浙教版九年级数学下册知识点
初三数学知识点浙教版

初三数学知识点浙教版天才就是勤奋曾经有人这样说过。
如果这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级下册数学知识点知识点1.概念把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理初三下册数学知识点总结半径与弦长计算,弦心距来中间站。
九年级数学浙教版知识点归纳总结

九年级数学浙教版知识点归纳总结数学作为一门学科,在九年级的学习中起到了至关重要的作用。
为了更好地帮助同学们复习和巩固九年级数学浙教版的知识点,特将各个章节的重点内容进行归纳总结,并提供一些解题技巧和注意事项,希望能够对同学们的学习有所帮助。
一、函数与方程1. 一元一次方程与一次函数- 一元一次方程的概念及解法- 一次函数的概念与图像特征- 一元一次方程与一次函数之间的关系2. 二元一次方程组- 二元一次方程组的概念及解法- 二元一次方程组的几何意义3. 二次根式与二次函数- 二次根式的概念及运算规则- 二次函数的概念与图像特征- 二次函数与二次根式之间的关系二、平面图形的认识1. 三角形- 三角形的分类及性质- 三角形的内角和与外角性质2. 平行四边形与菱形- 平行四边形的性质- 菱形的性质3. 等腰梯形与等腰直角梯形- 等腰梯形的性质及面积计算- 等腰直角梯形的性质及面积计算三、立体几何与空间图形1. 立体图形的认识- 立体图形的分类及性质- 立体图形的表面积和体积计算2. 圆锥与圆台- 圆锥与圆台的性质- 圆锥与圆台的体积计算3. 圆柱与圆球- 圆柱与圆球的性质- 圆柱与圆球的体积计算四、统计与概率1. 统计的基本概念- 数据的收集与整理- 数据的图表表示及分析2. 概率的初步认识- 随机事件及其概率- 两个独立事件的概率计算3. 抽样与推测- 抽样调查的基本原则- 样本推断与总体估计通过对九年级数学浙教版各章节的知识点进行归纳总结,我们可以清晰地了解到每个章节的重点内容。
在复习时,我们应该重点关注每个知识点的概念及相关的解题方法,掌握基本的计算技巧和推理能力。
除此之外,我们还要注重实际问题与数学模型之间的联系,培养数学思维和应用能力。
在解题过程中,我们需要注意以下几点:- 阅读题目时要认真理解题意,并推断出问题所需的数学思路。
- 分析问题时要分清已知条件和需求,合理运用已学知识进行问题求解。
浙教版九年级下册数学第3章知识点大全

浙教版九年级下册数学第3章知识点大全
3.1 直线与圆的位置关系
gt;gt;gt;gt;gt;九年级数学期中考试备考知识:直线与圆的位置关系
3.2 三角形的内切圆
gt;gt;gt;gt;gt;初三数学下册知识点:三角形的内切圆
3.3 圆与圆的位置关系
圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离 #219; dgt;R+r;
两圆外切 #219; d=R+r;
两圆相交 #219; R-r
gt;gt;gt;gt;gt;初三同步知识点:圆与圆的位置关系九年级下册数学第3章知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!。
浙教版九年级(下)数学教学内容整理

第一章 解直角三角形1、锐角三角函数(1)锐角A 的对边与斜边 的比叫做A 的正弦,记作A sin ;c aA A =∠=斜边的对边sin(2)锐角A 的邻边与斜边 的比叫做A 的余弦,记作A cos ;c bA A =∠=斜边的邻边cos(3)锐角A 的对边与邻边 的比叫做A 的正切,记作A tan ;baA A A =∠∠=的邻边的对边tan特殊的三角函数值若090=∠+∠B A ,则B A cos sin =,即)90cos(sin 0A A -=;B A sin cos =,即)90sin(cos 0A A -=; BA t a n 1t a n =正切与正余弦之间的关系: AAA cos sin tan =同角的正余弦关系:1cos sin 22=+A A2、有关三角函数的计算用计算器求相应的三角函数的值 3、解直角三角形概念:在直角三角形中,除了直角外的5个元素,只要知道其中的2个元素(至少要有一个是边),求其它3个元素的过程叫解直角三角形。
依据:(1)三边间的关系:勾股定理222c b a =+ (2)锐角间的关系:090=∠+∠B A ;(3)边角间的关系:c a A =sin ,c b A =cos ,b aA =tan ;(4)面积公式:ch ab S ABC 2121==∆ 直角三角形可解的条件及可直接解的直角三角形的解(1) 已知两边或已知一边及一锐角,则此三角形可解,即在已知的两个条件中,至少有一个是边。
(2) 可直接解求解的直角三角形分为以下四种情况:① 已知两条直角边a ,b 其解法为22b a c +=,由ba A =tan 得A ∠,A B ∠-=∠090. ② 已知斜边和一直角边(如a )其解法为22a c b -=,由ca A =sin 得A ∠,A B ∠-=∠090. ③ 已知一直角边和一锐角(如a ,A ∠)其解法为A B ∠-=∠090,A a b tan =,22b a c +=或Aa c sin =④ 已知斜边和一锐角(如c 和A ∠)其解法为A B ∠-=∠090,A c a sin ∙=,B c b sin ∙=或22a c b -=不可解直角三角形的解法除直角外已知的两个元素(至少有一个是边)的直角三角形都是可解的直角三角形,对于不可角的三角形,通常借助于解方程的思想求解。
(完整版)浙教版九年级数学下册第二章

2.1【知识梳理1:切线的判定】1. 切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线2. 切线判定的三种方法:(1)和圆只有一个公共点的直线(2)圆心到直线的距离等于圆的半径的直线(3)切线判定定理例题讲解例1 下列说法中,不正确的是()A.与圆只有一个交点的直线是圆的切线B.经过半径的外端,且垂直于这条半径的直线是圆的切线C.与圆心的距离等于这个圆的半径的直线是圆的切线D.垂直于半径的直线是圆的切线例2 如图,AB是⊙O的直径,下列条件中,不能判定直线AT是⊙O的切线的是()A. AB=4,AT=3,BT=5B. ∠B=45°,AB=ATC. ∠B=55°,∠TAC=55°D. ∠ATC=∠B第2题 第3题例3 如图,已知AB是⊙O的弦,半径OC经过AB的中点D,CE∥AB,点F在⊙O上,eA. ∠F =∠AOCB. AB ⊥BFC. CE 是⊙O 的切线D. =12AC ︵ BC ︵例4如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB 与CD 交于点E ,CE =DE ,过点B 作BF ∥CD ,交AC 的延长线于点F ,求证:BF 是⊙O 的切线.【变式训练】1. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则点B 与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)(第1题) (第2题)2. 如图,已知∠ABC =90°,O 为射线BC 上一点.以点O 为圆心,BO 长为半径作⊙O .当12射线BA 绕点B 按顺时针方向旋转______________(不超过360°)时与⊙O 相切.3. 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别与BC ,AD 交于点E ,F .(1)求证:四边形BEDF 为矩形.(2)若BD 2=BE ·BC ,试判断直线CD 与⊙O 的位置关系,并说明理由.4. 如图,在△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD长为半径的圆交OA于点E,在BA上截取BC=OB,连结CE.求证:CE是⊙O的切线.5. 如图,⊙O的直径为AB,点C在圆周上(不与点A,B重合),AD⊥C D.(1)若BC=3,AB=5,求AC的长.(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【知识梳理2:切线的性质】1. 切线的性质:经过切点的半径垂直于切线2. 只要知道以下其中两个性质就可以推出第三个:①过圆心;②过切点;③垂直于切线例题讲解例1 如图,AB是⊙O的直径,C是AB延长线上的一点,且BC=OB,CD切⊙O于点D.则∠A=()Ath A. 15° B. 30° C. 60° D. 75°第1题第2题例2 如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D.若OD =2,tan ∠OAB =,则AB 的长是()12A. 4B. 2C. 8D. 433例3 如图,AB 为⊙O 的直径,PQ 切⊙O 于点T,连结AT ,AC ⊥PQ 于点C ,交⊙O 于点D.(1)求证:AT 平分∠BA C.(2)若AO =2,AT =2 ,求AC 的长.3例4如图,在△ABC 中,∠C =90°,AC +BC =8,O 是斜边AB 上一点,以点O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E .(1)当AC =2时,求⊙O 的半径.(2)设AC =x ,⊙O 的半径为y ,求y 关于x 的函数表达式.thd【变式训练】1. 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连结A C.若∠A=30°,PC=3,则BP的长为_________.第1题第2题2. 如图,半圆O与等腰直角三角形ABC的两腰CA,CB分别切于D,E两点,直径FG 在AB上.若BG=-1,则△ABC的周长为__________23. 如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A. B. C. D. 21339243135第3题 第4题4. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4 .若动点D在线段AC上(不与3点A,C重合)运动,过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC的中点时,DE=___________.(2)若点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=__________时,⊙C与直线AB相切.5. 如图,AB是⊙O的直径,AD是⊙O的弦,F是DA延长线上的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为E.(1)求证:CE是⊙O的切线.(2)若AE=1,CE=2,求⊙O的半径.6. 如图,AB为⊙O的直径,OC⊥AB,弦CD与OB交于点F,过点D,A分别作⊙O的切线交于点G,并与AB的延长线交于点E.(1)求证:∠1=∠2.(2)若OF∶OB=1∶3,⊙O的半径为3,求AG的长.【综合例题讲解】例1如图,公路MN 与公路PQ 在点P 处交会,且QPN =30°,在点A 处有一所中学,AP =160 m.假设拖拉机行驶时,周围100 m 以内会受噪音影响,那么拖拉机在公路交会处沿PN 方向行驶时,学校是否会受噪音影响?如果不受影响,请说明理由;如果受影响,且已知拖拉机的速度为18 km/h ,则学校受影响的时间为多少秒?例2如图,在平面直角坐标系中,原点为O ,点A 的坐标为(4,0),点B 的坐标为(-1,0),以AB 的中点P 为圆心,AB 长为直径作⊙P 交y 轴正半轴于点C.(1)求经过A ,B ,C 三点的抛物线所对应的函数表达式.(2)设M 为(1)中抛物线的顶点,求直线MC 对应的函数表达式.(3)试说明直线MC 与⊙P 的位置关系,并证明你的结论.【变式训练】1. 如图①,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC.(1)试判断△ABC 的形状,并说明理由.(2)如图②,若线段AB ,DE 的延长线交于点F ,∠C =75°,CD =2-,求⊙O 的半径3和BF 的长.2.如图,射线QN 与等边三角形ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm.动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t (s),以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),3请求出t 可取的一切值2.2知识要点:切线长定理】1. 切线长定理:过圆外一点所作的圆的两条切线长相等2. 注意切线和切线长两个不同的概念【例题讲解】例1如图,从⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别为A ,B.如果∠APB =60°,PA =8,那么弦AB 的长是()A. 4B. 8C. 4D. 833例1图 变式1图【变式训练】1. 如图,PA ,PB ,CD 分别与⊙O 相切于点A ,B ,E ,若PA =7,则△PCD 的周长为_________2. 如图,PA ,PB 分别切⊙O 于点A ,B ,CD 切⊙O 于点E ,分别交PA ,PB 于点C ,D.若⊙O 的半径为r ,△PCD 的周长为3r ,连结OA ,OP ,则的值是_________OAPA变式2图变式3图3.如图,⊙O 与△ABC 中AB ,AC 的延长线及BC 边相切,且∠ACB =90°,∠A ,∠B ,∠C 所对的边长依次为3,4,5,则⊙O 的半径是___________.例2如图,PA ,PB 分别切⊙O 于点A ,B ,连结OP 与⊙O 交于点C ,连结AC ,B C.求证:AC =B C.【变式训练】1. 如图,在△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线交BC 于点E ,EF ⊥AB ,垂足为F .(1)求证:DE =B C.12(2)若AC =6,BC =8,求S △ACD ∶S △EDF 的值.2. 如图,O 是△ABC 内一点,⊙O 与BC 相交于F ,G 两点,且与AB ,AC 分别相切于点D ,E ,DE ∥BC ,连结DF ,EG .(1)求证:AB =A C.(2)若AB =10,BC =12,求当四边形DFGE 是矩形时⊙O 的半径.3. 如图,已知正方形ABCD 的边长为2,M 是BC 的中点,P 是线段MC 上的一个动点(不与点M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线交AD 于点F ,切点为E .求四边形CDFP 的周长.【综合例题讲解】1. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于点C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.2. 如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于点N .(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM ·AB ;(3)若AM =,sin ∠ABD =,求线段BN 的长.185352.3【知识要点:三角形的内切圆】1. 三角形内、外心的区别名称确定方法图形性质外心三角形_____________的交点内心三角形_____________的交点2. 注意“接”与“切”,“内”与“外”的区别,任意一个三角形都有________的内切圆和外接圆,但圆有__________个外切三角形和内接三角形.解题小技巧:(1)已知△ABC 的面积为S ,内切圆半径为r ,三边长为a ,b ,c ,则有: S=(a+b+c )12r (2)已知Rt △ABC 两直角边为a ,b ,斜边为c ,则该直角三角形的内切圆半径:r=(a+b+c )12例题讲解例1给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有( )A .1个B .2个C .3个D .4个【变式训练】1. 下列说法中,不正确的是( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等例2如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D. 16π6π8π5例2图变式1图【变式训练】1. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,⊙O 为△ABC 的内切圆,D 是斜边AB 的中点,则tan ∠ODA =()A.B.C. D. 233323例3如图,在平面直角坐标系中,有一正方形AOB C.反比例函数y =的图象经过正方形kx AOBC 对角线的交点,半径为4-2的圆内切于△ABC ,求k 的值.2【变式训练】1. 如图,⊙O 是以∠ACB 为直角的△ABC 的内切圆,切点分别是D ,E ,F .(1)填空:当_____________时,EF ∥AB (填上符合题目要求的一个条件即可).(2)当EF ∥AB 时,设⊙O 的半径r =1,DE ,AC 的延长线交于点G ,求GF 的长.2. 如图,在△ABC 中,AC =BC ,I 为△ABC 的内心,O 为BC 上一点,过B ,I 两点的⊙O 交BC 于点D ,tan ∠CBI =,AB =6.13(1)求线段BD 的长.(2)求线段BC 的长.【链接中考】1. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是()A .120°B .125°C .135°D .150°2. 一个钢管放在V 形架内, O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =________.3. 如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙Ocm ,且经过点B 、C ,那么线段AO = cm.4. . 如图,在Rt △ABC 中,∠C=90°,AC=12,BC=16,点O 为△ABC 的内心,M 为斜边AB 的中点,求OM 的长【综合例题讲解】例1如图,在△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC ,BC 相切于点P ,Q .(1)求∠POQ 的度数(用含α的代数式表示).(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的度数是否保持不变,并说明理由.(3)在(2)的条件下,如果AB =m(m 为已知数),cos α=,设AD =x ,DE =y ,求y35关于x 的函数表达式(并指出自变量x 的取值范围).例2 在Rt △ABC ,∠ACB=90°,AC=4,BC=3,CD ⊥AB 于点D ,以D 为坐标原点,CD 所在直线为y 轴建立如图所示的平面直角坐标系. (1)求A ,B ,C 三点的坐标;(2)若⊙O 1、⊙O 2分别为△ACD ,△BCD 的内切圆,求直线O 1O 2的函数表达式【课后作业】1. 如图,AB 是⊙O 的直径,CO ⊥AB ,CD 切⊙O 于D ,AD 交CO 于E.求证:CD =CE.2. 如图,⊙D 的半径为3,A 是⊙D 外一点,且AD =5,AB ,AC 分别与⊙D 相切于B ,C 两点,G 是上任意一点,过点G 作⊙D 的切线,交AB 于点E ,交AC 于点F .BC︵ (1)求△AEF 的周长.(2)当G 为线段AD 与⊙D 的交点时,连结CD ,求五边形DBEFC 的面积.3.如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB =16cm ,cos ∠OBH =.45(1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相离的位置,平移的距离应满足什么条件?4. 如图①,在四边形ABCD 中,∠D =∠C =90°,AB =4,BC =6,AD =8.点P ,Q 同时从A 点出发,分别做匀速运动,其中点P 沿AB ,BC 向终点C 运动,速度为每秒2个单位,点Q 沿AD 向终点D 运动,速度为每秒1个单位.当这两点中有一点到达终点时,另一点也停止运动.设这两点运动了t 秒.(1)动点P 与Q 哪一点先到达终点?此时t 为何值?(直接写出结果)(2)当0<t <2时,求证:以PQ 为直径的圆与AD 相切(如图②).(3)以PQ 为直径的圆能否与CD 相切?若能,求出t 的值或取值范围;若不能,请说明理由.。
浙教版九年级下册数学第二章知识点:第1节直线与圆的位置关系

浙教版九年级下册数学第二章知识点:第1
节直线与圆的位置关系
直线和圆位置关系
①直线和圆无公共点,称相离。
AB与圆O相离,dgt;r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
AB与⊙O相切,d=r。
(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x+y+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x+y+Dx+Ey+F=0,即成为一个关于x的方程如果b-4acgt;0,则圆与直线有2交点,即圆与直线相交。
如果b-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b-4aclt;0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y
轴(或垂直于x轴),将x+y+Dx+Ey+F=0化为
(x-a)+(y-b)=r。
令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
通过对浙教版九年级下册数学第二章知识点:第1节直线与圆的位置关系的学习,是否已经掌握了本文知识点,更多参考资料尽在!。
浙教版数学九年级下册_直棱柱的表面展开图

直棱柱的表面展开图立方体是常见的特殊的直四棱柱,下面我们以它为代表来复习直棱柱的表面展开图.一、知识要点1. 立方体的表面展开图(1)概念:将立方体沿某些棱剪开,且使六个面连在一起,然后铺平,这样展开后的平面图形称为立方体的表面展开图.(2)类型:立方体的表面展开图共有11种不同的情形,可归纳为4种基本类型.① 1—4—1型,如图(1)~(6),包括下列6种情形:(6)(5)(4)(3)(2)(1)说明:(a)每个图形都由三行组成,从上到下每行分别有1个,4个,1个小正方形;(b)以图(1)为基准,将第1行或第3行的小正方形左右平移即可得图(2)~(6);(c)若两个图形可通过轴对称变换得到的,就认为是同一种情形,如图(甲)与图(乙)所示.② 1—3—2型,如图(7)~(9),包括下列3种情形: (9)(8)(7)(乙)(甲)说明:每个图形都由三行组成,从上到下每行分别有1个,3个,2个小正方形;③2—2—2型,如图(10),只有1种情形.说明:这个图形由三行组成,从上到下每行都有2个小正方形;④3—0—3型,如图(11),只有1种情形.说明:这个图形可看作由三行组成,从上到下每行分别有3个,0个,3个小正方形,这样便于统一编写、记忆它们的型号.(3)注意点:①展开图的面与面之间必须以棱相连接,不能以顶点相连接;②行与行之间,不能同时有两对或两对以上的小正方形具有公共边;③有下列情形之一者,肯定不是立方体的表面展开图:(a)小正方形的个数不足6个或超过6 个; (b)行数是1行或超过3行(经旋转变换的图形除外);(c)图中包含“田”字型部份;(d)整个图形呈“L ”字型.2.直棱柱的侧面展开图直棱柱的侧面展开图是由若干个长方形或正方形组合而成的,整个图形是一个长方形或正方形.3.直棱柱的表面积与侧面积计算直棱柱的表面积与侧面积,实质上就是利用长方形或正方形的面积公式进行面积计算.二、典例赏析例1 如图是某些多面体的平面展开图,说出这些多面体的名称.解:因为图(1)是由6个正方形组成的多面体的平面展开图,所以它是立方体;图(2)是由2个直角三角形,3个长方形组成的多面体的平面展开图,所以它是直三棱柱. (10)(11)析解:(1)根据平面展开图中所给图形的形状,先判断几何体的底面是什么图形,从而确定是哪一种多面体.(2) 如图,图(1)可看作由上述“1—3—2型”的基本图形(8)旋转变换而得.例2 如图是一个几何体的三视图,主视图与左视图是大小相同的长方形,俯视图是等边三角形.(1)任意画出它的一种表面展开图;(2)若长方形的长为10cm,等边三角形的边长为4cm,求这个几何体的表面积.解:(1) 如图是该几何体的一种表面展开图.(2)这个几何体的表面积为3×(10×4)+)24421(222-⨯⨯⨯ =120+83(cm 2).析解:整个图形是一个不规则的图形,不能直接利用公式来计算,可用分割法把它转化为规则图形的面积来计算.例3 如图甲,有一个棱长为10cm 的立方体盒子,在盒子底部A 处有一只蚂蚁,欲吃顶点C 1处的一粒熟米.问蚂蚁应沿什么路径爬行,才能在最短的间内吃到这粒熟米?求出蚂蚁爬行的最短路径长.解:如图乙,它是立方体盒子沿侧棱展开的平面图形之一. 观察图形,根据“两点之间,线段最短”,可知蚂蚁沿线段AC 1爬行的路径最短,所用时间最短.在Rt △AB 1C 1中,AB 1=20cm ,B 1C 1=10cm.由勾股定理得AC 12=AB 12+B 1C 12=202+102=400+100=500,∴AC 1=105(cm).因此,蚂蚁沿着路径AC爬行,才能在最短的时间内吃到熟米,最短路径长1为105cm.析解:因为蚂蚁必须沿着立方体盒子的侧面爬行,所以要想在最短时间内吃两点不在同一个面内,须将它展开转到熟米,必须选择最短的路径.此时A、C1化为平面图形来解决.图乙是立方体盒子沿侧棱展开的平面图形之一.观察图形爬行的路径最短,所用时间最短.可知,蚂蚁沿线段AC1。
浙教版九年级数学下册第二章

【知识梳理1:切线的判定】1. 切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线2. 切线判定的三种方法:(1)和圆只有一个公共点的直线(2)圆心到直线的距离等于圆的半径的直线 (3)切线判定定理 例题讲解例1 下列说法中,不正确的是( )A.与圆只有一个交点的直线是圆的切线B.经过半径的外端,且垂直于这条半径的直线是圆的切线C.与圆心的距离等于这个圆的半径的直线是圆的切线D.垂直于半径的直线是圆的切线例2 如图,AB 是⊙O 的直径,下列条件中,不能判定直线AT 是⊙O 的切线的是( )A. AB =4,AT =3,BT =5B. ∠B =45°,AB =ATC. ∠B =55°,∠TAC =55°D. ∠ATC =∠B第2题 第3题例3 如图,已知AB 是⊙O 的弦,半径OC 经过AB 的中点D ,CE ∥AB ,点F 在⊙O 上,连结OA ,CF ,BF ,则下列结论中,不正确的是( )A. ∠F =12∠AOC B. AB ⊥BF C. CE 是⊙O 的切线 D. AC ︵=BC ︵例4如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB 与CD 交于点E ,CE =DE ,过点B 作BF ∥CD ,交AC 的延长线于点F ,求证:BF 是⊙O 的切线.【变式训练】1. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则点B 与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)(第1题) (第2题)2. 如图,已知∠ABC =90°,O 为射线BC 上一点.以点O 为圆心,12BO 长为半径作⊙O .当射线BA 绕点B 按顺时针方向旋转______________(不超过360°)时与⊙O 相切.3. 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别与BC ,AD 交于点E ,F .(1)求证:四边形BEDF 为矩形.(2)若BD 2=BE ·BC ,试判断直线CD 与⊙O 的位置关系,并说明理由.4. 如图,在△AOB 中,∠AOB =90°,OD ⊥AB 于点D.以点O 为圆心,OD 长为半径的圆交OA 于点 E ,在BA 上截取BC =OB ,连结CE .求证: CE 是⊙O 的切线.5. 如图,⊙O 的直径为AB ,点C 在圆周上(不与点A ,B 重合),AD ⊥C D. (1)若BC =3,AB =5,求AC 的长.(2)若AC 是∠DAB 的平分线,求证:直线CD 是⊙O 的切线.【知识梳理2:切线的性质】1. 切线的性质:经过切点的半径垂直于切线2. 只要知道以下其中两个性质就可以推出第三个:①过圆心;②过切点;③垂直于切线 例题讲解例1 如图,AB 是⊙O 的直径,C 是AB 延长线上的一点,且BC=OB ,CD 切⊙O 于点D. 则∠A =( )A. 15°B. 30°C. 60°D. 75°第1题 第2题例2 如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D.若OD =2,tan ∠OAB =12,则AB 的长是( )A. 4B. 2 3C. 8D. 4 3例3 如图,AB 为⊙O 的直径,PQ 切⊙O 于点T ,连结AT ,AC ⊥PQ 于点C ,交⊙O 于点D.(1)求证:AT 平分∠BA C.(2)若AO =2,AT =2 3,求AC 的长.例4如图,在△ABC 中,∠C =90°,AC +BC =8,O 是斜边AB 上一点,以点O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E . (1)当AC =2时,求⊙O 的半径.(2)设AC =x ,⊙O 的半径为y ,求y 关于x 的函数表达式.【变式训练】1. 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连结A C.若∠A=30°,PC=3,则BP的长为_________.第1题第2题2. 如图,半圆O与等腰直角三角形ABC的两腰CA,CB分别切于D,E两点,直径FG在AB上.若BG=2-1,则△ABC的周长为__________3. 如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A. 133 B.92 C.4313 D. 2 5第3题第4题4. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4 3.若动点D在线段AC上(不与点A,C重合)运动,过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC的中点时,DE=___________.(2)若点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=__________时,⊙C 与直线AB相切.5. 如图,AB是⊙O的直径,AD是⊙O的弦,F是DA延长线上的一点,AC平分∠F AB交⊙O于点C,过点C作CE⊥DF,垂足为E.(1)求证:CE是⊙O的切线.(2)若AE=1,CE=2,求⊙O的半径.6. 如图,AB为⊙O的直径,OC⊥AB,弦CD与OB交于点F,过点D,A分别作⊙O的切线交于点G,并与AB的延长线交于点E.(1)求证:∠1=∠2.(2)若OF∶OB=1∶3,⊙O的半径为3,求AG的长.【综合例题讲解】例1如图,公路MN与公路PQ在点P处交会,且QPN=30°,在点A处有一所中学,AP =160 m.假设拖拉机行驶时,周围100 m以内会受噪音影响,那么拖拉机在公路交会处沿PN方向行驶时,学校是否会受噪音影响?如果不受影响,请说明理由;如果受影响,且已知拖拉机的速度为18 km/h,则学校受影响的时间为多少秒?例2如图,在平面直角坐标系中,原点为O,点A的坐标为(4,0),点B的坐标为(-1,0),以AB的中点P为圆心,AB长为直径作⊙P交y轴正半轴于点C.(1)求经过A,B,C三点的抛物线所对应的函数表达式.(2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式.(3)试说明直线MC与⊙P的位置关系,并证明你的结论.【变式训练】1. 如图①,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥A C.(1)试判断△ABC的形状,并说明理由.(2)如图②,若线段AB,DE的延长线交于点F,∠C=75°,CD=2-3,求⊙O的半径和BF的长.2. 如图,射线QN 与等边三角形ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm.动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t (s),以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请求出t 可取的一切值2.2知识要点:切线长定理】1. 切线长定理:过圆外一点所作的圆的两条切线长相等2. 注意切线和切线长两个不同的概念 【例题讲解】例1 如图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别为A ,B.如果∠APB =60°,P A =8,那么弦AB 的长是( )A. 4B. 8C. 4 3D. 8 3例1图 变式1图 【变式训练】1. 如图,P A ,PB ,CD 分别与⊙O 相切于点A ,B ,E ,若P A =7,则△PCD 的周长为_________2. 如图,P A ,PB 分别切⊙O 于点A ,B ,CD 切⊙O 于点E ,分别交P A ,PB 于点C ,D.若⊙O 的半径为r ,△PCD 的周长为3r ,连结OA ,OP ,则OAP A的值是_________变式2图 变式3图3. 如图,⊙O 与△ABC 中AB ,AC 的延长线及BC 边相切,且∠ACB =90°,∠A ,∠B ,∠C 所对的边长依次为3,4,5,则⊙O 的半径是___________.例2如图,P A ,PB 分别切⊙O 于点A ,B ,连结OP 与⊙O 交于点C ,连结AC ,B C.求证:AC =B C.【变式训练】1. 如图,在△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线交BC 于点E ,EF ⊥AB ,垂足为F . (1)求证:DE =12B C.(2)若AC =6,BC =8,求S △ACD ∶S △EDF 的值.2. 如图,O 是△ABC 内一点,⊙O 与BC 相交于F ,G 两点,且与AB ,AC 分别相切于点D ,E ,DE ∥BC ,连结DF ,EG . (1)求证:AB =A C.(2)若AB =10,BC =12,求当四边形DFGE 是矩形时⊙O 的半径.3. 如图,已知正方形ABCD 的边长为2,M 是BC 的中点,P 是线段MC 上的一个动点(不与点M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线交AD 于点F ,切点为E .求四边形CDFP 的周长.【综合例题讲解】1. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于点C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.2. 如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于点N . (1)求证:∠ADC =∠ABD ; (2)求证:AD 2=AM ·AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.2.3【知识要点:三角形的内切圆】 1. 三角形内、外心的区别2. 注意“接”与“切”,“内”与“外”的区别,任意一个三角形都有________的内切圆和外接圆,但圆有__________个外切三角形和内接三角形. 解题小技巧:(1)已知△ABC 的面积为S ,内切圆半径为r ,三边长为a ,b ,c ,则有: S=12(a+b+c )r(2)已知Rt △ABC 两直角边为a ,b ,斜边为c ,则该直角三角形的内切圆半径: r=12(a+b+c )例题讲解例1给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有( )A .1个B .2 个C .3个D .4个 【变式训练】1. 下列说法中,不正确的是( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等例2如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A. 16B. π6C. π8D. π5例2图 变式1图【变式训练】1. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,⊙O 为△ABC 的内切圆,D 是斜边AB 的中点,则tan ∠ODA =( )A. 33B. 32C. 3D. 2 例3如图,在平面直角坐标系中,有一正方形AOB C.反比例函数y =k x的图象经过正方形AOBC 对角线的交点,半径为4-22的圆内切于△ABC ,求k 的值.【变式训练】1. 如图,⊙O 是以∠ACB 为直角的△ABC 的内切圆,切点分别是D ,E ,F .(1)填空:当_____________时,EF ∥AB (填上符合题目要求的一个条件即可).(2)当EF ∥AB 时,设⊙O 的半径r =1,DE ,AC 的延长线交于点G ,求GF 的长.2. 如图,在△ABC 中,AC =BC ,I 为△ABC 的内心,O 为BC 上一点,过B ,I 两点的⊙O交BC 于点D ,tan ∠CBI =13,AB =6. (1)求线段BD 的长.(2)求线段BC 的长.【链接中考】1. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则 ∠AIB 的度数是( )A .120°B .125°C .135°D .150°2. 一个钢管放在V 形架内, O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =________.3. 如图,在△ABC 中,,cos B .如果⊙Ocm,且经过点B 、C ,那么线段AO = cm .4. . 如图,在Rt △ABC 中,∠C=90°,AC=12,BC=16,点O 为△ABC 的内心,M 为斜边AB 的中点,求OM 的长【综合例题讲解】 例1如图,在△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC ,BC 相切于点P ,Q .(1)求∠POQ 的度数(用含α的代数式表示).(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的度数是否保持不变,并说明理由.(3)在(2)的条件下,如果AB =m(m 为已知数),cos α=35,设AD =x ,DE =y ,求y 关于x 的函数表达式(并指出自变量x 的取值范围).5cm AB AC ==35=例2 在Rt △ABC ,∠ACB=90°,AC=4,BC=3,CD ⊥AB 于点D ,以D 为坐标原点,CD 所在直线为y 轴建立如图所示的平面直角坐标系.(1)求A ,B ,C 三点的坐标;(2)若⊙O 1、⊙O 2分别为△ACD ,△BCD 的内切圆,求直线O 1O 2的函数表达式【课后作业】 1. 如图,AB 是⊙O 的直径,CO ⊥AB ,CD 切⊙O 于D ,AD 交CO 于E.求证:CD =CE.2. 如图,⊙D 的半径为3,A 是⊙D 外一点,且AD =5,AB ,AC 分别与⊙D 相切于B ,C两点,G 是BC ︵上任意一点,过点G 作⊙D 的切线,交AB 于点E ,交AC 于点F .(1)求△AEF 的周长.(2)当G 为线段AD 与⊙D 的交点时,连结CD ,求五边形DBEFC 的面积.3. 如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB =16 cm ,cos ∠OBH =45. (1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相离的位置,平移的距离应满足什么条件?4. 如图①,在四边形ABCD 中,∠D =∠C =90°,AB =4,BC =6,AD =8.点P ,Q 同时从A 点出发,分别做匀速运动,其中点P 沿AB ,BC 向终点C 运动,速度为每秒2个单位,点Q 沿AD 向终点D 运动,速度为每秒1个单位.当这两点中有一点到达终点时,另一点也停止运动.设这两点运动了t 秒.(1)动点P 与Q 哪一点先到达终点?此时t 为何值?(直接写出结果)(2)当0<t <2时,求证:以PQ 为直径的圆与AD 相切(如图②).(3)以PQ 为直径的圆能否与CD 相切?若能,求出t 的值或取值范围;若不能,请说明理由.。