导学案(导数的含义几何意义与运算)
导数的概念及其几何意义教案
导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。
在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。
2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。
导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。
二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。
对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。
通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。
2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。
对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。
通过导数,我们可以更直观地理解函数的整体形态和特性。
三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。
通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。
2. 导数与积分的关系在微积分中,导数和积分是密切相关的。
导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。
导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。
结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。
通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。
“导数的概念及其几何意义”教学设计
一、内容与内容解析本课时内容选自人教A 版《普通高中课程标准实验教科书·数学(选修2—2)》第一章“导数及其应用”中第一单元“变化率与导数”中的单元分讲2——导数的概念及其几何意义.本课时内容是在学生已经学习了单元分讲1——章引言和两个变化率问题,即已经研究了物理学中的平均速度和瞬时速度,以及几何学中的割线斜率和切线斜率的基础上,通过数学抽象,得出导数的概念及其表达.通过信息技术,直观感受“以直代曲”的极限思想,感受导数的几何意义,抽象生成一般曲线y =f ()x 在点()x 0,f ()x 0处的切线定义,体会微积分的重要思想——用运动变化的观点解决问题.基于以上分析,确定本课时的教学重点:导数的概念,导数的几何意义,极限思想.二、目标与目标解析本节课的教学目标与目标解析如下.(1)经历解决生活中不同领域的瞬时变化率问题,抽象得到导数的概念及其数学表达.通过类比探究,抽象概括得出导数的几何意义,生成一般曲线在某一点处的切线的定义.应用信息技术,直观感受“逼近”和“以直代曲”的极限思想.体会微积分的重要思想——用运动变化的观点解决问题.(2)理解导数的概念,掌握利用定义求导数的基本方法,能够运用导数的概念和几何意义解决实际问题.(3)经历导数概念的形成和几何意义的探究,体会从特殊到一般、从具体到抽象在解决数学问题中的一般性和有效性.发展学生观察、类比、概括的数学能力,提升学生数学抽象、直观想象、逻辑推理的数学核心素养.收稿日期:2019-02-25作者简介:马丽娜(1983—),女,中学一级教师,主要从事数学教学研究.“导数的概念及其几何意义”教学设计马丽娜摘要:导数是研究函数性质的重要工具.本节课在学生已经学习了章引言和两个变化率问题的基础上,通过对实例进行数学抽象,得出导数的概念及其表达.通过类比和归纳,得出一般曲线导数的几何意义.通过应用几何画板软件的探究及直观演示,引导学生体会“以直代曲”的极限思想,感受“数形结合”的思想方法.整节课将微积分的重要思想——用运动变化的观点解决问题贯穿始终.关键词:数学核心素养;数学抽象;归纳类比;运动变化;极限思想微信扫码!立即观看!微信扫描左侧二维码,即可获取本文配套资源——“导数的概念及其几何意义”课堂实录及课件,欢迎观看、下载!(4)经历从实际情境抽象出数学概念,让学生感受数学的科学价值和应用价值.通过学生自主探究、合作交流,培养学生敢于质疑、勇于探索的学习习惯,提升发现问题、分析问题和解决问题的能力.三、教学问题诊断1.学生已经具备的认知基础本课时的教学对象是天津市直属重点中学的学生.学生积累了一定的数学活动经验,具有一定的动手实践能力,有较好的探究意识和团队合作意识.学生在物理中已经学习了平均速度和瞬时速度等概念,在数学上已经掌握了函数的概念和函数的表示法,已经学习了与直线的斜率和直线的方程相关的知识.2.学生可能存在的认知困难学生首次接触“极限”思想,在理解上会存在一定困难.用运动变化的观点解决问题,突破了学生的“惯性思维”,是本节课的难点之一.基于以上分析,本节课的教学难点确定为:用运动变化的观点解决问题和对导数的概念及其几何意义的探究.突破难点的措施:利用问题引导学生探究,利用几何画板软件动态演示“以直代曲”的过程,使抽象问题直观化.四、教学媒体设计本节课将学生收集的实例作为情境导入,应用导学案直观呈现知识的建构过程,提高探究效率.教师应用几何画板软件演示“逼近”与“放大”的过程,巧妙突破难点.使用希沃同屏软件,实时展示学生的探究过程和结果,充分发挥生生互评、师生互评的评价效能.学生用手持ipad上的几何画板软件探究导数的几何意义,直观感受知识的形成过程,积累活动经验.五、教学过程设计为了逐步达成教学目标,完成教学任务,本节课设计了四个教学环节,如图1所示.图11.温故知新,建构导数概念教师引言1:上周开始,我们进入了一个新单元的学习——变化率与导数.上两节课我们学习了章引言,并探究了两个变化率的问题.这节课让我们继续探究导数的概念及其几何意义.师生活动:教师板书课题“导数的概念及其几何意义”.教师引言2:让我们首先重温上节课的两个情境.情境1——高台跳水问题,涉及物理学中的平均速度和瞬时速度;情境2——抛物线的切线问题,涉及到几何学中的割线斜率和切线斜率.上节课,老师布置了课前作业,同学们以学习小组为单位,每个小组写出一个与“变化率”有关的实例,写出具体问题与解答过程.请三个小组的同学进行分享.师生活动:教师用PPT展示上节课的两个情境.情境1:高台跳水问题.运动员相对于水面的高度h 与起跳后的时间t存在函数关系h()t=-4.9t2+6.5t+10,求t=2时的瞬时速度.涉及问题:平均速度→瞬时速度.数学表达:vˉ=ΔhΔt→v()2=limΔt→0ΔhΔt=limΔt→0h()2+Δh-h()2Δt.情境2:抛物线的切线问题.求抛物线f()x=x2在点P()0,0处的切线的斜率.涉及问题:割线斜率→切线斜率.数学表达:kn=limΔx→0ΔyΔx=limΔx→0f()0+Δx-f()0Δx.课前,教师收上来七个小组的“变化率”实例,筛选出“非同质性”的实例三个,并让这三个小组的代表进行分享.教师提前将小组作业拍照,用PPT播放,学生解说.【设计意图】让学生搜集“变化率”实例,写出完整的解答过程,能够较好地反馈学生对上一单元分讲中平均变化率和瞬时变化率的掌握与理解情况.学生课前搜集,教师提前筛选,提高课堂效率的同时,使得实例涉及不同领域,对数学共性的说明更具有说服力,为引出导数的概念做好充分的铺垫.探究1:导数的概念.问题1:虽然前面的五个实例涉及不同的领域,但是从数学的角度思考上述五个实例,在“过程与方法”“结果的形式”上有哪些共性?师生活动:教师引导学生从“数学的角度”观察问题的一致性,从“过程与方法”和“结果的形式”进行归纳小结.学生小组合作探究,教师巡视,深入小组活动,倾听学生交流.教师让小组代表分享交流,其他小组进行补充.教师用PPT展示“数学共性”的内容,如下表所示.过程与方法(1)用运动变化的观点研究问题;(2)应用了极限的思想;(3)用“平均变化率”逼近“瞬时变化率”结果的形式结果都是一个确定的值,具有相同的表现形式【设计意图】引导学生得出五个例子在“过程与方法”“结果的形式”上的共性.让学生体会微积分的重要思想——用运动变化的观点研究问题.体会极限思想,感受用“平均变化率”趋近“瞬时变化率”的研究方法.关注结果形式的一致性——都是一个确定的数值,培养学生的观察、概括能力.问题2:如果研究更一般的问题,对于函数y=f()x,在x=x0处的瞬时变化率如何表示?师生活动:教师提问,学生回答.教师要关注学生的数学表达,让学生感受从具体到一般的抽象过程和研究方法.教师板书:函数y=f()x在x=x0处的瞬时变化率为limΔx→0ΔyΔx=limΔx→0f()x0+Δx-f()x0Δx.【设计意图】让学生感悟从特殊到一般、从具体到抽象的研究数学问题的方法,从而使学生深刻体会概念的建构过程.教师引言3:其实,函数y=f()x在x=x0处的瞬时变化率就称为函数y=f()x在x=x0处的导数,这就是导数的概念.师生活动:教师板书导数的概念.导数的概念:函数y=f()x在x=x0处的瞬时变化率是f′()x0=y′|x=x0=limΔx→0ΔyΔx=limΔx→0f()x0+Δx-f()x0Δx,我们称它为函数y=f()x在x=x0处的导数.问题3:让我们应用导数的概念,再来重温两个情境.如何用导数表示运动员在t=2时的瞬时速度v()2?如何用导数表示抛物线f()x=x2在点P()0,0处的切线的斜率k?它们的意义是什么?师生活动:教师用PPT展示问题,学生独立思考、回答问题.教师引导学生用导数的表达形式f′()x0来表示v()2和k,用导数的本质——瞬时变化率解释两个情境的意义.师生共同给出问题的答案.情境1的问题:如何用导数表示运动员在t=2时的瞬时速度v()2?你能说出它的意义吗?答案:运动员在t=2时的瞬时速度v()2就是函数h()t=-4.9t2+6.5t+10在t=2处的导数h′()2.它表示运动员相对于水面的高度h在t=2时的瞬时变化率.情境2的问题:如何用导数表示抛物线f()x=x2在点P()0,0处的切线的斜率k?你能说出它的意义吗?答案:抛物线f()x=x2在点P()0,0处的切线的斜率k就是函数f()x=x2在x=0处的导数f′()0.它的意义是抛物线f()x=x2在x=0处的瞬时变化率.【设计意图】通过具体实例,帮助学生理解导数的概念,体会导数的本质就是瞬时变化率.2.学以致用,解决典型问题教师引言4:下面,让我们学以致用,来解决一道数学问题.例1设f()x=2x,求f′()-1.问题4:f′()-1表示什么?追问:如何用导数的定义求f′()-1?师生活动:教师引导学生关注导数的符号表达,引导学生用导数的定义解决问题,体会导数的求解步骤.教师提问,学生独立思考,并在学案上作答.教师巡视,让学生回答,并板书如下解题过程:f′()-1= limΔx→0ΔyΔx=limΔx→0f()-1+Δx-f()-1Δx=limΔx→02-1+Δx-()-2Δx= limΔx→0æèçöø÷2-1+Δx=-2.【设计意图】学以致用,让学生加深对导数概念的理解,明确利用定义求导数的步骤.教师板书,示范解题格式,展示数学的严谨.教师引言5:让我们再来解决一道实际问题.例2将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:°C )为y =f ()x =x 2-7x +15()0≤x ≤8.计算第2h 、第3.5h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.问题5:原油温度在第2h 、第3.5h 和第6h 时的瞬时变化率,从数学的角度,求的是什么?师生活动:教师要引导学生体会原油温度在第2h 、第3.5h 和第6h 时的瞬时变化率就是函数y =f ()x =x 2-7x +15()0≤x ≤8在x =2,x =3.5,x =6处的导数,即f ′()2,f ′()3.5,f ′()6.引导学生将实际问题抽象成数学问题,用导数的定义解决问题,注意结果的形式是一个确定的数值.引导学生将导数值放回情境,就表示原油温度的瞬时变化率,深刻体会导数的本质.教师提问,学生先独立思考,然后在学案上作答,组内互评,教师巡视,将学生答案同屏在大屏幕上分享.教师巡视时,要关注学生导数符号的书写和解题格式的完整,要关注学生对实际意义的表达.【设计意图】让学生经历用导数的概念解决实际问题、感受导数值的多样性,为下一个单元分讲——应用导数探究函数的单调性埋下伏笔.问题6:将原油温度问题一般化,那么f ′()x 0表示什么意义?师生活动:教师引导学生说出f ′()x 0表示原油温度在t =x 0时刻的瞬时变化率.深刻体会导数的数学表达和本质.教师提问,学生独立思考、回答问题.【设计意图】引导学生用数学的思维解决问题,将实际问题抽象为数学问题,深化学生对导数概念的理解,让学生理解导数的本质就是瞬时变化率.教师引言6:可见,导数可以描述任何运动变化事物的瞬时变化率.师生活动:教师小结提升.3.自主探究,获得几何意义探究2:导数的几何意义.问题7:从“数”的角度,我们已经得知导数f ′()x 0表示函数y =f ()x 在x =x 0处的瞬时变化率,反映了函数y =f ()x 在x =x 0附近的变化情况,那么从“形”的角度,导数f ′()x 0具有什么几何意义呢?追问:让我们再回忆情境2,抛物线f ()x =x 2在点()0,0处的切线斜率就是函数f ()x =x 2在x =0处的导数f ′()0,这就是导数f ′()0的几何意义.类比探究,一般曲线y =f ()x 在x =x 0处的导数f ′()x 0的几何意义是什么?师生活动:学生应用ipad 上的几何画板软件小组合作探究,将探究结果整理在学案上.教师巡视,倾听小组交流,用希沃同屏软件将学生的探究过程同步投影在大屏幕上进行分享,让小组代表陈述本组的探究过程和结论,其他小组补充、互评.【设计意图】引导学生用运动变化的观点研究问题,体会割线的极限位置就是切线,体会割线斜率的极限就是切线斜率,割线斜率的极限的数学表达就是导数.感受从特殊到一般、从具体到抽象以及类比概括在研究数学问题时的一般性和有效性.教师引言7:通过刚刚同学们的探究、分享,我们确实发现当点P 1趋近于点P 时,割线斜率k n 趋近于切线斜率k ,k n 趋近于函数y =f ()x 在x =x 0处的导数.因此,函数f ()x 在x =x 0处的导数f ′()x 0就是切线PT 的斜率k ,即k =lim Δx →0f ()x 0+Δx -f ()x 0Δx=f ′()x 0,这就是导数的几何意义.师生活动:教师小结提升,注重小结“割线的极限位置就是切线”,“割线斜率极限的数学表达就是导数”.用PPT 将导数的“数”与几何意义的“形”同屏播放,如图2所示.(1)因为割线PP 1的斜率k n =lim Δx →0f ()x 0+Δx -f ()x 0Δx,切线PT 的斜率k =lim Δx →0f ()x 0+Δx -f ()x 0Δx,所以当P 1→P 时,k n →k ,k n →f ′()x 0.所以k =lim Δx →0f ()x 0+Δx -f ()x 0Δx=f ′()x 0.(2)图2教师板书导数的几何意义:函数f ()x 在x =x 0处的导数就是函数f ()x 在x =x 0处的切线的斜率,即k =f ′()x 0.【设计意图】让学生感受数形结合的思想方法,深化对导数概念的理解.探究3:切线的定义.问题8:刚刚的探究中,我们发现此处的切线与初中学习的切线的定义有所不同.既然割线的极限位置就是切线,那么如何定义一般曲线y =f ()x 在点P ()x 0,f ()x 0处的切线呢?师生活动:教师提出问题,学生独立思考、回答问题.教师引导学生体会割线的极限位置就是切线,进而用运动变化的观点生成一般曲线y =f ()x 的切线的定义.教师板书切线的定义:当点P n 沿着曲线y =f ()x 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定的位置PT 称为曲线y =f ()x 在点P 处的切线.【设计意图】学生经历“提出问题—分析问题—解决问题”的过程,感受知识的形成过程,体会从特殊到一般、从具体到抽象,以及类比归纳的研究方法.教师引言8:下面,老师用几何画板软件再次为大家演示“割线逼近切线”的过程,同学们观察在点P 处哪条直线最接近点P 附近的曲线?老师将图象放大,你能否发现点P 处的切线与曲线的位置关系?师生活动:教师用几何画板软件演示“割线逼近切线”的过程,如图3所示.图3通过图4,教师用几何画板软件让学生直观感受当图象逐渐放大时,点P 处的切线越来越贴近点P 附近的曲线,感受“以直代曲”的极限思想.图4【设计意图】几何画板软件的动态演示,能够让学生直观感受“以直代曲”的必要性,巧妙突破难点.引导学生再次感受极限的思想,体会微积分的重要思想——以直代曲.例3如图5,它表示跳水运动中高度随时间变化的函数h ()t =-4.9t 2+6.5t +10的图象.描述运动员在t =t 0,t =t 1,t =t 2附近的变化情况.师生活动:教师着重引导学生用导数的几何意义研究问题.“曲线”描述的是运动员的高度变化,要描述运动员的瞬时变化率可以应用函数的导数,而导数的几何意义就是切线的斜率.因此,应用“切线的斜率”研究“曲线的变化”是十分必要的,让学生感悟“以直代曲”的意义.引导学生感知:因为可以“局部以直代曲”,所以可以用切线的上升、下降近似替代曲线的上升、下降.而切线的上升、下降可以用斜率来反映.引导学生应用切线的斜率解释运动员的瞬时变化率.体会“数”与“形”的结合,深刻体会导数的几何意义的应用价值.教师提问,学生独立思考、在学案上作答,教师将学生的答案同屏在大屏幕上分享,学生互评.【设计意图】学以致用,应用导数的几何意义解释情境中的瞬时变化率问题,体会导数的几何意义就是切线的斜率,感受“以直代曲”的思想的应用价值.将“高台跳水”情境贯穿在本单元、本课时的教学中,让学生感知数学源于生活、应用于生活.通过切线的斜率的正、负、0为下个单元分讲——用导数研究函数的性质埋下伏笔,使学生的思维延伸到课堂之外.4.小结提升,布置分层作业问题9:谈谈本节课你用了什么样的方法收获了什么知识,说说你的感悟.师生活动:教师着重引导学生从“知识”和“方法”两个方面进行小结.让学生梳理本节课的知识收获:导数的概念、导数的几何意义、切线的定义.让学生感受应用的思想方法和研究方法:极限思想、以直代曲思想、数形结合思想、类比归纳方法.教师提问,学生独立思考、回答,相互补充.教师板书研究方法:(1)“极限”思想;(2)“以直代曲”思想;(3)“数形结合”思想;(4)归纳、类比.【设计意图】培养学生归纳总结的能力,让学生回图5(下转第64页)概念的教学中,应该遵循概念教学的一般进程,尤其要突出两点:一是突出典型丰富实例基础上的抽象概括过程,强调“概念发生发展过程的合理性”;二是突出以恰时、恰点的问题引导学生进行高水平的数学思维活动,强调“学生认知过程的合理性”.并在上述两个过程中注意渗透概念中蕴涵的思想方法;同时,应该根据概念的具体特点充分使用信息技术.这样就能使学生掌握“四基”,培养“四能”,落实数学学科核心素养,实现数学课程的育人目标.本课题对当下“三新一旧”(注:“三新一旧”通常指新课程方案、新课程标准、新高考、旧教材)背景下,乃至在即将全面铺开的新课程标准教材的教学中,全面落实立德树人要求,深入挖掘数学课程内容的育人价值,树立基于数学学科核心素养的教学意识,将数学学科核心素养的培养贯穿于教学活动的全过程,具有重要参考价值.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.[2]普通高中数学课程标准修订组.《普通高中数学课程标准(2017年版)》解读[M].北京:高等教育出版社,2018.[3]章建跃.中学数学教学概论[M].北京:北京师范大学出版社,2008.[4]吕世虎,吴振英,杨婷,等.单元教学设计及其对促进数学教师专业发展的作用[J].数学教育学报,2016,25(5):16-21.[5]吕世虎,杨婷,吴振英.数学单元教学设计的内涵、特征以及基本操作步骤[J].当代教育与文化,2016,8(4):41-46.味本节课生成的知识和应用的方法,积累数学知识和活动经验,感知导数的意义,为下一分讲用导数研究函数的性质奠定基础.教师引言9:本节课的作业分为必做和选做两部分.必做作业:(1)整理导学案;(2)完成课堂教学目标检测.选做作业:(1)完成拓展学案;(2)阅读刘徽《九章算术注》中的“割圆术”,写出收获与感悟.【设计意图】必做作业保证本课时知识和方法的落实,为后续学习打下基础;拓展学案针对学有余力的学生,保证不同的学生得到不同的发展.体会“极限思想”是本单元的教学目标之一,让学生阅读刘徽《九章算术注》中的“割圆术”,感受极限思想的产生背景和伟大意义,感知知识的形成过程与研究方法,为微积分的后续学习奠定基础.六、目标检测设计1.一个直线运动的物体,从时间t运动到时间t+Δt,物体的位移为Δs,那么limΔt→0ΔsΔt为().(A)从时刻t到时刻t+Δt时,物体的平均速度(B)从时刻t到时刻t+Δt时,物体的瞬时速度(C)当时刻为Δt时,物体的瞬时速度(D)当时刻为t时,物体的瞬时速度2.已知函数y=f()x的图象如图6所示,则f′()x A与f′()x B的大小关系是().(A)f′()x A>f′()x B(B)f′()x A<f′()x B(C)f′()x A=f′()x B(D)不能确定3.设函数f()x=2x+5,应用导数的定义求f′()1.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2017.[2]曹才翰,章建跃.中学数学教学概论(第3版)[M].北京:北京师范大学出版社,2012.[3]章建跃,陶维林.概念教学必须体现概念的形成过程[J].数学通报,2010,49(1):25-29.(上接第58页)图6。
导数的概念教案及说明
导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
2014-2015东北师大附属中学高三第一轮复习导学案--导数的概念及运算
导数的概念与运算(教案)一、 知识梳理:(阅读选修教材2-2第2页—第21页) 1、 导数及有关概念:函数的平均变化率:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()limx f x x f x f x x∆→+∆-'=∆在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因此,导数的定义式可写成000000()()()()()limlim x ox x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.导数的物理意义和几何意义:导数0000()()()limx f x x f x f x x∆→+∆-'=∆是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化..的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为000()()()y f x f x x x -='- 3.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数..,也可记作y ',即()f x '=y '=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00说明 :导数与导函数都称为导数,这要加以区分,求一个函数的导数,就是求导函数,求一个函数在给定点处的导数,就是求导函数值.函数)(x f y =在0x 处的导数0x x y ='就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数()f x '在0x 处的函数值,即0x x y ='=0()f x '.所以函数)(x f y =在0x 处的导数也记作0()f x '4.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 5.可导与连续的关系:如果函数)(x f y =在点0x 处可导,那么函数)(x f y =在点0x 处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.6.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -∆+=∆()2求平均变化率xx f x x f x y ∆-∆+=∆∆)()(; ()3取极限,得导数y '=()f x '=xyx ∆∆→∆0lim7.几种常见函数的导数: 0'=C (C 为常数); 1)'(-=n n nx x (Q n ∈);x x cos )'(sin =;x x sin )'(cos -=;1(ln )x x'=;1(log )log a a x e x'=, ()x x e e '= ;()ln x x a a a '=8.求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法则3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭9.复合函数的导数:(理科)设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'10.复合函数的求导法则:(理科)复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数11.复合函数求导的基本步骤:分解——求导——相乘——回代12.导数的几何意义:是曲线)(x f y =在点()(,00x f x )处的切线的斜率,即0()k f x =',要注意“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点. 二、题型探究:探究一.用导数的定义求函数在某一点处的导函数值。
导数的概念及其几何意义教案
导数的概念及其几何意义教案导数的概念及其几何意义导数是微积分学中的一个基本概念,它不仅具有重要的理论意义,而且在实际应用中也有着广泛的用途。
本文将通过深入的理论探讨和几何意义的解释,帮助读者全面理解导数的概念及其应用。
一、导数的概念导数是函数的一种基本性质,它描述了函数在某一点上的变化率。
具体地说,设函数y=f(x),在某一点x=a处有定义,若存在极限lim_[h→0] (f(a+h)-f(a))/h ,那么这个极限就称为函数f(x)在点a处的导数,记作f'(a)或dy/dx|_(x=a)。
从定义中可以看出,导数表示了函数在某一点上的瞬时变化率,也即函数的斜率。
导数的绝对值越大,表示函数在该点上的变化越剧烈;导数为零表示函数在该点上没有变化;导数为正表示函数在该点上单调递增;导数为负表示函数在该点上单调递减。
二、导数的几何意义导数的几何意义可以通过理解切线的概念来解释。
对于一个函数,取其中一点P(x,y),在这一点上作一条切线,使得切线与曲线只有一个公共点P。
那么这条切线的斜率就是函数在点P处的导数。
通过这种解释,我们可以把导数理解为函数曲线在某一点上的局部近似线性化描述。
切线的近似线性特征使得我们可以使用直线的性质来研究函数曲线的性质。
我们可以通过判断切线的斜率的正负来确定函数的单调性;通过判断切线与x轴的交点来确定函数的根的存在性等等。
三、导数的应用导数在实际应用中具有广泛的用途。
下面列举几个典型的应用场景:1. 曲线的拟合与插值:通过函数的导数可以获得曲线的斜率信息,进而进行曲线的拟合和插值,从而更好地描述和预测曲线的变化。
2. 最优化问题:很多最优化问题可以通过导数的求解来解决。
求函数在某一范围内的最大值或最小值,我们可以通过求解导数为零的位置来得到答案。
3. 物理学中的速度和加速度:在物理学中,速度和加速度是描述物体的运动的重要概念。
通过对位移和时间的关系进行导数运算,我们可以得到速度和加速度的函数表达式,从而更好地分析物体的运动规律。
导学案017(导数的含义几何意义与运算)
导数的概念、几何意义及运算一、考纲要求:导数的概念A 导数的几何意义B 导数的运算B二、复习目标:1、理解导数的定义,能根据导数的定义求简单函数的导数;2、理解导数的几何意义,能求函数图象在某一点处切线的斜率;3、能利用导数公式和导数的四则运算法则求简单函数的导数;4、求简单的复合函数的导数。
三、重点难点:理解且能正确对常见函数求导,导数的几何意义。
四、要点梳理:1、函数的平均变化率:一般地,函数()f x 在区间[]12,x x 上的平均变化率为__________ 。
2、导数的概念:设函数()y f x =在区间(),a b 上有定义,()0,x a b ∈,若x 无限趋近于0时,比值____________yx= 无限趋近于一个常数A ,则称()f x 在0x x =处__________,并称该常数A 为函数()f x 在0x x =处的__________,记作__________.若()f x 对于区间(),a b 内任一点都可导,就称()f x 在区间(),a b 内可导,其导数称为()f x 的导函数,简称导数,记作__________.3、导数的几何意义:曲线()y f x =在点()00,()P x f x 处的__________,即0().k f x ′=4、导数的物理意义:(1)设()s s t =是位移函数,则0()s t ′表示物体在0t t =时刻的__________. (2)设()v v t =是速度函数,则0()v t ′表示物体在0t t =时刻的__________. 5、基本函数的导数公式(1)()_______(ax a ′=为常数),(2)(sin )________,(cos )___________x x ′′==;(3)()________(0xa a ′=>且1a ≠),()________xe ′=; (4)(log )________(01),a x a a ′=>≠且(ln )________x ′=。
导学案013(导数的含义、几何意义与运算)
导数的概念、几何意义及运算一、考纲要求:导数的概念 导数的几何意义 导数的运算二、复习目标:1、理解导数的定义,能根据导数的定义求简单函数的导数;2、理解导数的几何意义,能求函数图象在某一点处切线的斜率;3、能利用导数公式和导数的四则运算法则求简单函数的导数;4、求简单的复合函数的导数。
三、重点难点:理解且能正确对常见函数求导,导数的几何意义。
四、要点梳理:1、函数的平均变化率:一般地,函数()f x 在区间[]12,x x 上的平均变化率为__________ 。
2、导数的概念:设函数()y f x =在区间(),a b 上有定义,()0,x a b ∈,若x 无限趋近于0时,比值____________y x= 无限趋近于一个常数A ,则称()f x 在0x x =处__________,并称该常数A 为函数()f x 在0x x =处的__________,记作__________.若()f x 对于区间(),a b 内任一点都可导,就称()f x 在区间(),a b 内可导,其导数称为()f x 的导函数,简称导数,记作__________.3、导数的几何意义:曲线()y f x =在点()00,()P x f x 处的__________,即0().k f x '=4、导数的物理意义:(1)设()s s t =是位移函数,则0()s t '表示物体在0t t =时刻的__________. (2)设()v v t =是速度函数,则0()v t '表示物体在0t t =时刻的__________. 5、基本函数的导数公式(1)()_______(ax a '=为常数),(2)(sin )________,(cos )___________x x ''==;(3)()________(0x a a '=>且1a ≠),()____xe '=;(4)(log )________(01),a x a a '=>≠且(ln )________x '=。
人教版高中数学全套教案导学案1.1.3导数的几何意义
1. 1.3导数的几何意义课前预习学案一. 预习目标1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。
二. 预习内容1.曲线的切线及切线的斜率(1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时, 即0→∆x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即k = =2.导数的几何意义函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0()f x '= .三.提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一. 学习目标1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题二. 学习过程(一)。
复习回顾1.平均变化率、割线的斜率 2。
瞬时速度、导数 (二)。
提出问题,展示目标我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在0x x =附近的变化情况,导数0()f x '的几何意义是什么呢?(三)、合作探究1.曲线的切线及切线的斜率(1)如图 3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?(2)如何定义曲线在点P 处的切线?(3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (4)切线PT 的斜率k 为多少?说明: (1)当0→∆x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的; 如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义(1)函数)(x f y =在0x x =处的导数的几何意义是什么? (2)将上述意义用数学式表达出来。
导数的概念教案及说明
导数的概念教案及说明一、教学目标1. 理解导数的定义及物理意义;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。
二、教学内容1. 导数的定义;2. 导数的计算;3. 导数在实际问题中的应用。
三、教学重点与难点1. 导数的定义及其几何意义;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、计算方法及应用;2. 利用图形展示导数的几何意义;3. 通过例题演示导数的计算过程;4. 引导学生运用导数解决实际问题。
五、教学准备1. 教学课件;2. 练习题;3. 相关实际问题。
第一章:导数的定义1.1 引入导数的概念1.2 解释导数的几何意义1.3 导数的计算方法第二章:导数的计算2.1 基本导数公式2.2 导数的计算规则2.3 高阶导数第三章:导数在实际问题中的应用3.1 运动物体的瞬时速度和加速度3.2 函数的极值问题3.3 曲线的凹凸性和拐点第四章:导数的其他应用4.1 曲线的切线和法线4.2 函数的单调性4.3 函数的凸性第五章:练习与拓展5.1 导数计算的练习题5.2 实际问题的练习题5.3 拓展练习题六、教学过程6.1 导入:通过回顾函数图像,引导学生思考如何描述函数在某一点的瞬时变化率。
6.2 新课讲解:详细讲解导数的定义,通过图形和实例直观展示导数的几何意义。
6.3 例题演示:挑选典型例题,展示导数的计算过程,引导学生理解和掌握计算方法。
6.4 课堂练习:布置练习题,让学生独立完成,巩固所学知识。
七、导数的计算7.1 基本导数公式:讲解常见函数的导数公式,如幂函数、指数函数、对数函数等。
7.2 导数的计算规则:介绍导数的四则运算法则、复合函数的导数等。
7.3 高阶导数:讲解函数的二阶导数、三阶导数等高阶导数的概念及计算方法。
八、导数在实际问题中的应用8.1 运动物体的瞬时速度和加速度:结合物理知识,讲解导数在描述物体运动中的应用。
8.2 函数的极值问题:引导学生利用导数求解函数的极值,探讨极值在实际问题中的应用。
导数的几何意义教案及说明
导数的几何意义教案及说明教案章节:一、导数的定义;二、导数的计算;三、导数的应用;四、导数与曲线的切线;五、导数与函数的单调性一、导数的定义1. 教学目标:理解导数的定义,掌握导数的几何意义。
2. 教学内容:引入导数的概念,解释导数的几何意义,举例说明导数表示曲线的切线斜率。
3. 教学步骤:a. 引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
b. 解释导数的几何意义,即导数表示曲线的切线斜率。
c. 举例说明导数表示曲线的切线斜率,通过图形演示导数的变化。
4. 教学练习:a. 练习计算函数在某一点的导数。
b. 练习根据导数的几何意义,确定曲线的切线斜率。
二、导数的计算1. 教学目标:掌握导数的计算方法,能够计算常见函数的导数。
2. 教学内容:介绍导数的计算方法,包括常数函数、幂函数、指数函数、对数函数的导数。
3. 教学步骤:a. 介绍导数的计算方法,包括常数函数的导数为0,幂函数的导数按幂次降次,指数函数的导数为自身,对数函数的导数为1/x。
b. 举例说明常见函数的导数计算,包括正弦函数、余弦函数、绝对值函数等。
4. 教学练习:a. 练习计算常见函数的导数。
b. 练习根据导数的计算结果,分析函数的单调性。
三、导数的应用1. 教学目标:理解导数在实际问题中的应用,掌握导数的基本应用方法。
2. 教学内容:介绍导数在实际问题中的应用,包括速度、加速度、优化问题等。
3. 教学步骤:a. 介绍导数在速度和加速度中的应用,解释速度是位置关于时间的导数,加速度是速度关于时间的导数。
b. 举例说明导数在优化问题中的应用,通过导数找到函数的最大值和最小值。
4. 教学练习:a. 练习根据导数计算速度和加速度。
b. 练习使用导数解决优化问题。
四、导数与曲线的切线1. 教学目标:理解导数与曲线的切线的关系,掌握求解切线方程的方法。
2. 教学内容:解释导数与曲线的切线的关系,介绍求解切线方程的方法。
3. 教学步骤:a. 解释导数与曲线的切线的关系,即导数表示曲线的切线斜率。
高中数学选择性必修二 5 1 2导数的概念及其几何意义 教案
导数的概念及其几何意义教学设计一般地,f′(x0)(0≤x0≤8)反映了原油温度在时刻x0附近的变化情况.例3 一辆汽车在公路上沿直线变速行驶,假设t s时汽车的速度(单位:m/s)为y=v(t)=−t2+ 6t+60,求汽车在第2 s与第6 s时的瞬时加速度,并说明它们的意义.分析:瞬时加速度是速度关于时间的瞬时变化率,因此,在第2s与第6s时,汽车的瞬时加速度分别为v′(2 ),v′(6 ).解:在第2s与第6s时,汽车的瞬时加速度分别为v′(2 )和 v′(6 ).根据导数的定义,∆y ∆t =v(2+∆t)−v(2)∆t=−(2+∆t)2+6(2+∆t)+60−(−22+6×2+60)∆t=−∆t+3,所以v′(2 )=lim∆t→0∆y∆t=lim∆t→0(−∆t+2)=2同理可得v′(6 )=−6在第2s与第6s时,汽车的瞬时加速度分别2 m/s2与−6 m/s2. 说明在第2 s附近,汽车的速度每秒大约增加2 m/s;在第6 s附近,汽车的速度每秒大约减少6 m/s .思考观察函数y=f (x)的图象(图5.1-3),平均变化率∆y ∆x =f(x0+∆x)−f(x0)∆x表示什么?瞬时变化率f′(x0)=lim∆x→0∆y∆x=lim∆x→0f(x0+∆x)−f(x0)∆x表示什么?提示:平均变化率∆y ∆x =f(x0+∆x)−f(x0)∆x表示割线P0P的斜率.如图5.1-4,在曲线y=f (x)上任取一点P (x , f (x)),如果当点P (x , f (x))沿曲线y=f (x)无限趋近于点P0(x0,f(x0))时,割线P0P无限趋近于一个确定的位置,这个确定位置的直线P0T称为曲线y=f (x)在点P0处的切线.易知,割线P0P的斜率k=f(x)−f(x0)x−x0记∆x=x−x0,当点P沿着曲线y=f (x)无限趋近于点P0时,即当∆x→0时,k无限趋近于函数y=f (x)在x=x0处的导数.因此,函数y=f (x)在x=x0处的导数f′(x0 )(即瞬时变化率),就是切线P0T的斜率k0,即k0=lim∆x→0f(x0+∆x)−f(x0)∆x=f′(x0)这也导数的几何意义.继续观察图5.1-4,可以发现点P0处的切线P0T 比任何一条割线更贴近点P0附近的曲线. 进一步地,利用信息技术工具将点P0附近的曲线不断放大(如图5.1-5),可以发现点P0附近的曲线越来越接近于直线. 因此,在点P0附近,曲线y=f (x)可以用点P0处的切线P0T近似代替.例4 图5.1-6是高台跳水运动员的重心相对于水面的高度随时间变化的函数ℎ(t)=−4.9t2+4.8t+11的图象.根据图象,请描述、比较曲线h(t)在t=t0,t1,t2附近的变化情况.解:我们用曲线h(t)在t=t0,t1,t2处的切线的斜率,刻画曲线h(t)在上述三个时刻附近的变化情况.(1)当t=t0时,曲线h(t)在t=t0处的切线l0平行于t轴,ℎ′(t0)=0. 这时,在t=t0附近曲线比较平坦,几乎没有升降.(2)当t=t1时,曲线h(t)在t=t1处的切线l1的斜率ℎ′(t1)<0. 这时,在t=t1附近曲线下降,即函数h(t)在t=t1附近单调递减.(3)当t=t2时,曲线h(t)在t=t2处的切线l2的斜率ℎ′(t2)<0. 这时,在t=t2附近曲线下降,即函数h(t)在t=t2附近也单调递减.从图5.1-6可以看出,直线l1的倾斜程度小于直线l2的倾斜程度,这说明曲线h(t)在t=t1附近比在t=t2附近下降得缓慢.例5图5.1-7是人体血管中药物浓度c=f(t)(单位:mg/mL)随时间t(单位:min)变化的函数图象.根据图象,估计t=0.2, 0.4, 0.6, 0.8 min时,血管中药物浓度的瞬时变化率(精确度0.1).解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度f(t)在此时刻的导数,从图象上看,它表示曲线f(t)在此点处的切线的斜率.如图5.1-7,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.作t=0.8处的切线,并在切线上取两点,如(0.7,0.91),(1.0,0.48),则该切线的斜率k=0.48−0.911.0−0.7≈−1.4所以f′(0.8)≈−1.4表5.1-3给出了药物浓度的瞬时变化率的估计值.从求函数y=f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0 )是一个唯一确定的数.这样,当x变化时,y=f′(x) 就是x的函数,我们称它为y=f(x)的导函数(简称导数). y=f(x)的导函数有时也记作y′,即f′(x )=y′=lim∆x→0f(x+∆x)−f(x)∆x.课堂练习:1根据导数的定义求下列函数的导数.(1)求函数y=x2+3在x=1处的导数;(2)求函数y=1x在x=a(a≠0)处的导数.解:(1) ∆y=f(1+∆x)−f(1)=[(1+∆x)2+ 3]−(12+3)=2∆x+(∆x)2∴∆y∆x =2∆x+(∆x)2∆x=2+∆x∴y′|x=1=lim∆x→0(2+∆x)=2 (2)∆y=f(a+∆x)−f(a)=1a+∆x−1a=a−(a+∆x)a(a+∆x)=−∆xa(a+∆x)∴∆y∆x =−∆xa(a+∆x)∙ 1∆x=− 1a(a+∆x)∴y′|x=a=lim∆x→0[− 1a(a+∆x)]=−1a2求函数y=f(x)在点x0处的导数的三个步骤2 已知函数f (x)在 x =x 0处导数的4,则lim∆x→0f (x 0+3∆x )−f(x 0)∆x=____ .解: lim∆x→0f (x 0+3∆x )−f(x 0)∆x =lim ∆x→0[f (x 0+3∆x )−f (x 0)3 ∆x ×3]=3lim∆x→0f (x 0+3∆x )−f(x 0)3∆x =3f ′(x 0 )=3×4=12答案:12注:(1)本题中x 的增量是3∆x ,即(x 0+3∆x )−x 0=3∆x ,而分母为∆x ,两者不同,若忽视这一点,则易得出结论为4的错误答案.(2)在导数的概念中,增量的形式是多种多样的,但无论是哪种形式,分子中自变量的增量与分母中的增量必须保持一致.3 长方形的周长为10,一边长为x .其面积为S. (1) 写出S 与x 之间的函数关系;(2) 当x 从1增加到1+∆x 时,面积S 改变了多少?此时,面积S 关于x 的平均变化率是多少?解释它的实际意义;(3)当长从x 增加到x +∆x 时,面积S 改变了多少?此时,面积S 关于x 的平均变化率是多少? (4)在x =1处,面积S 关于x 的瞬时变化率是多少?解释它的实际意义;(5)在x 处,面积S 关于x 的瞬时变化率是多少?1平均变化率2瞬时变化率3导数的概念4 求函数y=f(x)在点x0处的导数的三个步骤。
高中数学_导数的概念及其几何意义教学设计学情分析教材分析课后反思
吹气球的理想化数学模型:
其体积公式为:
气球半径与体积的关系为:
当空气容量V从0L增加到1L时,气球半径增加了:
当空气容量V从1L增加到2L时,气球半径增加了:
当空气容量V从2L增加到3L时,气球半径增加了:
探究3:向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,
基本思想:无限分割,以直代曲.
思考:(2)如何求函数 在点 处的瞬时变化率?
一差、二比、三极限
(设计意图:体会瞬时变化率的概念,体会极限的思想)
三、例题讲解,神话概念
将原油精炼为汽油、柴油、塑胶等各种产品,需要对原油进行冷却或者加热,如果在第x h时,原油的温度为 。计算第2 h与第6 h时,原油温度的瞬时变化率,并说明它们的意义。
问题1:假设一辆马车行驶的路程s与时间t满足s=t2,求马车在5~6s,5~5.1s,5~5.001s,
5~5.00001s内的平均速度.根据结果,你有什么发现?
学生通过计算得出结论,时间间隔越小,平均速度越接近于10m/s.
(设计意图:通过计算、观察结论,初步引导学生产生瞬时速度的意识)
问题2:速率的本质是什么?:生活中还有什么变化率的问题?你能举例说明吗?
(设计意图:联系生活实例,帮助学生联系平均变化率的概念)
问题3:回忆吹气球的过程,有什么变化现象?
这些变化的快慢怎样?你能从数学的角度,描述和解析这种变化快慢的现象吗?
(设计意图:播放视频,仿照问题1,探究气球半径的变化规律,体会数学建模的思想)
问题4:根据以上两个例子,你能推出更一般的概念吗?
(设计意图:学生尝试给出概念,建立总结与归纳的能力)
例2:例2:向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,那么水瓶的形状是?你能试着画出其余三个选项的图像吗?
2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案
2019-2020年高中数学北师大版选修1-1《导数的概念与几何意义》word导学案1.理解导数的概念,能利用导数的定义求函数的导数.2.理解函数在某点处的导数的几何意义是该函数图像在该点的切线的斜率,并利用其几何意义解决有关的问题.3.掌握应用导数几何意义求解曲线切线方程的方法.4.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法.如图,当点P n(x n,f(x n))(n=1,2,3,4)沿着曲线f(x)趋近点P(x0,f(x0))时,割线PP n的变化趋势是什么?问题1:根据创设的情境,割线PP n的变化趋势是.问题2:导数的概念与求法:我们将函数f(x)在x=x0处的瞬时变化率称为f(x)在x=x0处的导数,即有f'(x0)==,所以求导数的步骤为:(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)算比值:=;(3)求极限:y'=.问题3:函数y=f(x)在x=x0处的导数,就是曲线y=f(x)在x=x0处的切线的斜率k=f'(x0)=.相应的切线方程是:.问题4:曲线上每一点处的切线斜率反映了什么?直线与曲线有且只有一个公共点时,直线是曲线的切线吗?它反映的是函数的情况,体现的是数形结合,以曲代直的思想.不一定是,有些直线与曲线相交,但只有一个公共点.相反,有些切线与曲线的交点.1.下列说法正确的是().A.曲线的切线和曲线有且只有一个交点B.过曲线上的一点作曲线的切线,这点一定是切点C.若f'(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若y=f(x)在点(x0,f (x0))处有切线,则f'(x0)不一定存在2.如果曲线y=f (x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么().A.f'(x0)>0B.f'(x0)<0C.f'(x0)=0D.f'(x0)不存在3.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标为.4.函数y=3x+2上有一点(x0,y0),求该点处的导数f'(x0).导数概念的理解已知f'(x0)=2,求.求切线方程已知曲线y=上两点P(2,-1),Q(-1,).(1)求曲线在点P,Q处的切线的斜率;(2)求曲线在P,Q处的切线方程.导数几何意义的综合应用抛物线y=x2在点P处的切线与直线4x-y+2=0平行,求P点的坐标及切线方程.已知f(x)=x3-8x,则= ; = ;= .过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率,并求曲线在点P处的切线的斜率.已知曲线C:y=x3.(1)求曲线C上横坐标为1的点处的切线方程;(2)上述切线与曲线C是否还有其他公共点?1.已知函数y=f(x)的图像如图,则f'(x A)与f'(x B)的大小关系是( ).A.f'(x A)>f'(x B)B.f'(x A)<f'(x B)C.f'(x A)=f'(x B)D.不能确定2.已知y=,则y'的值是( ).A.B.C.2D.3.已知y=ax2+b在点(1,3)处的切线斜率为2,则= .4.求y=x2在点A(1,1)处的切线方程.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则f(1)+2f'(1)的值是().A. B.1 C.D.2考题变式(我来改编):第2课时导数的概念与几何意义知识体系梳理问题1:点P n趋近于点P时,割线PP n趋近于确定的位置PT,PT为曲线的切线问题3:= y-f(x0)=f'(x0)(x-x0)问题4:瞬时变化不止一个基础学习交流1.D当切线平行于y轴时,切线斜率不存在,则f'(x0)不存在.2.B由x+2y-3=0知斜率k=-,∴f'(x0)=-<0.3.(1,0)或(-1,-4)f'(x)===3x2+1,由于曲线f(x)=x3+x-2在P0处的切线平行于直线y=4x-1,所以f(x)在P0处的导数值等于4,设P0(x0,y0),有f'(x0)=3+1=4,解得x0=±1,这时P0点的坐标为(1,0)或(-1,-4).4.解:f'(x0)===3.重点难点探究探究一:【解析】由已知得:=2,当h→0,2h→0,-4h→0,==2.[问题]上面的解答遵循导数的定义吗?[结论]没有,在导数的定义形式中,增量Δx的形式多种多样,但是无论增量Δx选择哪种形式,Δy必须保持相应的形式.即:f'(x0)===(其中a为非零常数).于是,正确解答为:=-4=-4=-4f'(x0)=-8.【小结】对极限的理解和计算,也是对导数概念的准确理解.通过此题可以看出学生是否掌握了导数的概念.探究二:【解析】将P(2,-1)代入y=,得t=1,∴y=.∴===.(1)曲线在点P处的切线斜率为y'|x=2==1,曲线在点Q处的切线斜率为y'|x=-1=.(2)曲线在点P处的切线方程为y-(-1)=x-2,即x-y-3=0,曲线在点Q处的切线方程为y-=[x-(-1)],即x-4y+3=0.【小结】1.因为“在某点处”和“过某点的”切线方程求法不同,所以解答这类问题需判断点是否在曲线上.2.求曲线y=f(x)在点(x0, f(x0))处的切线方程.(1)函数y=f(x)在点x0处的导数f'(x0)即为切线的斜率.(2)根据直线的点斜式方程,得切线方程为y-f(x0)=f'(x0)(x-x0).(3)若曲线y=f(x)在点P(x0,f(x0))处的导数f'(x0)不存在,则切线与x轴垂直;若f'(x0)>0,则切线与x轴正向夹角为锐角;若f'(x0)<0,则切线与x轴正向夹角为钝角;若f'(x0)=0,则切线与y轴垂直.探究三:【解析】设P点坐标为(x0,y0),y'====(2x+Δx)=2x.∴y'=2x0,又由切线与直线4x-y+2=0平行,∴2x0=4,∴x0=2.∵P(2,y0)在抛物线y=x2上,∴y0=4,∴点P的坐标为(2,4),∴切线方程为y-4=4(x-2),即4x-y-4=0.【小结】1.解决本题应用了方程的思想,这其实是已知切点求切线方程的逆应用过程.2.根据斜率求切点坐标的方法步骤为:(1)先设切点坐标(x0,y0);(2)求导函数f'(x);(3)求切线的斜率f'(x0);(4)由斜率间的关系列出关于x0的方程,解方程求x0;(5)点(x0,y0)在曲线f(x)上,将(x0,y0)代入求y0,得切点坐标.思维拓展应用应用一:44-2f'(x)====(3x2+3x·Δx+Δx2-8)=3x2-8,∴f'(2)=4.=f'(2)=4.==f'(2)=4.=-=-f'(2)=-2.应用二:∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1=3Δx+3(Δx)2+(Δx)3,==(Δx)2+3Δx+3.当Δx=0.1时,割线PQ的斜率为k1==(0.1)2+3×0.1+3=3.31.曲线在点P处的切线的斜率为k2==3.应用三:(1)将x=1代入y=x3得y=1,∴切点P(1,1),y'====3x2.∴y'|x=1=3,∴点P处的切线方程为y=3x-2.(2)由得(x-1)(x2+x-2)=0,∴x=1或-2.∴公共点为(1,1)或(-2,-8),∴还有其他公共点(-2,-8).基础智能检测1.B f'(x A)与f'(x B)分别表示函数图像在点A, B处的切线斜率,故f'(x A)<f'(x B).2.BΔy=-,=,===’∴y'=.3.2由题意=(aΔx+2a)=2a=2,∴a=1,又3=a×12+b,∴b=2,∴=2.4.解:f'(1)=====(Δx+2)=2,即切线的斜率k=2,所以y=x2在点A(1,1)处的切线方程为y-1=2(x-1),即2x-y-1=0.全新视角拓展D∵点(1,f(1))在切线x-2y+1=0上,∴f(1)=1,又f'(1)=,∴f(1)+2f'(1)=1+2×=2.。
《导数的概念与几何意义》导学案
《导数的概念与几何意义》导学案导数是微积分的重要内容之一,它是在数学中用来描述函数变化速率的一个概念。
导数的几何意义在于,它可以帮助我们理解函数的曲线在其中一点的切线斜率,以及曲线的凸凹性质。
一、导数的定义与计算导数的定义是在函数的极限的基础上得到的,定义如下:设函数y=f(x),如果函数在点x₀的一些邻域内有定义,那么当自变量x的增量趋于0时,函数增量f(x)−f(x₀)与x−x₀的比值的极限存在,则称该极限为函数f(x)在点x₀的导数,记作f'(x₀),或者dy/dx(x₀)。
导数的计算公式包括以下几个常见的形式:1.常数函数的导数为0;2. 幂函数的导数公式:对于幂函数y=x^n(n为常数),其导数为y'=nx^(n-1);3. 指数函数的导数公式:对于指数函数y=a^x(a为常数),其导数为y'=ln(a)a^x;4. 对数函数的导数公式:对于对数函数y=logₐx(a为常数),其导数为y'=1/(xln(a));5. 三角函数的导数公式:对于三角函数y=sin(x),y'=cos(x);对于y=cos(x),y'=-sin(x);对于y=tan(x),y'=sec²(x);6. 反三角函数的导数公式:对于y=sin⁻¹(x),y'=1/√(1-x²);对于y=cos⁻¹(x),y'=-1/√(1-x²);对于y=tan⁻¹(x),y'=1/(1+x²);7. 双曲函数的导数公式:对于双曲函数y=sinh(x),y'=cosh(x);对于y=cosh(x),y'=sinh(x);对于y=tanh(x),y'=sech²(x)。
二、导数的几何意义导数的几何意义主要体现在两个方面,即切线斜率和曲线凹凸性。
1.切线斜率:导数可以帮助我们计算函数曲线在其中一点的切线斜率。
《导数的概念及其几何意义》教学设计
《导数的概念及其几何意义》教学设计一、内容及内容解析1.内容:(高中新课标数学课程内容)导数的概念及其几何意义.2.解析:导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用.在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值.导数概念的本质是极限,但学生很难理解极限的形式化定义,人教版新教材不介绍极限的形式化定义及相关知识,而是通过列表计算、直观地把握函数变化趋势(蕴含着极限的描述性定义),这种直观形象的方法中蕴含了极限思想.本节课的教学重点:从求瞬时速度和求曲线的切线斜率等问题中抽象概括出导数的概念,利用信息技术工具揭示导数的几何意义,并以此进一步体会极限思想.二、目标及目标解析1.教学目标(1)从具体案例中抽象概括出函数平均变化率与导数的概念,并以此培养数学抽象素养. (2)通过函数在某点的导数就是函数图象在该点的切线斜率的事实,揭示导数的几何意义,并由此加强直观想象素养的培养.(3)通过求简单函数的导数,掌握由导数定义求函数导数的步骤,进一步体会极限思想,加强数学运算素养的培养.2.目标解析(1)导数的本质是函数的瞬时变化率,而求函数瞬时变化率的问题广泛地存在于社会生活与科学研究中,因此,从具体案例中抽象出导数概念,不仅可以得到一个应用广泛的数学工具,还可以由此培养学生的数学抽象素养,体会数学研究的一般过程.(2)导数概念高度抽象,虽然通过计算瞬时速度等具体案例有所认识,但要深入理解其是平均变化率的极限,还需要加强导数的“多元联系”.因此,从函数在0x x 处的导数就是函数图象在对应点的切线的斜率这个几何直观上进一步认识导数是非常重要的,这也是培养学生直观想象素养的难得机会.(3)导数是特殊的极限,通过导数的学习体会极限思想,可以为未来进一步学习极限提供典型案例,使学生更深刻地认识“从特殊到一般”、“从具体到抽象”是数学研究的重要思想方法.三、学生学情诊断分析本节课授课对象是广东省重点中学深圳中学的学生,在广东省属于基础非常好的学生,他们具有扎实的基础,较强的计算能力和较高的逻辑思维水平.如何正确理解瞬时速度、切线的斜率是极限,这是第一个教学问题.要解决这个教学问题,需要用好前面学习过的案例,通过数值变化和图象直观,正确理解平均速度的极限就是瞬时速度,以及割线斜率的极限就是切线斜率.在此过程中,帮助学生正确理解“极限”的含义,这也是建立导数概念的关键.如何从已经学习过的求瞬时速度、求切线的斜率这些具体案例中抽象出导数概念,是第二个教学问题,也是教学难点.要解决好这个问题,需要先从学习过的具体案例中提练出平均变化率的概念,并用符号形式化地表示出来.在此基础上,通过自变量的改变量趋于0的变化,观察平均变化率的数值变化和形式化后的变化趋势,建立导数的概念.导数概念的建立过程中,涉及大量的相关概念与符号,如何正确理解这些概念与符号的意义,是第三个教学问题.教学中要通过具体案例进行剖析,不仅要使学生能正确理解这些概念与符号,还要能准确运用相关概念与符号.教学难点:从求函数瞬时变化率的具体案例中抽象概括出导数的概念,理解导数就是特殊的“极限”.四、教学策略分析学生在上一节课体验了用平均速度逼近瞬时速度、割线斜率逼近切线斜率,这是求瞬时速度、求切线斜率的重要方法,也是建立函数导数概念的重要支持.而且,学生在高中数学学习过程中,已经建立了不少概念,对“观察、分析、归纳、概括、抽象”的概念建立过程有了较多的体会与认识.学生没有极限的概念,而导数的本质便是极限,同时导数的表示要借助极限符号,这都增加了学生抽象概括出导数概念的难度. 因此,借助技术平台(如EXCEL软件等)使学生直观感受极限的“逼近”的过程,以此降低认识导数就是极限的难度,是本节课的另一个重要支持条件.此外,教学中还应该关注以下几点:1.注重由特殊到一般的思维引导本课以预设问题链激发学生思考、推动课堂教学.问题的设置体现了由特殊到一般的认知规律,即学生从跳水运动员的平均速度到瞬时速度的逼近和割线斜率到切线斜率的逼近,然后再推广到一般情形,建立导数的概念.2.强化数学抽象的核心素养在学生充分经历瞬时速度和切线斜率的计算过程后,引导学生归纳概括函数的平均变化率的概念,导数的概念.3.引导学生借助直观想象理解导数的几何意义通过割线逼近切线,割线斜率逼近切线斜率的过程,向学生展示切线形成及切线斜率计算的过程,帮助学生理解导数的几何意义.五、教学过程设计【问题1】在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.如何求出0.5s t =时刻的瞬时速度?师生活动预设:①教师通过提示学生上节课用平均速度逼近瞬时速度的方法计算出1s t =,2s t =时刻的瞬时速度,提问:如何求出0.5s t =时刻的瞬时速度?②学生复习上节课求瞬时速度的方法,并思考教师提出的问题.③教师利用信息技术演示平均速度逼近瞬时速度的计算过程:先计算[]0.5,0.5t +∆时间段的平均速度,再令时间间隔t ∆无限趋近于0,平均速度趋近于一个确定的值,这个(极限)值就是0.5s t =时的瞬时速度,同时进行极限运算的时候要向学生强调极限的运算过程,体会无限逼近的思想.追问:(1)现在我们算出1s t =,2s t =,0.5s t =时刻的瞬时速度,那么对于某一时刻0t ,你能否算出瞬时速度?如果能,请计算求出;如果不能,请说明理由.解:时间段[]00,t t t +∆内的平均速度()()0004.99.8 4.8h t t h t v t t t+∆-==-∆-+∆,令0t ∆→,则004.99.8 4.89.8 4.8v t t t =-∆-+→-+,可见瞬时速度是一个只与0t 有关的值,不妨记为()0v t ,即()0000lim lim( 4.99.8 4.8)9.8 4.8t t v t v t t t ∆→∆→==-∆-+=-+,所以运动员在某一时刻0t 的瞬时速度为()009.8 4.8v t t =-+.师生活动预设:①学生思考;②教师展示计算过程,强调极限的表示和描述性定义.设计意图:通过复习上节课瞬时速度的计算,提出一般时刻的瞬时速度的计算问题,为抽象概括导数的概念作好铺垫.追问:①类似地,我们还研究了抛物线2y x =在点某点处的切线斜率,如点()1,1P ,()1,1P -,其他点处切线的斜率能不能求?②一般的点怎么表示?其斜率如何计算?设计意图:继续复习上节课切线斜率的计算,提出一般的点处切线斜率的计算问题,为抽象概括导数的概念作好铺垫.【问题2】如果把高台跳水和求抛物线斜率问题中的函数换为一般函数()y f x =,你可以类似地得出什么结论?师生活动预设:①给学生充分思考的时间,引导学生抽象概括导数的概念.技术平台;教师通过信息技术平台展示学生的解答过程并点评其中的问题,同时完善学生的表达,强调其中符号的表示.③教师给出函数的平均变化率、导数的定义:对于函数()y f x =,设自变量x 从0x 变化到0x x +∆,相应的,函数值y 就从()0f x 变化到()0f x x +∆.这时,x 的变化量为x ∆,y 的变化量为()()00y f x x f x ∆=+∆-.我们把比值yx∆∆,即 ()()00f x x f x y x x+∆-∆=∆∆ 叫做函数()y f x =从0x 到0x x +∆的平均变化率.如果当0x ∆→时,平均变化率y x ∆∆趋近于一个确定的值,即yx∆∆有极限,则称()f x 在0x x =处可导,并把这个确定的值叫做()y f x =在0x x =处的导数(derivative),记作()0'f x 或0'|x x y =,即00000()()()limlim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.设计意图:通过具体案例抽象概括出导数的概念,让学生体会数学研究的一般方法. 设计意图:通过具体案例抽象概括出导数的概念,让学生体会数学研究的一般方法.追问:瞬时速度()0.5v 用导数怎么表示?点()200,P x x 处的切线斜率k 用导数怎么表示? 师生活动预设:①学生在学案上写下答案并拍照上传到技术平台;②教师通过信息技术平台展示学生的解答并点评其中的问题,同时强调导数符号的表示()()0.5'0.5v h =,()00'|x x v t y ==.例1 设()1f x x=,求()'1f .解:()()1111111f x f x x x x-+∆-+∆==-∆∆+∆,()()()000111111'1lim lim lim 11x x x f x f x f x x x ∆→∆→∆→-+∆-⎛⎫+∆===-=- ⎪∆∆+∆⎝⎭. 师生活动预设:①学生思考.②教师板书演示计算过程,强调导数计算的步骤,提醒学生体会导数的概念.【问题3】 曲线3y x =(0x ≥)上的点到直线330x y --=距离的最小值为________.师生活动预设:①教师先回忆上节课研究的抛物线2y x =上一点到直线330x y --=距离的最小值问题,然后提出问题:将抛物线2y x =换成曲线3y x =(0x ≥)如何解决.②学生有可能给出如下回答:类似于抛物线的解决方法,如(1)设点坐标直接求,困难是三次函数的最值求不出来;(2)数形结合,利用几何方法,将点到直线的距离转化为平行线间的距离,当直线与曲线相切时取得最小值,从而引出求切线方程的问题.③教师利用信息技术动态演示距离的变化情况,引出切线问题.追问:①现在我们需要求得曲线3y x =(0x ≥)上一点()300,x x (00x ≥)的切线,使其平行于直线330x y --=,也就是让切线斜率等于?②现在的关键是求出曲线3y x =(0x ≥)上一点()300,x x (00x ≥)的切线斜率,那么切线怎么定义?是类似于圆的切线定义还是抛物线的切线定义?师生活动预设:①学生思考并讨论,如何定义曲线3y x =(0x ≥)上一点()300,xx (00x ≥)的切线.②学生有可能给出如下回答:小部分回答圆的切线定义方式,大部分抛物线的切线定义方式.追问:我们上节课已经知道圆的切线定义方式不适用于抛物线,那么抛物线的切线定义方式是否适用于圆呢?师生活动预设:①学生有可能给出如下回答:适用.②教师利用信息技术动态演示圆的割线逼近切线的过程. 追问:对于曲线3y x =(0x ≥)呢?一般曲线()y f x =呢?师生活动预设:①学生有可能给出如下回答:适用.②教师利用信息技术动态演示圆及一般曲线的割线逼近切线的过程,并给出一般曲线()y f x =在一点处的切线定义:取曲线()y f x =上的一动点()()00,P x x f x x +∆+∆,当点()()00,P x x f x x +∆+∆沿着曲线()y f x =趋近于点()()000,P x f x 时,割线0PP 趋近于确定的位置,这个确定位置的直线0PT 称为点P 处的切线(tangent line ).追问:现在切线定义已经解决了,如何求切线斜率?师生活动预设:①学生有可能给出如下回答:用割线斜率逼近切线斜率.②教师投影切线斜率()()000limx f x x f x k x∆→+∆-=∆.追问:现在我们称()()000limx f x x f x x∆→+∆-∆为?师生活动预设:学生有可能给出如下回答:(函数()y f x =在0x x =处的)导数. 追问:导数的几何意义就是?师生活动预设:学生有可能给出如下回答:(曲线()y f x =在点()()00,x f x 处的)切线斜率.追问:曲线3y x =(0x ≥)上的哪个点处的切线斜率为3?师生活动预设:①教师提示:设点()300,P x x (00x ≥)处切线斜率为3,则()0'3f x =.②学生在学案上计算0x 的值并拍照上传到畅言平台. ③教师点评学生的答案,并给出解答过程.追问:曲线3y x =(0x ≥)上的点到直线330x y --=距离的最小值是?设计意图:通过研究一道解析几何经典问题,引出一般曲线的切线定义及某点处切线斜率的计算方法,直观形象地让学生体会导数的几何意义.追问:通过前面的例子,你知道求函数()y f x =在0x x =处的导数的步骤吗?师生活动预设:学生思考并回答问题:第一步,求函数的平均变化率00()()f x x f x y x x+∆-∆=∆∆并化简; 第二步,求极限,令0x ∆→,得到导数00()lim x yf x x∆→∆'=∆.设计意图:熟悉导数定义,了解导数内涵,掌握导数运算. 【问题 4】你认为下列命题哪些是正确的?①瞬时速度是导数. ②导数是切线斜率. ③导数是特殊的极限.④曲线()y f x =在点()()00,x f x 处的切线方程是()()()000'y f x f x x x -=-.师生活动预设:①学生在技术平台上完成解答;②教师通过信息技术平台展示学生的解答情况并点评出错较多的问题,并由此进行小结.③教师布置课后检测作业.设计意图:通过【问题 4】对本节课内容进行小结,进一步加深学生对导数概念的理解,加强数学抽象、直观想象等核心素养.六、目标检测设计1.圆的面积S 与半径R 的关系为2πS R =,问5R =时面积关于半径的瞬时变化率是多少?(设计意图:认识瞬时变化率(导数)的概念,练习导数的计算)2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是(设计意图:理解导数的概念及其几何意义)3.求曲线2122y x =-在点31,2⎛⎫- ⎪⎝⎭处的切线的倾斜角的大小.(设计意图:理解导数的几何意义)。
导数基本运算及几何意义导学案
导数基本运算及几何意义导学案学习目标:1.熟练掌握基本初等函数的导数公式;2.理解曲线的切线概念3.理解导数的几何意义就是曲线在该点的切线的斜率,并会利用导数的几何意义解题重点难点:导数公式、切线斜率、导数的几何意义知识点梳理(预习导航)一、知识回忆:1.点斜式求直线方程:y-y0=k(x-x0) 直线斜率为k,过点(x0,y0)练习:已知直线斜率为2,过点(2,6),则直线方程为:2.两条直线平行的条件:两条直线垂直的条件:二、阅读教材P86-88,完成下列知识点3.基本初等函数求导公式4.导数的几何意义函数y=f(x)在x=x0处的导数f’(x0)就是曲线y=f(x)在点(x0,f(X0))处的切线斜率理解:函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点(x0,f(X0))处切线的斜率.合作探究通过:例1:求下列函数的导数1.(1)5y x=(2)xy1=(3)y x=(4)21xy=2.(1)sin xy=(2)y=2x(3)xy1=(4)e x例2:求下列函数在给定点的导数(1)6y x-=,x=2 (2) f(x)=x12,x=4例3:1. 已知曲线3xy=在x=2处的切线斜率为()2.已知曲线上一点,则点处的切线斜率为()例4:(1)求xy1=在点)21,2(处的切线方程22y x=(2,8)A(2)求x y ln =在2e x =处的切线方程思考:总结利用导数求切线方程的步骤:变式:1.设曲线2()f x x =在点0P 处的切线斜率是3,则点0P 的坐标是2.在曲线2x y =上过哪一点的切线平行于直线54+=x y (思考:将平行改成垂直呢)例5:已知曲线y =13x 3+43总结:求切线方程应该注意哪些高考链接1.(2018课标全国II .13,5分)曲线ln yx =在点(1,0)处的切线方程为________2.(2017课标全国I .14,5分)曲线1y x=在点(1,1)处的切线方程为_______3.(2018课标全国I .6,5分)设函数.)1()(23ax x a x x f +-+=若f(x)为奇函数,则曲线)(x f y =在点(0,0)处的切线方程为( )x y A 2-=⋅ x y B -=⋅ x y C 2=⋅ x y D =⋅4.(2015课标II .4,5分)已知函数1)(3++=x ax x f 的图象在点(1,f(l))处的切线过点(2,7),则a=___________5.(2015课标II .16,5分)已知曲线xx y ln +=在点(1,1)处的切线与曲线1)2(2+++=x a ax y 相切,则a=______。
高中数学选修2-2导数导学案
高中数学选修2-2导数导学案§1.1.3【知识要点】导数的几何意义导学案1.导数的几何意义(1)割线斜率与切线斜率设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx)) Δy的一条割线,此割线的斜率是=__________________.Δx当点B沿曲线趋近于点A时,割线AB绕点A转动,它的最终位置为直线AD,这条直线AD叫做此曲线在点A处的.于是,当Δx→0时,割线AB的斜率无限趋向于在点A的切线AD的斜率k,即k==___________________. (2)导数的几何意义函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是.相应地,切线方程为_______________________. 2.函数的导数当x=x0时,f′(x0)是一个确定的数,则当x变化时,f?(x)是x的一个函数,称f?(x)是f(x)的导函数(简称导数).f?(x)也记作y′,即f?(x)=y′=_______________【问题探究】探究点一导数的几何意义例1 如图,它表示跳水运动中高度随时间变化的函数h(t)=-4.9t2+6.5t+10的图象.根据图象,请描述、比较曲线h(t)在t0,t1,t2附近的变化情况.跟踪训练1 (1)根据例1的图象,描述函数h(t)在t3和t4附近增(减)以及增(减)快慢的情况.(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是 ( )探究点二求切线的方程问题1 怎样求曲线f(x)在点(x0,f(x0))处的切线方程?问题2 曲线f(x)在点(x0,f(x0))处的切线与曲线过某点(x0,y0)的切线有何不同?例2 已知曲线y=x2,求:(1)曲线在点P(1,1)处的切线方程;(2)曲线过点P(3,5)的切线方程.跟踪训练2 已知曲线y=2x2-7,求:(1)曲线上哪一点的切线平行于直线4x-y-2=0? (2)曲线过点P(3,9)的切线方程.1【当堂检测】1.已知曲线f(x)=2x2上一点A(2,8),则点A处的切线斜率为 ( ) A.4 B.16 C.8 D.22.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则 ( )A.a=1,b=1 B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 3.已知曲线y=2x2+4x在点P处的切线斜率为16,则P点坐标为_______【课堂小结】1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0f?x0+Δx?-f?x0?=f′(x0),Δx物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.【拓展提高】,f(1))处的切线方程是y?1.已知函数y?f(x)的图象在点M(121x?2,则f(1)?f?(1)? 22.设P为曲线C:y?x?2x?3上的点,且曲线C在点P处切线倾斜角的取值范围为?0,?,则点P横坐4标的取值范围为?????2§1.2.1 常数函数与幂函数的导数导学案§1.2.2 导数公式表及数学软件的应用导学案【知识要点】1.几个常用函数的导数原函数 f(x)=c f(x)=x f(x)=x2 1f(x)= xf(x)=x2.基本初等函数的导数公式原函数 y=c y=xn(n∈N+) y=xμ(x>0,μ≠0且μ∈Q)y=sin x y=cos x y=ax(a>0,a≠1) y=ex y=logax(a>0,a≠1,x>0) y=ln x 导函数y′=____ y′=______ y′=_______ y′=________ y′=________ y′=________ y′=_____ y′=______ y′=______ 导函数f′(x)=___ f′(x)=___f′(x)=___ f′(x)=_____ f′(x)=_______ 【问题探究】探究点一求导函数问题1 怎样利用定义求函数y=f(x)的导数?问题2 利用定义求下列常用函数的导数:(1) y=c;(2)y=x;(3)y=x2;(4)y=x;(5)y=x.问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:π14(1)y=sin;(2)y=5x;(3)y=3;(4)y=x3;(5)y=log3x.3x跟踪训练1 求下列函数的导数:1(1)y=x8;(2)y=()x;(3)y=xx;(4)y?log1x2313探究点二求某一点处的导数例2 判断下列计算是否正确.π??π?ππ3cos′=-sin =-. 求f(x)=cos x在x=处的导数,过程如下:f′?=?3??3?332跟踪训练2 求函数f(x)=13在x=1处的导数.x探究点三导数公式的综合应用例3 已知直线x-2y-4=0与抛物线y2=x相交于A、B两点,O是坐标原点,试在抛物线的弧AB上求一点P,使△ABP的面积最大.跟踪训练3 点P是曲线y=ex上任意一点,求点P到直线y=x的最小距离.【当堂检测】1.给出下列结论:其中正确的个数是 ( )131313-①若y=3,则y′=-4;②若y=x,则y′=x;③若y=2,则y′=-2x3; xx3x④若f(x)=3x,则f′(1)=3.A.1 B.2 C.3 D.4 2.函数f(x)=x,则f′(3)等于 ( ) 3D. 22x3.设正弦曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是 A.B.0C.π3πA.[0,]∪[,π)44π3πB.[0,π) C.[,]44ππ3πD.[0,]∪[,]424361( )4.曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.xx如求y=1-2sin2的导数.因为y=1-2sin2=cos x,所以y′=(cos x)′=-sin x.223.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.【拓展提高】1.若函数f(x)=ex cos x,则此函数的图象在点(1,f(1))处的切线的倾斜角为( ) A.0° B.锐角 C.直角 D.钝角2.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为___________4§1.2.3【知识要点】导数的运算法则设两个可导函数分别为f(x)和g(x)两个函数的和的导数两个函数的差的导数两个函数的积的导数两个函数的商的导数导数的四则运算法则(一)导学案[f(x)+g(x)]′=________________ [f(x)-g(x)]′=_________________ ?f(x)g(x)??=____________________ ??f(x)??g(x)?=___________________ ??【问题探究】探究点一导数的运算法则例1 求下列函数的导数:x5+x7+x9(1)y=3-lg x;(2)y=(x+1)(x-1);(3)y=.x跟踪训练1 求下列函数的导数:x2x-1xsin x(1)f(x)=x・tan x;(2)f(x)=2-2sin2;(3)f(x)=;(4)f(x)=. 2x+11+sin x探究点二导数的应用例2 (1)曲线y=xex+2x+1在点(0,1)处的切线方程为_______________(2)在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为________t-1(3)已知某运动着的物体的运动方程为s(t)=2+2t2(位移单位:m,时间单位:s),求t=3 s时物体的瞬时t速度.跟踪训练2 (1)曲线y=1A.-2π?sin x1-在点M??4,0?处的切线的斜率为 ( ) sin x+cos x21B. 2C.-22 D. 221a(2)设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值.32【当堂检测】1.设y=-2exsin x,则y′等于 ( )A.-2excos x B.-2exsin x C.2exsin x x2.曲线f(x)=在点(-1,-1)处的切线方程为( )x+2A.y=2x+1D.-2ex(sin x+cos x)B.y=2x-1 C.y=-2x-35D.y=-2x+2感谢您的阅读,祝您生活愉快。
导数的概念及运算
学校 高二年级学科数学(文)导学案 编制人: 审核人: 授课日期: 月 日 姓名: 班级: 编号:第 周 号课题:【学习目标】1、理解并掌握倒数的概念、公式及运算法则2、会应用导数的概念,公式及运算律解决问题【学习重难点】重点:导数的概念、公式及运算法则难点:1.积商的导数公式.2利用导数求切线方程【知识链接】1.常用的导数公式C ′= (C 为常数); (x m )′= (x>0,m ≠0且m ∈Q);(x n )′= (n ∈N +)(sin x )′= (cos x )′=(e x )′= (a x )′=(ln x )′= (log a x )′=.特别f (x )=1x时,f ′(x )= f (x )=x 时,f ′(x )=. 2.两个函数的四则运算的导数[f (x )±g (x )]′=[f (x )g (x )]′= 特别[cf (x )]′= (c 为常数);⎣⎡⎦⎤f (x )g (x )′= (g (x )≠0). 【学习过程】:【基础知识梳理】1.深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系(1)函数在一点处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导数,是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0).根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值,即f ′(x 0)=f ′(x )|x =x 0.2.要正确区分曲线y =f (x )在点P 处的切线,与过点P 的曲线y =f (x )的切线.3.求切线方程的步骤。
二、【合作探究】(本部分先由同学自主完成,课堂上通过与小组同学交流合作进一步完善)B[例1] 若f ′(a )=A ,则lim Δx →0f (a +Δx )-f (a -Δx )Δx=________.B 设f (x )为可导函数,且满足lim x →0f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1 D .-2B[例2] 设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2013(x )等于( ) A .sin x B .-sin x C .cos x D .-cos xA(1)(2011·黄山期末)已知f (x )=x 2+3xf ′(2),则f ′(2)=________.(2)函数y =cos x 2(sin x 2-cos x 2)的导数为________.C[例3] 已知点P 在曲线y =4e x+1上,角α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)C 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( ) A.π22 B .π2 C .2π2 D.12(2+π)2三、【能力训练】 C1 设)(x f 是可导函数,且='=∆-∆-→∆)(,2)()2(lim 0000x f xx f x x f x 则 ( ) A .21 B .-1 C .0 D .-2A2.若)(x f 是在()l l ,-内的可导的偶函数,且)(x f '不恒为零,则)(x f ' ( )A. 必定是()l l ,-内的偶函数B. 必定是()l l ,-内的奇函数C. 必定是()l l ,-内的非奇非偶函数D. 可能是奇函数,也可能是偶函数B3.已知)1()('23f x x x f +=, 则=)2('fC4.已知),(,cos 1sin ππ-∈+=x x x y ,则当2'=y 时,=xC5.已知a x x a x f =)(,则=)1('f【学习反思】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念、几何意义及运算考纲要求:1.了解导数概念的实际背景.2.理解导数的几何意义.3.能利用给出的基本初等函数的导数公式和导数的四则运 算法则求简单函数的导数.4.[理]能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 考情分析1.导数的运算是导数的基本内容,在高考中每年必考,一般不单独命题,而在考查导数应用的同时进行考查.2.导数的几何意义是高考重点考查的内容,常与解析几何知识交汇命题.3.多以选择题和填空题的形式出现,有时也出现在解答题中关键的一步. 教学过程基础梳理: 1、函数的平均变化率:一般地,函数()f x 在区间[]12,x x 上的平均变化率为__________ 。
2、导数的概念:设函数()y f x =在区间(),a b 上有定义,()0,x a b ∈,若x 无限趋近于0时,比值____________yx=无限趋近于一个常数A ,则称()f x 在0x x =处__________,并称该常数A 为函数()f x 在0x x =处的__________,记作__________.若()f x 对于区间(),a b 内任一点都可导,就称()f x 在区间(),a b 内可导,其导数称为()f x 的导函数,简称导数,记作__________.3、导数的几何意义:曲线()y f x =在点()00,()P x f x 处的__________,即0().k f x '=4、导数的物理意义:(1)设()s s t =是位移函数,则0()s t '表示物体在0t t =时刻的__________. (2)设()v v t =是速度函数,则0()v t '表示物体在0t t =时刻的__________. 5、基本函数的导数公式(1)()_______(a x a '=为常数),(2)(sin )________,(cos )___________x x ''==; (3)()________(0x a a '=>且1a ≠),()________x e '=; (4)(log )________(01),a x a a '=>≠且(ln )________x '=。
7、导数的运算法则:(1)[()()]__________f x g x '±=;(2),[()()]_______f x g x '⋅=; (3)[()]________.cf x '= (4)()[]________.()f xg x '= 8(理)、若(),,_____________x y f u u ax b y '==+=则.双基自测:1、如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =;(1)(1)0,_______f x f x x+∆-→→∆.(用数字作答) 2、在曲线21y x =+的图象上取一点(12),及附近一点(12)x y ++,,则________yx=. 3、设()2sin f x x x =-,若0()0f x '=且0(0,)x π∈,则0____x =.4、一质点的运动方程为210S t =+,则该质点在3t s =的瞬时速度为________/m s .(选修2-212P 练习1)5、已知函数()()cos sin 4f x f x x π'=+,则()________4f π=.6、(2011·江西高考)曲线y =e x 在点A (0,1)处的切线斜率为( )A .1B .2C .e D.1e.典例分析考点一、利用导数的定义求函数的导数例1、用定义法求下列函数的导数.(1)y =x 2; (2)y =4x 2.变式1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法).根据导数的定义,求函数y =f (x )在x =x 0处导数的方法是 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=lim x ∆→ΔyΔx .考点二、利用导数公式及运算法则求导数[例2](2011·江西高考)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为()A.(0,+∞)B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)变式2.(2012·嘉兴模拟)函数f(x)=sin xx的导数是()A.x sin x+cos xx2 B.x cos x+sin xx2C.x sin x-cos xx2 D.x cos x-sin xx2求函数的导数时,要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数.对于不具备求导法则结构形式的要适当恒等变形;对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.考点三、导数的几何意义[例3] (2011·山东高考)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是 ()A.-9 B.-3C.9 D.15变式3.若例3变为:曲线y=x3+11,求过点P(0,13)且与曲线相切的直线方程.[例4](2010·全国卷Ⅱ)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1变式4.(2012·郑州联考)设f(x)=e x+x,若f′(x0)=2,则f(x)在点(x0,y0)处的切线方程为________.求曲线的切线方程有两种情况,一是求曲线y=f(x)在点P(x0,y0)处的切线方程,其方法如下:(1)求出函数y=f(x)在点x=x0处的导数,即曲线y=f(x)在点P(x0,f(x0))处切线的斜率.(2)在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f′(x0)(x-x0).如果曲线y=f(x)在点P(x0,f(x0))处的切线平行于y轴,由切线定义可知,切线方程为x =x0.二是求曲线y=f(x)过点P(x0,y0)的切线方程,其方法如下:(1)设切点A(xA,f(xA)),求切线的斜率k=f′(xA),写出切线方程.(2)把P(x0,y0)的坐标代入切线方程,建立关于xA的方程,解得xA的值,进而写出切线方程.[考题范例](2011·湖南高考)曲线y =sin x sin x +cos x-12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B.12 C .-22D.22[失误展板]错解:y ′=cos x (sin x +cos x )+sin x (cos x -sin x )(sin x +cos x )2=sin 2x +cos 2x 1+sin 2x当x =π4时,y ′=12错因:本题解题有误,但结果正确,其错误在于应用公式出错,求函数导数时,易误点一是对cos x ,log ax ,ax 求导出错,二是商运算出错.[正确解答]y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x,把x =π4代入得导数值为12.一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别:曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 两种法则(1)导数的四则运算法则. (2)复合函数的求导法则. 三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别. 3.正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.本节检测1.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2)B .2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.1343.(2012·江南十校联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+x 2,则f ′(1)=( )A .-1B .-2C .1D .24.与直线2x -6y +1=0垂直,且与曲线f (x )=x 3+3x 2-1相切的直线方程是________.5(理).已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 012⎝ ⎛⎭⎪⎫π2=______6.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.自我反思。