘方,再算同底数幂的除法;先利用整式的乘法计算,再进一步合并即可;(3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.解答:解:(1)原式=x3÷x6÷x5=x﹣4;原式=x2﹣2x﹣3+2x﹣x2=﹣3;(3)原式=1+4+1﹣1=5.点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.因式分解:(1)x2﹣9b3﹣4b2+4b.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;原式提取b,再利用完全平方公式分解即可.解答:解:(1)原式=(x+3)(x﹣3);原式=b(b2﹣4b+4)=b(b﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.解方程组:①;②.考点:解二元一次方程组.分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.解答:解:(1)①×2,得:6x﹣4y=12 ③,②×3,得:6x+9y=51 ④,则④﹣③得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为:.方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ③,①+③,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y=.故原方程组的解为:.点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.20.解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.解答:解:,解①得x<4,解②得x≥3,所以不等式组的解集为3≤x<4,用数轴表示为:点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a 的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为3;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)考点:作图-平移变换.分析:(1)根据图形平移的性质画出平移后的△A′B′C′即可;根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.解答:解:(1)如图所示;S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.解答:解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE=∠CAE=×50°=25°,∴∠ADE=65°.点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.24.若不等式组的解集是﹣1<x<3,(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.考点:解一元一次不等式组;三角形三边关系.分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.(1)直接把ab的值代入即可得出代数式的值;根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.解答:解:,由①得,x<,由②得,x>2b﹣3,∵不等式组的解集是﹣1<x<3,∴=3,2b﹣3=﹣1,∴a=5,b=2.(1)(a+1)(b﹣1)=(5+1)=6;∵a,b,c为某三角形的三边长,∴5﹣2<c<5+2,即3<c<7,∴c﹣a﹣b<0,c﹣3>0,∴原式=a+b﹣c+c﹣3=a+b﹣3=5+2﹣3=4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.百里第三创编 2021.04.0126.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;根据题意列出不等式组,解答即可.解答:解:(1)设购进A种商品x件,B种商品y件.根据题意得化简得,解得,答:该商场购进A种商品100件,B种商品60件;设购进A种商品x件,B种商品y件.根据题意得:解得:,,,,,故共有5种进货方案A B方案一 25件 150件方案二 20件 156件方案三 15件 162件方案四 10件 168件方案五 5件 174件②因为B的利润大,所以若要保证利润最高,选择进A种商品5件,B种商品174件.创作人:百里第三创作日期:2021.04.01审核人:北堂季第创作单位:北京市智语学校百里第三创编 2021.04.01。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下学期数学期末复习一、选择1.下列运算中正确的是A. 1243a a a =⋅ B. ()2422b a ba = C. ()743a a = D. 6321553x x x =⋅2 若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 3.已知21x y =-⎧⎨=⎩是方程mx+y=3的解,m 的值是( )A .2B .-2C .1D .-14.如右图所示,下列条件中,不能判断l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.为了解我市中学生中15岁女生的身高状况,随机抽商了10个学校的200名15岁女生的身高,则下列表述正确的是( )A .总体指我市全体15岁的女中学生B .个体是10个学校的女生C .个体是200名女生的身高D .抽查的200名女生的身高是总体的一个样本6.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有( )A .4个B .5个C .6个D .无数个7、在数轴上表示不等式组⎩⎨⎧<-≥4x ,2x 的解集,正确的是( ). 8、若31=+x x ,则221xx +的值为( ) A 、9 B 、7 C 、11 D 、6 9、若229y mxy x +-是一个完全平方式,则m 的值是( )A 、8B 、6C 、±8D 、±610若53=x,43=y,则yx -23等于( )A.254; B.6 ; C.21; D.20. 11、已知2=+b a ,3-=ab ,则22b ab a +-的值为( )A 、11B 、12C 、13D 、1412、下列各式中正确的是( )A 、(a +4)(a -4)=a 2-4 B 、(5x -1)(1-5x )=25x 2-1 C 、(-3x +2)2=4-12x +9x 2D 、(x -3)(x -9)=x 2-2713、如果 中的解x 、y 相同,则m 的值是( )A、1 B、-1 C、2 D、-214、因式分解x 2+2xy+y 2-4的结果是( ) A .(x+y+2)(x+y-2) B .(x+y+4)(x+y-1) C .(x+y-4)(x+y+1) D .不能分解15、满足0106222=+-++n m n m 的是( )(A )3,1==n m (B )3,1-==n m (C )3,1=-=n m (D )3,1-=-=n m16、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形二、填空1、_______+49x 2+y 2=(_______-y)2.2、若)4)(2(2-+=++x x q px x ,则p = ,q = 。
3、分解因式:2x 2-18=______________. 4、已知⎩⎨⎧=+=+2ay bx ,5by ax 的解是⎩⎨⎧==.3y ,4x 则a= ,b= .5、如图,一个三角板放在一块两边平行的木板上。
若︒=∠301,︒=∠432, 则=∠3 。
6、用“※”定义新运算:对于任意有理数a 、b ,都有a ※b a 2b 2+=. 例如 3※2243242=+⨯=,那么)5(-※2= ;当m 为有理数时,m ※(m ※2)= .7、 如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第5个图形中,互不重叠的三角形共有 个;在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
三、计算1、分解因式(1)(x 2+2x)2+2(x 2+2x)+1 (2)xy y x xy ++++)1)(1)(1(2、解下列方程组:3、.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩4、计算()()()2020*********.2510-⎛⎫--+-⨯- ⎪⎝⎭5、化简求值:(x -y) 2+(x+y)(x -y),其中x=3,y=-1. 四、几何证明1、填写理由如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD 。
理由如下:∵∠1 =∠2(已知),且∠1 =∠4( ) ∴∠2 =∠4(等量代换)∴CE ∥BF ( ) ∴∠C=∠3( ) 又∵∠B =∠C (已知) ∴∠3 =∠B (等量代换)∴AB ∥CD ( ) 2、已知:如图,AD ∥BC ,21∠=∠。
求证:︒=∠+∠18043。
3、已知:如图,AD ∥BE ,∠1=∠2.求证:∠A=∠E . 五、解答题1、某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动。
随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段 频数百分比20%F EDCBA2143根据以上图表提供的信息,解答下列问题:(1)写出表中a 、b 的数值:=a __________,=b __________;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95分)的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数。
2、北京举办2008年夏季奥运会以来,奥运知识在我国不断传播,小刚就本班学生对奥运知识的了解程度进行了一次调查统计。
A :熟悉,B :了解较多,C :一般了解。
图1和图2是他采集数据后,绘制的两幅不完整的统计图。
请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数; (4)如果全年级共1000名学生,请你估算全年级对奥运知识“了解较多”的学生人数。
3、某公司为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作。
经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍。
已知某公司现有员工50人,设抽调x 人到新生产线上工作。
(1)若分工前员工每月的人均产值为a 元,则分工后留在原生产线上工作的员工每月人均产值是 元,每月的总产值是 元;到新生产线上工作8060 30%20的员工每月人均产值是元,每月的总产值是 元。
(2)分工后若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值,而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半。
则抽调的人数应该在什么范围?4、班委会决定,选购圆珠笔、钢笔共22支,送给山区学校的同学。
已知圆珠笔每支5元,钢笔每支6元。
(1)若购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了多少支? (2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案。
5、某景点的门票价格规定如下表: 我校准备利用假期去游览该景点,已知初二(1)、(2)两个班共104人,,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人。
经估算,如果两班都以班为单位分别购票,则一共应付1240元,问两班各有多少名学生? 你认为还有没有好的方法去节省门票的费用?若有,请按照你的方法计算一下能省多少钱? 探究:1、阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、购票人数 1-50人51-100人100人以上 每人门票价13元 11元 9元CA 至1A 、1B 、1C ,使得AB B A 21=,BC C B 21=,CA A C 21=,顺次连接1A 、1B 、1C ,得到△111C B A ,记其面积为1S ,求1S 的值。
小明是这样思考和解决这个问题的:如图2,连接C A 1、A B 1、B C 1,因为AB B A 21=,BC C B 21=,CA A C 21=,根据等高两三角形的面积比等于底之比,所以CA B BC A S S 11△△= a S S ABC AB C 221===△△,由此继续推理,从而解决了这个问题。
(1)直接写出=1S __________(用含字母a 的式子表示)。
请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积。
(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求APE S △与BPF S △的比值。