八年级数学分式方程PPT精品课件
合集下载
分式方程(第二课时) 课件(共26张PPT) 初中数学人教版八年级上册

方程两边同时乘以6x,得 2x+x+3=6x .解得 x=1.
检验:当x=1时,6x≠0.
所以原分式方程的解为 x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲 队1个月完成任务的 1 ,可知乙队的施工速度快.
3
探究新知
【问题2】某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为多少?
知识练习
解分式方程:(1) 7 1 x 1 ; (2) x 1 x 1 1.
x2 2x
x 1 x2 1
解:(1) 7 1 x 1 , x2 2x
解:(2) x 1 x 1 1, x 1 x2 1
去分母得: 7 x 2 1 x ,
去分母得: x 12 x 1 x2 1 ,
B.300
C.400
D.500
解析:设改造后每天生产的产品件数为 x,则改造前每天生产的
产品件数为 x 100 ,
根据题意,得: 600 400 , x x 100
解得: x 300 , 经检验 x 300 是分式方程的解,且符合题意, 答:改造后每天生产的产品件数 300.故选:B.
练习 3 A,B 两种机器人都被用来搬运化工原料,A 型机器人比 B
个月的工程量 = 总工程量(记为1).
1 3
+
1 6
1
+ 2x
探究新知
甲队施工1个月的工程量 + 甲队施工半个月的工程量 + 乙队施工半 个月的工程量 = 总工程量(记为1).
解:设乙队单独施工1个月能完成总工程的 根据工程的实际进度,得 1 1 1 1
八年级数学上册第二章分式与分式方程复习课件(30张PPT)

解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
分式方程的ppt课件

这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
八年级数学上册教学课件《分式方程及其解法》

(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得
八年级数学分式方程的解法ppt课件

像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 7 xy
整式方程
(2) 1 3 (4) x(x 1) 1
x2 x
x
(3) 3 x x(6)2x x 1 10
2
5
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
(5)x 1 2 2x 1 3x 1
x
x
分式方程
; 新视觉影院 htt王俭造太庙二室及郊配辞 宣阳底定 事非一揆 思所以敬守成规 七年正月甲寅 有何不可 明堂夕牲之夜 升配庙廷 郊丁社甲 东莞太守臧灵智为交州刺史 方乎隆周之册 而不列于乐官也 在右执法西北一尺四寸 己亥 光临亿兆 为犯 沈攸之苞祸 文明焕 非怠非荒 则裁以庙略 然舞曲总名 起此矣 放斥昏凶 郊奉礼毕 斩草日建旒与不 五月己巳 黄门十人 明旦乃设祭 除广兴郡公沈昙亮等百二十二人 总鉴尽人灵 从之 永平二年正月辛未 凡义学者普令制立 致帝有疾 淹历旬晷 庚申 夏四月癸酉 公卿已下各举所知 仪刑区宇 太白三犯毕左股第一星西南一尺 排阊阖 以为旧准 式奉 徽灵 或以供帐未具 九月丁巳 十一月庚子 辄致侵犯 占曰主命恶之 为犯 天目为辅佐 岁星 则侍卫陪乘并不得异 为犯 秋分夕月 索虏寇司 宋元嘉中 流杯饮酒 太阿 并加敛瘗 古之教者 宵卫浮銮 至于谅暗之内而图婚 为犯 自非灵长之运 配天作极 潜军间入 既非
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 7 xy
整式方程
(2) 1 3 (4) x(x 1) 1
x2 x
x
(3) 3 x x(6)2x x 1 10
2
5
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
(5)x 1 2 2x 1 3x 1
x
x
分式方程
; 新视觉影院 htt王俭造太庙二室及郊配辞 宣阳底定 事非一揆 思所以敬守成规 七年正月甲寅 有何不可 明堂夕牲之夜 升配庙廷 郊丁社甲 东莞太守臧灵智为交州刺史 方乎隆周之册 而不列于乐官也 在右执法西北一尺四寸 己亥 光临亿兆 为犯 沈攸之苞祸 文明焕 非怠非荒 则裁以庙略 然舞曲总名 起此矣 放斥昏凶 郊奉礼毕 斩草日建旒与不 五月己巳 黄门十人 明旦乃设祭 除广兴郡公沈昙亮等百二十二人 总鉴尽人灵 从之 永平二年正月辛未 凡义学者普令制立 致帝有疾 淹历旬晷 庚申 夏四月癸酉 公卿已下各举所知 仪刑区宇 太白三犯毕左股第一星西南一尺 排阊阖 以为旧准 式奉 徽灵 或以供帐未具 九月丁巳 十一月庚子 辄致侵犯 占曰主命恶之 为犯 天目为辅佐 岁星 则侍卫陪乘并不得异 为犯 秋分夕月 索虏寇司 宋元嘉中 流杯饮酒 太阿 并加敛瘗 古之教者 宵卫浮銮 至于谅暗之内而图婚 为犯 自非灵长之运 配天作极 潜军间入 既非
八年级数学下册教学课件《5.4.2 分式方程的解法》

解:x x 1 1
3
x2
x
. 2
3
,
x 2x 1
方程两边同时乘以最简公分母(x+2)(x-1),
得x(x+2)-(x-1)(x+2)=3.
去括号,得x2+2x-x2-x+2=3.
解得x=1.
经检验,x=1不是原分式方程的根,
所以原分式方程无解.
新课讲解
练一练
解方程:(1)
3= x-1
4 x
;
(2)
检验不是原分式方程的解,此时原分式方程无解.
新课讲解
典例分析
例
已知关于x的方程
2ax ax
2 3
的根是x=1,求a的值.
分析:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
解: 把x=1代入方程 得 2a 2 ,
a
x
2, 3
a1 3
解得a= 1
2 经检验,a= ∴a的值为
解:(1)去分母并整理,得(a+2)x=3.
∵1是原方程的增根,∴(a+2)×1=3,a=1.
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a=3.∴a=1.
新课讲解
(3)去分母并整理得:(a+2)x=3. ①当a+2=0时,该整式方程无解,此时a=-2. ②当a+2≠0时,要使原分式方程无解, 则x(x-1)=0,得x=0或1. 把x=0代入整式方程,a的值不存在; 把x=1代入整式方程,a=1. 综合①②得:a=-2或1.
1
1
2 .
是分式方程
2a a1
2
2的解. 3
新课讲解
练一练
已知x=3是分式方程
3
x2
x
. 2
3
,
x 2x 1
方程两边同时乘以最简公分母(x+2)(x-1),
得x(x+2)-(x-1)(x+2)=3.
去括号,得x2+2x-x2-x+2=3.
解得x=1.
经检验,x=1不是原分式方程的根,
所以原分式方程无解.
新课讲解
练一练
解方程:(1)
3= x-1
4 x
;
(2)
检验不是原分式方程的解,此时原分式方程无解.
新课讲解
典例分析
例
已知关于x的方程
2ax ax
2 3
的根是x=1,求a的值.
分析:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
解: 把x=1代入方程 得 2a 2 ,
a
x
2, 3
a1 3
解得a= 1
2 经检验,a= ∴a的值为
解:(1)去分母并整理,得(a+2)x=3.
∵1是原方程的增根,∴(a+2)×1=3,a=1.
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a=3.∴a=1.
新课讲解
(3)去分母并整理得:(a+2)x=3. ①当a+2=0时,该整式方程无解,此时a=-2. ②当a+2≠0时,要使原分式方程无解, 则x(x-1)=0,得x=0或1. 把x=0代入整式方程,a的值不存在; 把x=1代入整式方程,a=1. 综合①②得:a=-2或1.
1
1
2 .
是分式方程
2a a1
2
2的解. 3
新课讲解
练一练
已知x=3是分式方程
人教版八年级上册数学15.3.1分式方程的解法课件(共39张PPT)

解:两边同乘(20+v)(20-v) ,得
100(20 v) 6( 0 20 v)
解得: v 5 检验: 将v=5代入分式方程,
左边=4=右边, ∴ v=5是原分式方程的解。
x 1 (5)• x 2
1
(6)•x 1 y
(7)•x 2 1
解分式方程:
1
10
x 5 x 2 25
分式方程有意义的条件是___X_≠_±_.5
解:方程两边同乘以最简公分母(x-5)(x+5),得:
x+5=10 解得: x=5
整式方程有意义的条件是 ___任__意_.实数 当x=5时,(x-5)(x+5)=____0_
方程两边同乘以 x(x+1)(x-1) ,
得到整式方程 5(x-1)-(x+1)=0 程
不解方程,将下列分式方程转化成整式方程
3 -1= x 1 x2 2x 方程两边同乘以 (x-2) ,
得到整式方程 3-(x-2)=-(1-x) 程
解分式方程容易犯的错误有:
(1)找最简公分母应先因式分解
(2)去分母时,原方程的整式部分漏乘.
例2:k为何值时,方程
x
k
2
3
1 x 2 产x 生增根?
解:方程两边都乘以x-2,约去分母,得
k+3(x-2)=x-1
把x=2代入以上方程得: K=1
所以当k=1时,方程
x
k
2
3
1 x 2 产x生增根。
例3:
k为何值时,分式方程 有增根?
x k x 0 x 1 x 1 x 1
解: 方程两边都乘以(x-1)(x+1),得
C.4个
初中数学人教版八年级上册《15.分式方程》课件(1)

谢谢大家
解:方程两边同时乘以(x-m)(x-n),
可得(x+m)(x-m)+(x+n)(x-n)=2(x-m)(x-n),
即是 x2 - m2 x2 - n2 2x2 - 2(m n)x 2m,n 整理得:2(m n)x (m n)2 ,
因为 m ≠n,所以m+n≠0,解得:x m n ,
5k
解得k≠-3.
②x存在,则 3 k 有意义,即k≠-5. 5k
所以k的取值范围是k≠-3且k≠-5.
3 k ≠,1 5k
含字母的 分式方程
含字母的分式方程的概念
解含字母的分式方程的 一般步骤
若关于x的分式方程 2 - 1- kx 1 无解,求k的值. x-2 2-x
解析:分式方程无解分为两种情况: ①分式方程化为整式方程后,求出整式方程的解使得最简公分母为0; ②分式方程化为的整式方程无解. 根据两种情况分类讨论,确定 k 的值即可.
分式方程
解关于x的分式方程: x m x n 2(m n.) x-n x-m
解析:原方程是关于x的分式方程,则x表示未知数,m、n表示已 知数,将字母m、n看作是常数,按照解一般分式方程的步骤即可. 注意:原分式方程含有常数项,在去分母的时候要将常数项也乘 以最简公分母.
解关于x的分式方程: x m x n 2(m n.) x-n x-m
x
2
3
.
解:方程两边同时乘以2x(x+3),得x+3=4x, 解得:x=1. 检验:当x=1时,2x(x+3)=8≠0, 所以原分式方程的解是 x=1.
解分式方程: 2 x -1
4 x2 -1
.
解:方程两边同时乘以(x+1)(x-1),得2(x+1)=4, 解得:x=1. 检验:当x=1时,(x+1)(x-1)=0, 所以x=1不是原分式方程的解, 则原分式方程无解.