分式的基本性质[人教版]

合集下载

人教版八年级上册数学《分式的基本性质》分式PPT教学课件(第1课时)

人教版八年级上册数学《分式的基本性质》分式PPT教学课件(第1课时)

同类题检测:平板推题
1.下列分式中,是最简分式的是
(填序号).
x3 (1)
3x
;(2)x+y 2x
;(3) c
c 2+7c
;(4)xx2++yy2
;(5)xx2++yy2 .
2.下列约分正确的是( ) A. 2(b c) 2 a 3(b c) a 3
B.
(a b)2 (b a)2
1
C.
的分子分母中各项的系数都化为整数,
4
结果为

自学释疑、拓展提升
知识点二:分式的约分 自学问题:分式约分的关键是约去公因式,对于分子分母是多项式的需
要先进行因式分解后再约去公分母;约分进行式子变形时,易忽略分子 与分母的符号变化。 学生典型问题展示: 展示《15.1.2分式的基本性质(1)课前自测》中第5、6题的正确率 ,以及做错的学生的错题选项;学案上知识点二学生中存在问题图片展 示。 问题解决: 问题1:观察教材129页例2(1)中的两个分式,在变形前后的分子、分 母有什么变化?类比分数的相应变形,你联想到什么? 归纳总结: 根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分
A.x<0 B.x>0 C.x≠0 D.x≠0且x≠-2
2.下列等式:①
(a b) a b
c
c
x y ;② x
x y x
a b a b
;③ c
c
;④
m n m n
m
m
中,成立的是( )
A.①②
B.③④
C.①③a
D.②④
0.4b
3.不改变分式的值,将分式
2 0.6a 3 b
课前检测和学案整体完成情况较好的学生:图片展示(课前自主学习整体完成优秀展示)

新人教版八年下《16[1].1分式-分式的基本性质》ppt课件 2

新人教版八年下《16[1].1分式-分式的基本性质》ppt课件 2

16.1.2分式的基本性质第一课时教学设计教材分析:“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。

教学目标:知识目标:1)通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。

2)引导学生用语言和式子表示分式的基本性质,使学生对其有更深的理解。

3)通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用。

4)引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

能力目标:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

情感目标:通过研究解决问题的过程,培养学生合作交流意识与探究精神。

教学重、难点:重点:理解分式的基本性质。

难点:运用分式的基本性质进行分式的变形。

教法分析:本节课主要采用启发引导探索的教学方法。

学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

教学教具:课件ppt教学过程:活动一、创设问题情境导入新课教师提出问题(具体问题见课件),学生思考交流,回答问题。

在此环节中,教师先用三道小题对上节课内容进行简单的回顾,重点在第四道小题上,通过分数的通分、约分,让学生回忆所学过的分数的基本性质,为引出分式的基本性质做铺垫。

在活动中教师要关注学生对学过的知识是否掌握得较好;学生对新知识的探究是否有浓厚的兴趣。

通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。

在这个活动中,首先激活了学生原有的知识,体现了学生的学习是在原有知识上自我生成的过程。

初二【数学(人教版)】《分式的基本性质》【教案匹配版】最新国家级中小学精品课程全文

初二【数学(人教版)】《分式的基本性质》【教案匹配版】最新国家级中小学精品课程全文

−3 5a
=-
3 5a
;
(2)−2b −5a
2b
=
5a
;
(3)-−−1115yx
=-
11y 15x
.
初中数学
初中数学初二上册
例 把下列分式中的字母a,b同时扩大到原来的2倍,
分式的值会怎么变化?
(1)a2−ab;
(2)aa+bb.
解:
(1)
2∙2a 2a−2b
=
2∙2a 2(a−b)
,
分子分母都除以2得a2−ab; 所以分式的值不变;
进行变形可得
A B
=

−A B
=−
A −B
=
−A −B
分式的变号法则:
分式本身及其分子、分母这三处的正负号
中,同时改变两处,分式的值不改变.
初中数学
初中数学初二上册
练习 不改变分式的值,使下列分式的分子、分母
都不含负号.
(1)−5a3 ;
(2)−−25ba ;
(3)−
−11y −15x

解:
(1)
初中数学
初中数学初二上册
作业
4.不改变分式的值,使分式的分子、分母中的首项 的系数都不含 “-” 号:
初中数学

2x−1 −x+1

② −x−2−x−3x1+1.
5.不改变分式的值,把下列各式的分子与分母中
各项的系数都化为整数:

0.8x−0.7y 0.5x+0.4y

② 132xx−+1612yy.
m m+1
=
m(m−1) (m+1)(m−1)

新人教版八年下《1分式-分式的基本性质》

新人教版八年下《1分式-分式的基本性质》

(1) 1 c (c 0),分子分母都 ab abc
(2) a2 x a abx b
,分子分母都
(3)(xx2
y)2 y2
x x
y ,分子分母都 y
2.(补充)填空:
(1)a b ( ab
a2b
)
(2)2aab2b b (
a2
)
x2 xy x y
(3)
x2
(
)
x(
)
(4) x2 2x x 2
2a 3(a 1)
分子分母都
(3)(aab(1()a a1)1)
(a 1) ab
分子分母都
例2(课本P5)填空:
(1)
x2
x 2x
( ) x2
,
Байду номын сангаас3x
2 6x
3xy
2
x y ( )
(2)a b ( ab
) a2b ,
2a a2
b
(
) a2b
观察分子分母如何变化
(1) x
2
x
2x
(
x2
)
(分子分母都除以x)
(2)3x
2 6x
3xy
2
x y
(
)
(分子分母都除以 3x)
例3(补充)判断下列变形是否正确.
(1)
a b
a2 b2
(
)
(2)
b a
bc ac
(c≠0)
(
)
(3) b b 1 ( )
a a 1
(4)
2x 2x 1
x
x 1
(
)
(四)课堂练习
1.(补充)下列等式的右边是怎样从左边 得到的?

人教版8年级数学上册15章分式知识点

人教版8年级数学上册15章分式知识点

第十五章 分式一、知识概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A叫做分式,A 为分子,B为分母。

1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.6.分式有意义:分母不为0(0B ≠)7.分式无意义:分母为0(0B =)8.分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) 9.分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )10.分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) 11.分式值为1:分子分母值相等(A=B )12.分式值为-1:分子分母值互为相反数(A+B=0)二、分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 三、整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 四、分式方程的意义:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

15.1.2 分式的基本性质 初中数学人教版八年级上册课件

15.1.2 分式的基本性质 初中数学人教版八年级上册课件

(3)原式=
10m 3n
3a (2)原式= 7b
新知讲解 二 分式的约分
x2 xy x2
(x
y

x


x2 2x x 2
想一想:
(x2 xy) x x2 x
x x
y
(x2
xx 2x)
x
1 x2
联想分数的约分,由例1你能想出如何对分式进行约分?
与分数约分类似,关键是要找出分式的分子与分母的最简公分母.
A A C , A A C(C 0). B BC B BC
其中A,B,C是整式.
典例分析
例1 填空:看分母如何变化,想分子如何 变化.看分子如何变化,想分母如何变化.
想一想:(1)中 为什么不给出x ≠0, 而(2)中却给出 了b ≠0?
(1)x3 xy
(x2 ), y
3x2 3xy 6x2
知识要点 约分的定义
像这样,根据分式的基本性质,把一个分式的分子与分母的公 因式约去,叫做分式的约分.
经过约分后的分式 x y ,其分子与分母没有公因.像这 2x
样分子与分母没有公因式的式子,叫做最简分式.
分式的约分,一般要约去分子和分母所有的公因式,使所得的 结果成为最简分式或整式.
议一议
在化简分式 5xy 时,小颖和小明的做法出现了分歧:
x (
2
x) y(x
0);
(2) 1

a
), 2a b

2ab b2 ) (b
0).
ab
a 2b
a2
a 2b
想一想: 运用分式的基本性质应注意什么? (1)“都” (2) “同一个” (3) “不为0”

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
五、教学反思
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

=
3x2 x2
-15 x - 25
探索新知
知识点3 分式的通分 约分和通分的联系与区别
联系:约分和通分都是根据分式的基本性质对分式进行恒等变形, 二者均不改变分式的值. 区别:约分是针对一个分式而言的,把分式的分子和分母的公因 式约去,将分式化为最简分式或整式;而通分是针对多个异分母 的分式而言的,将分式的分子和分母乘同一个适当的整式,使这 几个异分母的分式化为同分母的分式.
2.分式有意义和无意义的条件是什么?
分式有意义的条件:分式的分母不能为0,即当B≠0时,分式
A B
才有意义.
分式无意义的条件:分式的分母为0,即当B=0时,分式 A 无
B
意义.
复习导入
3.分式值为零的条件是什么? 要使分式 A 的值为零,则A=0,且B≠0.
B
探索新知
知识点1 分式的基本性质 下列两组分数相等吗? (1) 6 6 2 3 相等
分 约分 找公因式

的方法

(1)找系数的最大公约数; (2)找分子分母相同因式的最低次幂; (3)两者的乘积即为公因式.
约 分
内容
把几个异分母的分式分别化成与原来的分

式相等的同分母的分式
通 通分 确定最简公 分
分母的方法
从系数、相同因式、不同因式三个方 面确定,注意多项式要先分解因式
课堂练习
1.下列分式中,最简分式是( D )
(1
m(m m)(1
( a b+ b 2 ) ab2
(2)
×100
(3) 0.01x- 5 (x-500) (4)0.3x 0.04 30x 4
×100
÷x3
x3 x3y 1 y

人教版八年级数学上第册15章15.1.2分式的基本性质(教案)

人教版八年级数学上第册15章15.1.2分式的基本性质(教案)
2.增强学生的数学运算能力:使学生熟练掌握分式的乘除法及约分方法,提高数学运算速度和准确度。
3.培养学生的数学建模意识:学会运用分式知识解决实际问题,培养学生的数学建模能力。
4.培养学生的抽象概括能力:通过对分式基本性质的探究,让学生学会从具体实例中抽象出一般性规律,提升抽象概括能力。
5.培养学生的合作交流意识:在小组讨论和课堂互动中,培养学生的团队协作能力和沟通表达能力。
今天的学习,我们了解了分式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对分式的基本性质的理解程度有所不同。有的学生能够迅速掌握分式的定义和基本性质,但也有一些学生在分式的约分和乘除法运算上遇到了困难。这让我意识到,在接下来的教学中,我需要更加关注学生的个别差异,提供更有针对性的指导。
在导入新课的部分,通过日常生活中的例子引入分式的概念,大多数学生都能积极参与,这表明生活化的教学情境能够激发学生的学习兴趣。然而,我也注意到,这种方法对于一些抽象思维能力较弱的学生来说,可能还不够直观。因此,我考虑在以后的课堂中加入更多的直观教具或动画,帮助他们更好地理解分式的意义。
新课讲授时,我尽量用简洁明了的语言解释分式的基本概念和性质,并通过案例分析和具体运算来强化理解。从学生的反馈来看,这种方法对于大多数学生是有效的。但我也观察到,对于那些在课堂上不太发言的学生,我可能需要更多地鼓励他们参与进来,比如通过提问或小组讨论的方式。
2.教学难点
a.分式基本性质的灵活应用:学生需要能够将基本性质应用到不同的分式运算中,包括在复杂的表达式中识别和运用这些性质。

人教版八年级数学课件-分式的基本性质

人教版八年级数学课件-分式的基本性质

a2 4a 4 (2) a 2 4
8ab2c 12 a 2b
4ab (2bc) 4ab (3a)
2bc 3a
a2 4a 4 a2 4
(a 2)2 (a2 4)
(a 2)2 a 2 (a 2)(a 2) a 2
*
你能總結出分式約分的基本步驟嗎?
約分的基本步驟: (1)若分子﹑分母都是單項式,則 化簡係數,並約去相同字母的最低次冪;
2
3
a2
b
2
3 • bc
a2b •bc
2
3bc
a2b2
c
ab
ab2 c
(a b) • 2a
ab2 c • 2a
2 a2 2ab 2 a2b2 c
*
(2) 2x 與 3x
x5
x5
解: 最簡公分母是 (x 5)(x 5)2x x5来自2x(x (x 5)(x
5) 5)
2 x2 10x x2 25
(2)若分子﹑分母含有多項式,則先將多項式分解因 式,然後約去分子﹑分母所有的公因式.
注意:約分過程中,有時還需運用分式的符號法則使 最後結果形式簡捷;約分的依據是分式的基本性質。
*
例3. 通分:
3
ab
b a (1) 2 2 b 與 a 2 c
把各分式化成相同 分母的分式叫做 分式的通分.
a b 解: (1)最簡公分母是 2 2 2 c
*
1. 化簡下列分式:
(1)
5xy 20 x2
y
1 5xy 1 4x • 5xy 4x
(2) a(a b) a b(a b) b
*
2.把下列分式通分
5; x2 9x 20
x. 10 2x

最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件

最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件

通分:
2c 3ac
(1) 与 2
bd 4b
8bc
4b 2 d
2 xy
x
(2)
与 2
2
( x y)
x y2
2 x 2 y 2 xy 2
( x y)2( x y)
3acd
2
4b d
x 2 xy
( x y)2( x y)
巩固练习
(3)
x 1
4

3x
2 x 2

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)


,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2


,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
3 x 1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C

,

(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
;(3)
; (4)

2
y
2b
3n
5y
a
4m
x

1

人教版八年级数学上册15.1.2《分式的基本性质》教学设计

人教版八年级数学上册15.1.2《分式的基本性质》教学设计

人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。

这些性质为后续分式的运算提供了重要的理论基础。

二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。

同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。

三. 教学目标1.理解分式的基本性质,并能灵活运用。

2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。

3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。

4.能运用分式的基本性质解决实际问题。

四. 教学重难点1.重点:分式的基本性质。

2.难点:分式的实际应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

3.小组合作学习材料。

七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。

2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。

b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。

同时,结合案例进行讲解,让学生理解并掌握这些性质。

九年级数学上人教版《 分式的概念》课堂笔记

九年级数学上人教版《 分式的概念》课堂笔记

《分式的概念》课堂笔记一、分式的概念定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

注意:分母中必须含有字母,分子、分母都是整式。

二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

用式子表示为:BA=B×CA×C(A、B、C为整式,且B、C=0)三、分式的约分1.定义:把一个分式的分子和分母的公因式约去,叫做分式的约分。

2.方法:把分子、分母分解因式,然后约去它们的公因式。

3.注意:约分时,分子、分母必须是公因式的最高次幂。

四、分式的通分1.定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分。

2.方法:把各个分式的分子、分母分解因式,然后求出它们的最简公分母,再把各个分式的分子、分母分别乘以适当的整式,使各个分式的值不变。

3.注意:通分时,最简公分母必须选取适当的字母。

五、典型例题例1:计算下列分式:(1)x2+44x2;(2)x2−1x−1;(3)x2−96xy;(4)a2+4a+4a2−4。

解:(1)原式=(x+2)24x2;(2)原式=(x+1)(x−1)x−1=x+11;(3)原式=(x+3)(x−3)6xy;(4)原式=(a+2)2(a+2)(a−2)=a+2a−2。

例2:把下列各分式约分:(1)4m2n28m2n;(2)x2−1x−1;(3)a2+b2a2−b2;(4)9−x2x+3。

解:(1)原式=4n8=n2;(2)原式=(x+1)(x−1)x−1=x+11;(3)原式=(a+b)2(a+b)(a−b)=a+ba−b;(4)原式=(3+x)(3−x)−(x−3)=−(x2−9)−(x−3)=x2−9x−3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档