人教版-数学-九年级上册-24.1.3弧、弦、圆心角导学案

合集下载

九年级数学上册 24.1.3 弧.弦.圆心角 精品导学案 新人教版

九年级数学上册 24.1.3 弧.弦.圆心角 精品导学案 新人教版

圆周角课题:24.1.3弧.弦.圆心角序号:学习目标:1、知识与技能:掌握圆心角的概念,掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个量就相等,及其它们在解题中的应用2.过程与方法:通过研究圆的旋转不变性,得出了弧.弦.圆心角之间的相等关系,并学会运用这些结论解决一些有关证明。

计算和作图问题。

3、情感.态度与价值观:引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

学习重点:“弧、弦、圆心角、弦心距关系的性质学习难点:“弧、弦、圆心角、弦心距关系的性质导学过程一、课前预习:阅读课本P80---81的有关内容,完成《导学》教材导读中的问题及自主测评。

.二、课堂导学:1.情境导入.阅读《导学案》85页的问题导学2. 出示任务自主学习阅读教材80.81页的有关内容,尝试解决下面的问题:1)举例说明什么是圆心角?2)教材P82探究中,通过旋转∠AOB,试写出你发现的哪些等量关系?为什么?3)在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?4)由探究得到的定理及结论是什么?3.合作探究《导学》难点探究和展题设计三、展示与反馈检查预习情况,解决学生疑惑。

四、课堂小结在同圆或等圆中,相等的圆心角所对的弧,所对的弦。

在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的相等,•所对的也相等。

垂径定理:分析:给出定理的推理格式推论:平分弦()的直径垂直于弦,并且五、达标检测:1、教材P83练习1.(直接填写在教材上)2、教材P83练习2.3、完成85页《导学案》.自主测评1—4题课后作业教材88页习题24.1 9-11题板书设计:24.1.3弧.弦.圆心角1.圆的旋转不变性----弧.弦.圆心角的关系定理2.强调“同圆或等圆”的含义和意义课后反思:通过本节课的学习,教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

人教版九年级数学上册导学案设计:24.1.3-弧、弦、圆心角

人教版九年级数学上册导学案设计:24.1.3-弧、弦、圆心角

24.1.3 弧、弦、圆心角一、学习目标:1. 了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用。

2. 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题。

二、学习重点、难点:1. 重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题。

2. 难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明。

三、学习过程:(一)学生预习 教师导学1、已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.2、自学课本P83---P 84(二)学生探究 教师引领思考下列问题:1.举例说明什么是圆心角?2.教材P83探究中,通过旋转∠AOB ,试写出你发现的哪些等量关系?为什么?3.在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?4.由探究得到的定理及结论是什么?在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。

在同圆或等圆中,如果两条弧相等,那么它们所对的 相等,•所对的 也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的 相等,•所对的 也相等.(三)学生展示 教师激励BAO例2.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?巩固练习:(四)学生达标 教师测评1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( )A .AB=2CDB .AB>CDC .AB<CD D.不能确定 3.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 4.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________. (六)拓展创新如图1和图2,MN 是⊙O 的直径,弦AB 、CD •相交于MN •上的一点P ,•∠APM=∠CPM . (1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.P⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒D。

人教版数学九年级上册教案-24.1.3弧、弦、圆心角

人教版数学九年级上册教案-24.1.3弧、弦、圆心角
在讲授新课的过程中,我注意到有的学生在听到圆周角定理时,眼神中透露出迷茫。于是我放慢了讲解的速度,通过画图和实际演示,让学生们更直观地理解这个定理。看到他们逐渐明白,我感到很欣慰。
课堂上的实践活动,我发现学生们积极参与,热烈讨论。但在小组讨论环节,有些小组的讨论似乎偏离了主题。我及时进行了引导,让他们回到弧、弦、圆心角的应用上来。这也提醒了我,在今后的教学中,要更加注意引导学生关注讨论的主题。
1.培养学生运用几何图形语言描述和表达弧、弦、圆心角等概念,提高空间想象能力和几何直观能力。
2.通过探索弧、弦、圆心角之间的关系,培养学生的逻辑推理能力和抽象思维能力。
3.结合实际操作,使学生能够运用圆周角定理解决实际问题,提高问题解决能力和创新意识。
4.培养学生合作交流、分享探究过程和结果的习惯,提高团队协作能力和口头表达能力。
5.引导学生从数学角度观察和分析现实问题,体会数学在生活中的应用,培养数学应用意识和数学素养。
三、教学难点与重点
1.教学重点
-弧、弦、圆心角的定义及其分类:这是本节课的基础,要求学生能够准确理解和区分这些基本概念。
-弧、弦、圆心角之间的关系:强调圆心角所对的弧和弦的性质,以及圆周角定理的应用。
-实际问题中的运用:通过解决实际问题,让学生掌握如何将弧、弦、圆心角的理论知识应用于实际情境。
举例解释:
-弧的定义:圆上任意两点间的部分,如点A到点B的弧AB。分类为优弧(大于半圆的弧)、劣弧(小于半圆的弧)和半圆。
-弦的定义:圆上任意两点的连线,如点A和点B之间的线段AB。分类为直径(通过圆心的弦)和普通弦。
-圆心角的定义:以圆心为顶点的角,如角AOB,其中O为圆心。
-圆周角一半。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如通过折叠和切割圆纸片来观察圆心角和弧和弦的关系。

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。

它主要介绍了弧、弦、圆心角的定义及其相互关系。

这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。

教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。

因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。

三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。

2.能够运用弧、弦、圆心角的性质解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。

2.运用弧、弦、圆心角的性质解决实际问题。

五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。

2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。

3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。

六. 教学准备1.准备相关的实物教具,如圆板、量角器等。

2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。

3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。

引导学生回顾圆的基本概念,为新课的学习做好铺垫。

2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。

通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。

24.1.3弧、弦、圆心角-人教版九年级数学上册教案

24.1.3弧、弦、圆心角-人教版九年级数学上册教案

24.1.3 弧、弦、圆心角 - 人教版九年级数学上册教案
一、教学目标
1.掌握弧、弦、圆心角的基本概念、性质及相互关系。

2.能够准确地应用所学知识解决与弧、弦、圆心角相关的问题。

二、教学重点和难点
1.弧、弦、圆心角的概念,包括它们之间的相互关系。

2.如何应用所学知识解决实际问题。

三、教学内容及步骤
1. 弧、弦、圆心角的概念
1.讲解弧、弦、圆心角的概念,并通过示例让学生理解它们之间的相互关系。

2.练习题:请画出如下各图中的弧、弦、圆心角,并标注名称。

2. 弧、弦、圆心角的性质和相互关系
1.讲解弧、弦、圆心角的性质,包括弦长定理、圆心角定理等。

2.通过练习题让学生巩固所学知识。

3. 实际问题的解决
1.通过实际问题的讲解,让学生学会如何应用所学知识解决各类相关问题。

练习题:
1.已知圆O的半径为5cm,弧AB的长度为8cm,求弦AB的长度以及圆心角AOB的度数。

2.如图,圆O的半径为6cm,弦AB的长度为9cm,求圆心角AOB的度数。

四、教学反思
通过本节课的学习,学生们对弧、弦、圆心角的概念及性质有了更深的认识,并学会了如何应用所学知识解决实际问题。

教学效果良好,达到了预期教学目标。

九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计

九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计
2.教学过程:
(1)学生观察弓箭图片,思考并回答问题。
(2)教师总结:弓箭的形状类似于圆的一部分,这就是我们今天要学习的弧、弦、圆心角。
(二)讲授新知,500字
1.教学活动设计:
在讲授新知环节,我将通过讲解、举例、演示等方法,让学生掌握弧、弦、圆心角的概念及其相互关系。
2.教学过程:
(1)教师讲解弧、弦、圆心角的概念,并通过黑板演示相关图形。
为了巩固本节课所学内容,确保学生对弧、弦、圆心角的概念、性质及相互关系有更深入的理解,特此布置以下作业:
1.基础巩固题:
(1)请学生完成课本24.1.3节的练习题1、2、3,以巩固弧、弦、圆心角的基本概念。
(2)从生活实例中找出至少3个与弧、弦、圆心角相关的现象,并简要说明它们之间的关系。
2.能力提升题:
(2)学生跟随教师思路,理解并掌握相关概念。
(3)教师通过实例讲解弧、弦、圆心角的相互关系,如圆周角定理等。
(三)学生小组讨论,500字
1.教学活动设计:
在此环节,我将组织学生进行小组讨论,旨在培养学生的合作精神和解决问题的能力。
2.教学过程:
(1)教师提出讨论主题,如:“如何证明圆周角定理?”
(2)学生分组讨论,共同探究解决问题的方法。
(二)过程与方法
1.通过观察、操作、猜想、验证等教学活动,引导学生自主探究弧、弦、圆心角的性质,培养他们的观察力和逻辑思维能力。
2.运用生活中的实例,让学生感受数学知识在实际问题中的应用,提高他们运用数学知识解决实际问题的能力。
3.采用小组合作、讨论交流等形式,培养学生的团队协作能力和语言表达能力。
(3)各小组汇报讨论成果,教师给予点评和指导。
(四)课堂练习,500字

人教版九年级数学上册24.1.3 弧、弦、圆心角导学案

人教版九年级数学上册24.1.3 弧、弦、圆心角导学案

124.1.3《弧、弦、圆心角》导学案一、学习目标1.掌握圆心角的概念。

2.掌握在同圆或等圆中,圆心角、弦、弧中有一组量相等就可以推出其它两组量也分别相等,及其它们在解题中的应用 。

二、预习内容自学课本83页至84页,完成下列问题: 1、圆具有哪些的对称性?2、什么是圆心角?怎样判断一个角是不是圆心角?3、教材84页思考中,当圆心角∠AOB=∠A 1OB 1时,试写出你发现的等量关系?并说明为什么? 三、探究学习1、还记得吗?圆是轴对称图形,经过圆心的任何一条直线都是它的对称轴,那么圆是中心对称图形吗?如果是,它的对称中心在哪里?把事先准备好的圆形纸片绕圆心旋转1800,所得图形与原图形重合吗?旋转任意角度呢?归纳总结:圆是中心对称图形,圆心就是它的对称中心;圆还具有旋转不变性。

2、 叫圆心角。

任何判断一个角是不是圆心角? 3、思考自主归纳:在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。

在同圆或等圆中,如果两条弧相等,那么它们所对的 相等,•所对的 也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的 相等,•所对的 也相等.4、在圆心角的性质定理中,为什么要强调“在同圆或等圆中”?能不能去掉? 5.填一填:如图,AB 、CD 是⊙O 的两条弦.(直接填写在教材85页练习1上)OBA CEDF2CBAO(1)如果AB=CD ,那么__________,______________ (2)如果AB CD = 那么_______,__________. (3)如果∠AOB=∠COD ,那么_________,_________.(4)如果 AB=CD ,OE ⊥AB 于E ,OF ⊥CD 于F ,垂足分别为E,F , OE 与OF 相等吗?为什么?6.试一试:例1 如图1,在⊙O 中,AB AC =,∠ACB=60°, 求证:∠AOB=∠BOC=∠AOC 。

四、巩固测评1、如果两个圆心角相等,那么 ( ) A .这两个圆心角所对的弦相等 B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2、如图:⊙O 中,AB=AC, ∠B=70°,∠C=( ) A 、30° B 、40° C 、70° D 、80°3、如图:AB 是⊙O 的直径,BC CD DE ==, ∠COD=35°,则∠AOE=五、学习心得。

人教版九年级(上)数学导学案设计:24.1.3弧-弦-圆心角

人教版九年级(上)数学导学案设计:24.1.3弧-弦-圆心角

24.1.3弧、弦、圆心角主备人:符后丽审核:数学备课组课型:新授课班级:学号:姓名:学习目标:1、了解圆的旋转不变性。

2、理解圆心角、弦心距的概念。

3、掌握圆心角、弧、弦、弦心距之间的关系,并能利用相关量之间的相互转化关系进行证明和计算。

学习重点:圆心角、弧、弦、弦心距之间的关系学习难点:灵活运用相关量之间的相互关系进行证明和计算学习过程:一复习回顾圆是轴对称图形吗?它的对称轴是,它有条对称轴。

二观察思考圆是中心对称图形吗?它的对称中心在哪里?圆和一般的中心对称图形相比有什么特殊性吗?圆旋转多少度可以和它本身重合?三圆心角的概念1、叫圆心角。

四探索新知1、观察与思考A、说一说:如图:圆心角是,它所对的弧是,它所对的弦是B、如图,在⊙O中有哪些圆心角?并指出他们说对的弧,所对的弦。

C、在上图中,如果:∠AOB=∠COD,观察一下圆心角与它所对的弦、弧,你可以发现什么?你有什么样的猜想?并把你的猜想写下来。

如果∠AOB=∠COD,我猜想。

D、证明猜想。

证明:2、归纳与总结A、(文字语言)圆心角定理:B、几何语言(推理格式)(已知)()3、辨析与反思:(1)如图,两同心圆中,∠AOB=∠A’OB’,问:①AB与A ‘B’是否相等?②AB与A‘B‘是否相等?A、观察与思考:在同圆或等圆中,如果轮换下面四组条件:①两个圆心角,②两条弧,③两条弦,④两条弦心距,你能得出什么结论?与同伴交流你的想法和理由.我们的结论是:(1)如图,若AB=CD,则、、;(2)如图若弧AB=弧CD,则、、;(3)如图,OE和OF是弦心距。

若OE=OF则、、;(4)如图,若∠AOB=∠COD,则、、。

B、总结与归纳归纳起来可以说成:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别。

C、几何语言:(1)∵∠AOB=∠COD(已知)∴;(2)∵AB=CD(已知)∴;(3)∵AB=CD(已知)∴;(4)∵OE=OF(已知)∴;六、例题引导例1:如图,在⊙O中,AB=AC,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC七、巩固训练1、如图,AB是⊙O的直径,BC=CD=DE,∠COD=35°,求∠AOE的度数。

人教版九年级数学上册《24.1.3 弧、弦、圆心角》教案

人教版九年级数学上册《24.1.3 弧、弦、圆心角》教案

第二十四章圆24.1 圆的有关性质24.1.3 弧、弦、圆心角一、教学目标1.掌握圆的旋转不变性,理解圆心角的概念.2.理解和掌握弧、弦、圆心角之间的关系.二、教学重点及难点重点:弧、弦、圆心角之间的关系及其应用.难点:探索弧、弦、圆心角之间的关系.三、教学用具多媒体课件,三角板、直尺、圆规。

四、相关资源五、教学过程【合作探究,形成知识】1.剪一个圆形纸片,把它绕圆心旋转180°,所得的图形与原图形重合吗?由此你能得到什么结论?把圆绕圆心旋转任意一个角度呢?师生活动:学生拿课前准备好的圆形纸片操作,小组交流、讨论;教师用多媒体课件演示,引导学生得到(1)圆是中心对称图形,圆心就是它的对称中心,圆具有旋转不变性.(2)圆心角:顶点在圆心的角叫做圆心角.2.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O 和⊙O ′,沿圆周分别将两圆剪下;(2)在⊙O 和⊙O ′上分别作相等的圆心角∠AOB 和∠A ′O ′B ′,如图所示,圆心固定; 注意:在画∠AOB 与∠A ′O ′B ′时,要使OB 相对于OA 的方向与O ′B ′相对于O ′A ′的方向一致,否则当OA 与O ′A ′重合时,OB 与O ′B ′不能重合.(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.问题1 通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.师生活动:教师叙述步骤,同学们一起动手操作、探究,在学生操作完毕后,教师指出在上述“做一做”过程中的发现:固定圆心,将其中一个圆旋转一个角度,使半径OA 与OA ′重合时,由于∠AOB =∠A ′O ′B ′.这样便可得到半径OB 与OB ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 与''A B 重合,弦AB 与弦AB ′重合,即''AB A B ,AB =AB ′.问题2 由此你们能探究出弧、弦、圆心角之间的关系吗?师生活动:由一名学生回答,教师根据学生的回答板书,并用符号语言表示出来. 弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.根据对上述关系的理解,下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动:学生观察思考、分组讨论,交流各自的意见.教师巡查,指导有困难的学生.由两名小组代表汇报,教师根据学生讨论的结果总结结论.总结:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.设计意图:讨论的目的是让学生在交流过程中取长补短,有易于学生积极构建自己的认知.证明过程中学生容易借助全等三角形对应边、对应高相等证明,但这里解决不了证明弧相等,采用多媒体演示进行旋转,使学生认识到要证明弧相等,可根据定义证明弧重合.问题:这个定理中不能忘记哪个前提?如果没有这个前提会怎样?师生活动:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如,可以请同学们画一个只有圆心角相等这一个条件的图.如图所示,虽然∠AOB =∠A ′OB ′,但AB ≠A ′B ′,弧AB ≠弧A ′B ′.教师进一步引导学生用同样的思路考虑命题“(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等”中的条件“在同圆或等圆中”是否能够去掉.设计意图:使学生加深印象,明白这个定理只有在同圆或等圆中才能成立,为解决实际问题打好基础.【例题分析,深化提升】例 如图,在⊙O 中,AB AC =,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC . OAB C师生活动:让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.教师引导:由AB AC =,得到AB AC =,△ABC 是等腰三角形.由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC .所以∠AOB =∠AOC =∠BOC .证明:∵AB AC =,∴ AB =AC ,△ABC 是等腰三角形.又∠ACB =60°,∴△ABC 是等边三角形,AB =BC =CA .∴∠AOB =∠BOC =∠AOC .设计意图:培养学生正确应用所学知识的能力,增强应用意识.【练习巩固,综合应用】1.下列图形中表示的角是圆心角的是( ).2.在同圆中,圆心角∠AOB =2∠COD ,则两条弧AB 与CD的关系是( ).A .AB =2CD B .AB >2CDC .AB <2CD D .不能确定3.如图,AB 是⊙O 的直径,BC =CD =DE ,∠COD =40°,则∠AOE 的度数为 .4.已知:如图,AB ,CD 是⊙O 的两条弦,OE ,OF 分别为AB ,CD 的弦心距,根据本节定理及推论填空:(1)如果AB =CD ,那么_____________,____________;(2)如果AB CD ,那么__________,_______________;(3)如果∠AOB =∠COD ,那么___________,____________;(4)如果AB =CD ,OE ⊥AB ,OF ⊥CD ,那么OE 与OF 相等吗?为什么?师生活动:第(1)(2)(3)问由三名学生思考后回答,第(4)问由一名学生上黑板板演,全班订正,教师补充不足的地方.设计意图:本练习是本节结论的综合应用,由于在圆中解决有关弦的问题时,常需要作“垂直于弦的直径”,且后面正多边形和圆等内容都涉及构造直角三角形,为给后面学习作铺垫,可以让学生归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量也都分别相等.通过本练习一方面巩固了新知,另一方面也进行了拓展.5.如图,AB ,AC 都是⊙O 的弦,且∠CAB =∠CBA .求证:∠COB =∠COA .O F E DC B O师生活动:教师鼓励学生独立思考,让学生表述自己的方法.6.如图,AB ,CD 是⊙O 的两条直径,BE =BD .求证:BE AC =.设计意图:让学生准确掌握圆心角的概念及圆心角、弧、弦之间的关系.参考答案1.A 2.A 3.60°5.证明:∵∠CAB =∠CBA (已知),∴AC =BC (等角对等边).∴∠COA =∠COB (在同一个圆中,如果两条弦相等,那么这两条弦所对的圆心角也相等).6.证明:∵AB ,CD 是⊙O 的两条直径,∴∠AOC =∠BOD .∴AC BD =.又BE =BD ,∴BE BD =.∴BE AC =.设计意图:加深对圆心角、弧、弦之间的关系的理解和掌握. 六、课堂小结圆是中心对称图形,圆心就是它的对称中心.圆心角的定义:顶点在圆心的角叫做圆心角.圆心角、弧、弦关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.此知识卡片反映圆心角、弦、弧的关系设计意图:总结回顾,培养学生的知识整理能力与语言表达能力,帮助学生自我评价学习效果.在PPT上呈现主要内容,更进一步加深学生对所学知识的印象.七、板书设计24.1 圆的有关性质——24.1.3 弧、弦、圆心角1.圆是中心对称图形,圆心是它的对称中心2.圆心角的定义3.圆心角、弧、弦关系的定理。

新人教九年级上册第24章24.1.3 弧、弦、圆心角(导学案)

新人教九年级上册第24章24.1.3 弧、弦、圆心角(导学案)

新人教九年级上册第24章24.1.3 弧、弦、圆心角一、新课导入1.导入课题:问题1:圆是中心对称图形吗?它的对称中心在哪里?问题2:把圆绕着圆心旋转一个任意角度,旋转之后的图形还能与原图形重合吗?这节课我们利用圆的任意旋转不变性来探究圆的另一个重要定理.(板书课题)2.学习目标:(1)知道圆是中心对称图形,并且具有任意旋转不变性.(2)知道什么样的角是圆心角,探究并得出弧、弦、圆心角的关系定理.(3)初步学会运用弧、弦、圆心角定理解决一些简单的问题.3.学习重、难点:重点:弧、弦、圆心角关系定理.难点:探究并证明弧、弦、圆心角关系定理.二、分层学习1.自学指导:(1)自学内容:教材第83页至第84页例3之前的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.(4)探究参考提纲:①剪一个圆形纸片,把它绕圆心旋转180°和任意角度,观察旋转前后的两个图形是否重合,并填空:圆是中心对称图形,圆心是它的对称中心;把圆绕着圆心旋转任意一个角度,旋转之后的图形都与原图形重合.②顶点在圆心的角叫做圆心角.重合④结论:在在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量都相等.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生能否在提纲的指导下顺利完成整个探究活动.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)弧、弦、圆心角关系定理,尤其是定理成立的前提条件是“在同圆或等圆中”.(2)该定理可以实现角、线段(弦)、弧的相互转换.(3)练习:如图,AB,CD是⊙O的两条弦.解:相等.理由:∵OE⊥AB,OF⊥CD,由垂径定理得AE=BE=AB,CF=DF=CD.又AB=CD,∴AE=CF.在Rt△AOE和Rt△COF中,OA=OC,AE=CF,∴Rt△AOE≌Rt△COF,∴OE=OF.1.自学指导:(1)自学内容:教材第84页例3.(2)自学时间:3分钟.(3)自学方法:阅读理解,推理论证.(4)自学参考提纲:它们所对的弦AB=BC=AC,或证明它们都是120°.b.在每一步后面填上相应的依据:证明:∴AB=AC(在同圆或等圆中,同弧或等弧所对的弦相等).又∠ACB=60°,∴△ABC是等边三角形(有一个角是60°的等腰三角形是等边三角形).即AB=BC=AC,∴∠AOB=∠BOC=∠AOC(在同圆或等圆中,同弦或等弦所对的圆心角相等).c. 你还有其他的证法吗?∴AB=AC. 又∠ACB=60°,∴△ABC是等边三角形.易证△AOB≌△BOC≌△AOC,∴∠AOB=∠BOC=∠AOC.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生是否会用定理实现角、线段、弧的转换.②差异指导:看图逐步适应从直线到曲线的过渡.(2)生助生:小组内相互交流、研讨.4.强化:弧、弦、圆心角的关系定理是证弧等、弦等、角等的常用定理.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还存在哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性,小组合作情况、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课学生通过观察、比较、操作、推理、归纳等活动,得出了圆的中心对称性、圆心角定理及推论,可以发展学生勇于探究的良好习惯,培养动手解决问题的能力.(2)本节课中,教师应让学生掌握解题方法,即要证弦相等或弧相等或圆心角相等,可先证其中一组量对应相等.掌握这个解题方法有助于提升学生的抽象思维能力.(时间:12分钟满分:100分)一、基础巩固(70分)A.36°B.72°C.108°D.48°2.(15分)如图,已知AB是⊙O的直径,C、D是半圆上两个三等分点,则∠COD=60°.3.(15分)如图,在⊙O中,点C是的中点,∠A=50°,则∠BOC=40°.二、综合应用(20分)6. (20分)如图,A,B 是⊙O 上的两点,∠AOB=120°,C 的中点,求证:四边形OACB 是菱形.证明:∵C 是AB 的中点,∴AC=BC ,∴∠AOC=∠BOC=∠AOB=60°. 又∵OA=OC=OB,∴△AOC 与△BOC 是等边三角形.∴∠A=60°. 又∠AOB=120°,∴AC ∥OB. ∵AC=OC=OB,∴四边形OACB 是平行四边形. 又OA=AC,∴四边形OACB 是菱形.三、拓展延伸(10分)7.(10分)如图,在⊙O 中,弦AB 与CD 相交于点E ,AB=CD . (1)求证:△AEC ≌△DEB ;(2)点B 与点C 关于直线OE 对称吗?试说明理由.(2)解:对称.理由:连接OB 、OC. 则OB=OC. 由(1)知BE=CE ,连接BC ,则OE 垂直平分BC. ∴点B 与点C 关于直线OE 对称.。

新人教版九年级数学上册24.1.3 弧、弦、圆心角 导学案

新人教版九年级数学上册24.1.3 弧、弦、圆心角 导学案

新人教版九年级数学上册24.1.3 弧、弦、圆心角导学案学习目标:理解弧、弦、圆心角之间的关系, 并运用这些关系解决有关的问题. 重难点:弧、弦、圆心角之间的关系的定理及应用. 学习过程: 一、预习导学1.圆是轴对称图形,其对称轴是 ; 圆还是 对称图形,其对称中心是 .2.圆绕 旋转 都可以与自身重合, 由此可得: 圆具有 . 二、学习研讨1.圆心角: 顶点在 的角,叫做圆心角.2.探究:(1)如图,⊙O 中,AOB A OB ∠=∠'',则 _____ AB ______A B ''. 归纳:. 思考:能否把定理中的“在同圆或等圆中”去掉吗?为什么?则_____AOB A OB ∠∠'',AB ______A B ''. (2)如图,⊙O 中,归纳:.(3)如图,⊙O 中,AB A B ='',则_____AOB A OB ∠∠'',综上,可把以上三个结论用一句话来概括:判断:(打“√”或“×”)1.相等的圆心角所对的弧相等. ( )简记A′B′oABA BA 'B '=A 'B 'A B A 'B 'A BODCABCBAO2.顶点在圆上的角叫圆心角. ( )3.相等的弦所对的弧相等. ( )4.等弧所对的弦相等. ( )5.弦相等则所对的圆心角相等. ( ) 三、新知运用 例 如图,在⊙O 中,,∠ACB=60°求证:∠AOB=∠BOC=∠AOC.练习:如图,在⊙O 中,AD=BC,比较AB 与CD 的长度,并证明你的结论.学后反思:简记=A C A B。

24.1.3 弧、弦、圆心角导学案(人教版)

24.1.3 弧、弦、圆心角导学案(人教版)

图2 图3C图1 24.1.3 弧、弦、圆心角导学案一、自主学习:1.圆(填“是”或“不是”)中心对称图形,若是,它的对称中心在哪里?2.把圆绕圆心旋转角度后,仍与原来的圆重合.把圆的这个性质叫圆的旋转不变性.3. 的角叫做圆心角.若把圆的圆心角等分成360 份,则每一份的圆心角是,同时整个圆也被分成了360 份,每一份这样的弧叫做的弧。

由此可得圆心角的性质:圆心角的度数和它所对弧的度数.例如,图1中,若∠AOB=50°,则AB的度数为,BC的度数为4.如图2,①∠AOB所对的弧为,所对的弦为;②AB所对的圆心角为,所对的弦为;③弦AB所对的圆心角为,所对的弧为.5.阅读教材83—84页,思考:①教材中是如何证明“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”的?(1)如图3所示的⊙O中,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?(2)类比(1),当AB=A'B'时,能得到哪些等量关系?若AB=A'B'呢?②教材84页的三个定理表述上有什么不同?为什么不说“在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等”呢?③为什么要强调“在同圆或等圆中”?你能画图说明吗?④如何用数学符号语言表示“弧、弦、圆心角之间的关系”?二、练习作业:1.如图,AB、CE是⊙O的直径,∠COD=60°,且弧AD=弧BC,那么与∠AOE相等的角有,与∠AOC相等的角有_________.2.一条弦把圆分成1:3两部分,则弦所对的圆心角为________.3.弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.4.如图,AB为圆O的直径,弧BD=弧BC,∠A=25°,则∠BOD=______.5.如图,AB、CD是⊙O的两条弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM,AB=6,则CD=_______.6.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_________.7.如图,已知C为弧AB的中点,OA⊥CD于M,CN⊥OB于N,若OA=r,ON=a,则CD=_ _ __.8.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对9.如图,在圆O中,直径MN⊥AB,垂足为C,则下列结论中错误的是()A.AC=BC B.弧AN=弧BN C.弧AM=弧BM D.OC=CN10.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42B.82C.24 D.1611. 在半径为2cm的⊙O中有长为2cm的弦AB,则弦AB所对的圆心角为()A.60°B.90°C.120°D.150°12.如图,在半径为2cm的⊙O内有长为23cm的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90°C.120°D.150°13.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立.....的是()A.∠COE=∠DOE B.CE=DE C.OE=BE D.弧BD=弧BC14.如图,在△ABC中,∠A=70°,⊙O截△ABC的三边所得的弦长相等,∠BOC=()A.140°B.135°C.130°D.125°ONCA B第9题第12题OA BAEBOC D第13题OB第14题。

《24.1.3 弧、弦、圆心角》教案、导学案

《24.1.3 弧、弦、圆心角》教案、导学案

《24.1.3 弧、弦、圆心角》教案【教学目标】1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.【教学过程】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A.∠ABC B.∠AOB C.∠OAB D.∠OCB解析:根据圆心角的概念,∠ABC、∠OAB、∠OCB的顶点分别是B、A、C,都不是圆心O,因此都不是圆心角.只有B中的∠AOB的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质 【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD=∠DOE.∵∠AOE=60°,∴∠BOC =∠COD=∠DOE=13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A=________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B=∠C.因为∠B=70°,所以∠C=70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N.求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD.∵OA=OB.又M ,N 分别是OA ,OB 的中点,∴OM =ON.又∵CM⊥AB,DN ⊥AB ,∴∠CMO =∠DNO=90°.∴Rt △CMO ≌Rt △DNO.∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F.∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON.又∵OM⊥CE,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD.由证法1,知CM =DN.又∵AM=BN ,∠AMC =∠BND=90°,∴△AMC ≌△BND.∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计【教学反思】教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.《24.1.3 弧、弦、圆心角》教案【教学内容】1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【重难点、关键】1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用. 【教学过程】 一、复习引入(学生活动)请同学们完成下题.已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.老师点评:绕O 点旋转,O 点就是固定点,旋转30°,就是旋转角∠BOB ′=30°.二、探索新知如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角. (学生活动)请同学们按下列要求作图并回答问题: 如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.AB ''A B AB ''A B AB ''A B BAOB '(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.(学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?B'A 'AB''A B AB CD D分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到= 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF (2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是: ∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AB=2AE ,CD=2CF ∴AB=CD∴=,∠AOB=∠COD三、巩固练习 教材 练习1 四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由. (2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若AB CD 1212AB CD 1212AB CD不成立,请说明理由.(3) (4)分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F ∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF ∴∠1+∠2=∠3+∠4 ∴AB=CD五、归纳总结(学生归纳,老师点评)PN本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、《24.1.3 弧、弦、圆心角》导学案学习目标:了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.一、导学过程:(阅读教材P82 — 83 , 完成课前预习)1、知识准备(1)圆是轴图形,任何一条所在直线都是它的对称轴.(2)垂径定理推论.2、预习导航。

人教版数学九年级上册24.1.3 弧、弦、圆心角 教案

人教版数学九年级上册24.1.3 弧、弦、圆心角  教案

24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。

人教版九年级数学上册 24-1-3 弧、弦、圆心角导学案

人教版九年级数学上册   24-1-3 弧、弦、圆心角导学案

人教版九年级数学上册导学案第二十四章圆24.1.3 弧、弦、圆心角【学习目标】1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角。

2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系的证明和计算。

3.能利用圆心角、弦、弧之间的关系解决有关问题。

【课前预习】1.在半径为1的弦所对的弧的度数为()A.90°B.145度C.90°或270°D.270度或145度2.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm3.下列命题①若a>b,则am²>bm²②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形是±4.其中真命题的个数是()A.0B.1C.2D.34.若AB和CD的度数相等,则下列命题中正确的是()A.AB=CD B.AB和CD的长度相等C.AB所对的弦和CD所对的弦相等D.AB所对的圆心角与CD所对的圆心角相等5.下列说法中错误的有()①过弦的中点的直线平分弦所对的两条弧;②弦的垂线平分它所对的两条弧;③过弦的中点的直径平分弦所对的两条弧;④平分不是直径的弦的直径平分弦所对的两条弧.A.1个B.2个C.3个D.4个6.下列说法错误的是()A.垂直于弦的直径平分这条弦B.平分弦的直径垂直于这条弦C.弦的垂直平分线经过圆心D.同圆或等园中相等的弧所对的圆周角相等7.下列命题正确的是( )A .点(1,3)关于x 轴的对称点是(1,3)-B .函数23y x =-+中,y 随x 的增大而增大C .若一组数据3,x ,4,5,6的众数是3,则中位数是3D .同圆中的两条平行弦所夹的弧相等8.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为()A .2BC .2D .69.如图,△ABC 中,AB=5,AC=4,BC=2,以A 为圆心AB 为半径作圆A ,延长BC 交圆A 于点D ,则CD 长为()A .5B .4C .92 D .10.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【学习探究】自主学习阅读课本,完成下列问题1、填空:(1)圆心角的概念:顶点在_______的角叫做圆心角。

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册第24章《圆》的第三节“弧、弦、圆心角”是本章的重要内容。

本节主要介绍了弧、弦、圆心角的定义及它们之间的关系。

通过本节课的学习,学生能够理解弧、弦、圆心角的含义,掌握它们之间的联系,并为后续学习圆的性质和圆的证明打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理有一定的了解。

但是,对于弧、弦、圆心角这些概念,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,逐步理解和掌握这些概念及它们之间的关系。

三. 教学目标1.知识与技能:理解弧、弦、圆心角的定义,掌握它们之间的关系。

2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:弧、弦、圆心角的定义及其关系。

2.难点:理解弧、弦、圆心角之间的联系,以及如何在具体问题中应用。

五. 教学方法1.情境教学法:通过生活实例引入弧、弦、圆心角的概念,激发学生的学习兴趣。

2.小组讨论法:引导学生分组讨论,发现弧、弦、圆心角之间的关系。

3.案例教学法:分析具体案例,让学生在实践中掌握弧、弦、圆心角的应用。

4.引导发现法:教师引导学生发现问题,分析问题,解决问题。

六. 教学准备1.教学课件:制作课件,展示弧、弦、圆心角的相关图片和动画。

2.教学道具:准备一些实际的弧、弦、圆心角的模型,以便学生直观地感受。

3.练习题:挑选一些有关弧、弦、圆心角的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如月亮的形状、吊扇的旋转等,引导学生思考:这些现象与数学中的哪些概念有关?进而引入弧、弦、圆心角的概念。

2.呈现(10分钟)展示课件,呈现弧、弦、圆心角的定义及它们之间的关系。

人教版数学九年级上册第24章圆24.1.3弧、弦、圆心角优秀教学案例

人教版数学九年级上册第24章圆24.1.3弧、弦、圆心角优秀教学案例
在教学过程中,我将以实际生活中的实例引入,激发学生的学习兴趣,接着通过引导学生观察和操作几何模型,让学生直观地理解和掌握弧、弦、圆心角的概念。同时,我将利用多媒体课件和教具,以动态的方式展示弧、弦、圆心角的变化关系,帮助学生建立起直观的几何形象。
在课堂练习环节,我将设计一系列具有层次性的题目,让学生在解答问题的过程中巩固所学知识,并通过小组合作交流,培养学生的团队协作能力和解决问题的能力。最后,我将进行课堂总结,强调本节课的重点和难点,为学生后续的学习打下坚实的基础。
3.学生通过自主学习、合作学习和探究学习,培养自学能力、合作能力和创新意识。
4.学生通过运用弧、弦、圆心角的知识解决实际问题,提高应用能力和实践能力。
(三)情感态度与价值观
1.学生能够积极参与课堂学习,对数学产生兴趣,树立自信心。
2.学生能够体验到数学学习的乐趣,养成积极思考、善于动手的良好学习习惯。
2.问题情境:设计一些与圆的弧、弦、圆心角相关的问题,如“自行车轮的周长是多少?”、“如何测量圆的直径?”等,激发学生的思考和探究欲望。
3.操作情境:利用多媒体课件和教具,展示圆的弧、弦、圆心角的动态变化,让学生直观地感受和理解它们之间的关系。
4.实践情境:让学生亲自动手进行实验和操作,如测量和绘制圆的弧、弦、圆心角,增强学生的实践能力和体验。
(五)作业小结
3.举例说明弧、弦、圆心角在实际问题中的应用:通过实际问题的引入,讲解如何运用弧、弦、圆心角的知识解决问题,引导学生运用和巩固。
(三)学生小组讨论
1.设计小组讨论任务,让学生分组讨论和探究弧、弦、圆心角的关系和应用。
2.引导学生通过观察、操作和思考,发现弧、弦、圆心角之间的联系,培养学生的合作意识和解决问题的能力。

人教版数学九年级上册24.1.3弧、弦、圆心角教案

人教版数学九年级上册24.1.3弧、弦、圆心角教案

24.1.3《弧、弦、圆心角》教案教材分析本节内容主要研究的是弧、弦、圆心角的关系的推导和应用.它是在学生学习了圆的有关概念和性质后学习的,是以后学习圆周角的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能.学情分析九年级学生的心理特点是形象思维大于抽象思维和认知规律从特殊到一般.结合学生实际学习情况(已较学习了圆的相关概念和性质)进行本课设计的.从引入时实物圆的构成元素的启发引导,到弧、弦、圆心角三个量的关系的学生自主探索,再到学生与学生之间的合作交流学习,都要突出学生是探索性学习活动的主体是否能充分发挥学生自主学习、探究能力的关键.教学目标知识技能1.通过观察和实验,使学生了解圆心角的概念;2.掌握圆心角定理及其推论,并应用定理和推论解决问题;3. 感悟数学思想过程与方法1.经历用圆心角和旋转的知识探索的过程,进一步体会和理解研究几何图形的各种方法.情感态度1.结合本节课特点,让学生了解数学的价值,激发学生探究、发现数学问题的兴趣和欲望.教学重点在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等及其两个推论和它们的应用.教学难点探索定理和推论,以及它们的应用.教学准备与教学媒体学案、多媒体课件、教具、人教版九年级数学课本教法及学法自主、合作、探究、体验式教学法教学过程设计教学环节教学活动师生活动设计意图环节1情境引入环节2探究新知活动1:播放古老水车保稻田的视频,利用水车引入圆的有关概念和性质.1、圆心角:顶点在圆心的角叫圆心角.2、圆心角所对的弧和所对的弦;3、圆的性质:圆是中心对称图形,圆具有旋转不变性.活动2:探究:任意给圆心角,对应出现三个量:圆心角,圆心角所对的弦和所对的弧,这三个量之间会有什么关系呢?(出示思考题,演示教具)思考:如图,⊙O(及⊙O1和⊙O2)中,当圆心角∠AOB•和∠A•′OB•′相等时,它们所对的弧AB和''A B、弦AB和弦A′B′有怎样的数量关系?为什么?AB=''A B,AB=A′B′理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′∴半径OB与OB′重合∵点A与点A′重合,点B与点B′重合∴AB与''A B重合,弦AB与弦A′B′重合∴AB=''A B,AB=A′B′因此,在同圆中,相等的圆心角所对的弧相等,所对的弦相等.播放古老水车保稻田的视频,出示水车图片,学生回答在水车上看到那些圆的基本元素.教师出示思考题,并演示教具学生思考,合作讨论,教师点名回答问题.通过观看视频,感受中国人民在生产实践中表现出的聪明才智,利用水车的形象引入课题.运用教具直观形象的表示圆心角、弧、弦三组相对应的量之间的关系让学生亲自动手,进行实验、探究、得出结论,激发学生的求知欲望,进而得到成功的体验.规范学生证明过程的书写.环节4知识应用环节5大展身手练习:1、如图,AB、CD是⊙O的两条弦。

人教版九年级数学上册《24-1-3 弧、弦、圆心角》导学案设计优秀公开课

人教版九年级数学上册《24-1-3 弧、弦、圆心角》导学案设计优秀公开课

24.1.3 弧、弦、圆心角学习目标:了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.一、导学过程:(阅读教材P82—83,完成课前预习)1、知识准备(1)圆是轴图形,任何一条所在直线都是它的对称轴.(2)垂径定理推论.2、预习导航。

(1)圆心角:顶点在的角叫做圆心角。

(2)等圆:能够的圆叫做等圆,同圆或等圆的半径。

(3)弧、弦、弦心距、圆心角的关系:定理:在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的相等,所对的弦也,所对的弦心距也。

在同圆或等圆中,如果两条弦相等,那么它们所对的、、相等.注:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对应的其余各组量也。

O二、课堂练习。

1. 如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对2. 在同圆中,圆心角∠AOB=2∠COD,则两条弧 AB 与 CD 的关系是()A. AB=2CDB .AB>2CDC .AB<2CD D .不能确定3. 一条弦长恰好为半径长,则此弦所对的弧是半圆的 .4. 如图,在⊙O 中,AB=AC ,∠AOB=60 °,求证:∠AOB=∠BOC=∠AOC三、课堂小结在同圆或等圆中,相等的圆心角所对的 相等,所对的弦也. 在同圆或等圆中,如果两条弧相等,那么它们所对的 、、相等. 四、反馈检测。

A1. 如图,⊙O 中,如果 AB=2CD ,那么( ).CBA .AB=ACB .AB=ACC .AB<2ACD .AB>2AC2.如图,以平行四边形 ABCD 的顶点 A 为圆心,AB 为半径作圆,分别交 BC 、AD 于 E 、F ,若∠D=50°,求 BE 的度数和 BF 的度数.OBCE OD3.如图,在⊙O 中,C 、D 是直径 AB 上两点,且 AC=BD ,MC⊥AB,ND⊥AB,M 、N 在⊙O 上.(1)求证:AM =BN (2)若 C 、D 分别为 OA 、OB 中点,则 AM=MN=NB 成立吗?4. 如图,∠AOB=90°,C 、D 是 AB 三等分点,AB 分别交 OC 、OD 于点 E 、F , 求证:AE=BF=CD .C5. 如图 , AB 和 DE 是⊙O 的直径,弦 AC∥DE,若弦 BE=3,A B求弦 CE 长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.3 弧、弦、圆心角
1.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系. 2.运用上述三者之间的关系来计算或证明有关问题.
阅读教材第83至84页内容,回答下列问题. 知识探究
1.顶点在________的角叫做圆心角.
2.在同圆或等圆中,相等的圆心角所对的弧________,所对的弦也________.
3.在同圆或等圆中,两个________,两条________,两条________中有一组量相等,它们所对应的其余各组量也相等.
4.在⊙O 中,AB 、CD 是两条弦.
(1)如果AB =CD ,那么________,________; (2)如果AB ︵=CD ︵
,那么________,________; (3)如果∠AOB =∠COD ,那么________,________.
自学反馈
1.如图,AD 是⊙O 的直径,AB =AC ,∠CAB =120°,根据以上条件写出三个正确结论.(半径相等除外)
(1)________________; (2)________________; (3)________________.
2.如图,在⊙O 中,AB ︵=AC ︵
,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.
3.如图,(1)已知AD ︵=BC ︵
.求证:AB =CD ; (2)如果AD =BC ,求证:DC ︵=AB ︵
.
活动1 小组讨论
例1 在⊙O 中,一条弦AB 所对的劣弧为圆周的1
4
,则弦AB 所对的圆心角为90°.
整个圆周所对的圆心角即以圆心为顶点的周角.
例2 如图,在⊙O 中,AB ︵=AC ︵
,∠ACB =75°,求∠BAC 的度数.
解:30°.
例3 已知:如图,AB 、CD 是⊙O 的弦,且AB 与CD 不平行,M 、N 分别是AB 、CD 的中点,AB =CD ,那么∠AMN 与∠CNM 的大小关系是什么?为什么?
(1)OM 、ON 具备垂径定理推论的条件;
(2)同圆或等圆中,等弦的弦心距也相等. 解:∠AMN =∠CNM.
∵AB =CD ,M 、N 为AB 、CD 中点,
∴OM =ON ,OM ⊥AB ,ON ⊥CD. ∴∠OMA =∠ONC ,∠OMN =∠ONM. ∴∠OMA -∠OMN =∠ONC -∠ONM , 即∠AMN =∠CNM. 活动2 跟踪训练
1.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵
,∠COD =35°,求∠AOE 的度数.
2.如图所示,CD 为⊙O 的弦,在CD 上截取CE =DF ,连接OE 、OF ,并且它们的延长线交⊙O 于点A 、B.
(1)试判断△OEF 的形状,并说明理由; (2)求证:AC ︵=BD ︵.
(1)过圆心作垂径;(2)连接AC 、BD ,通过证弦等来证弧等.
3.如图,AB 是⊙O 的直径,M 、N 是AO 、BO 的中点.CM ⊥AB ,DN ⊥AB ,分别与圆交于C 、D 点.求证:AC ︵=BD ︵
.
连接AC 、OC 、OD 、BD ,构造全等三角形.
活动3 课堂小结
圆心角定理是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.
【预习导学】 知识探究
1.圆心 2.相等 相等 3.圆心角 弦 弧 4.(1)AB ︵=CD ︵
∠AOB =∠COD (2)AB =CD ∠AOB =∠COD (3)AB =CD AB ︵=CD ︵
自学反馈
1.△ACO ≌△ABO AD 垂直平分BC AC ︵=AB ︵ 2.证明:∵AB ︵=AC ︵
,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形.∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC. 3.证明:(1)∵AD ︵=BC ︵,∴AD ︵+AC ︵=BC ︵+AC ︵.∴DC ︵=AB ︵.∴AB =CD.(2)∵AD =BC ,∴AD ︵=BC ︵.∴AD ︵+AC ︵=BC ︵+AC ︵,即DC ︵=AB ︵.
【合作探究】 活动2 跟踪训练
1.75°. 2.(1)△OEF 为等腰三角形.理由:过点O 作OG ⊥CD 于点G.则CG =DG.∵CE =DF ,∴CG -CE =DG -DF.∴EG =FG .∵OG ⊥CD ,∴OG 为线段EF 的中垂线.∴OE =OF.∴△OEF 为等腰三角形.(2)证明:连接AC 、BD.由(1)知OE =OF ,又∵OA =OB ,∴AE =BF ,∠OEF =∠OFE.∵∠CEA =∠OEF ,∠BFD =∠OFE ,∴∠CEA =∠DFB.在△CEA 与△DFB 中,AE =BF ,∠CEA =∠DFB ,CE =DF ,∴△CEA ≌△DFB.∴AC =BD.∴AC ︵=BD ︵
. 3.证明:连接AC 、OC 、OD 、BD.∵M 、N 为AO 、BO 中点,∴OM =ON ,AM =BN.∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.在Rt △CMO 与Rt △DNO 中,OM =ON ,OC =OD ,∴Rt △CMO ≌Rt △DNO.∴CM =DN.在Rt △AMC 和Rt △BND 中,AM =BN ,∠AMC =∠BND ,CM =DN ,∴△AMC ≌△BND.∴AC =BD.∴AC ︵=BD ︵
.。

相关文档
最新文档