中考数学 专题复习五 图形的折叠问题
中考数学八大题型集训:专题复习(5)图形的折叠问题含解析
专题复习(五) 图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题(·宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32),则该一次函数的解析式为________.【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO ,AO 的长,进而得出A 、B 两点的坐标,再利用待定系数法求出直线AB 的解析式.【解答】 连接OC ,过点C 作CD⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB,C(32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CD OD =33,故∠COD=30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD=60°. 则sin60°=CD AC ,则AC =DCsin60°=1,故A(1,0),sin30°=CD CO =32CO =12.则CO =3,故BO =3,B 点坐标为(0,3),设直线AB 的解析式为y =kx +3,把A(1,0)代入解析式可得k =- 3. ∴直线AB 的解析式为y =-3x + 3.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.1.(·绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.34B.45C.56D.672.(·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为________.3.(·宜宾)如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.4.(·滨州)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________.类型2 四边形及其他图形中的折叠问题(·南充)如图,在矩形纸片ABCD 中,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.【思路点拨】 (1)由矩形的性质得∠A =∠B =∠C =90°,由折叠的性质和等角的余角相等,可得∠BPQ =∠AMP =∠DQC ,所以△AMP∽△BPQ∽△CQD ;(2)设AP =x ,由折叠关系可得:BP =AP =EP =x ,AB =DC =2x ,AM =1,根据△AMP∽△BPQ 得:AMBP=AP BQ ,即BQ =x 2,根据△AMP∽△CQD 得:AP CD =AM CQ ,即CQ =2,从而得出AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1,根据Rt △FDM 中∠DMF 的正弦值得出x 的值,从而求出AB 的值.【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD. 理由如下:∵四边形ABCD 是矩形, ∴∠A =∠B=∠C=90°.根据折叠可知:∠APM=∠EPM,∠EPQ =∠BPQ,∴∠APM +∠BPQ=∠EPM+∠EPQ=90°. ∵∠APM +∠AMP=90°,∴∠BPQ =∠AMP,∴△AMP ∽△BPQ , 同理:△BPQ∽△CQD. ∴△AMP ∽△BPQ ∽△CQD. (2)设AP =x ,∴由折叠关系,BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得,AM BP =AP BQ ,即1x =xBQ ,得BQ =x 2.由△AMP∽△CQD 得,AP CD =AM CQ ,即x 2x =1CQ ,得CQ =2.∴AD =BC =BQ +CQ =x 2+2.∴MD =AD -1=x 2+1.∵在Rt△FDM 中,sin ∠DMF =35,∴2x x 2+1=35.解得x 1=3,x 2=13(不合题意,舍去). 即AB =6.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.1.(·南充)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12B .24C .12 3D .16 32.(·泸州)如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为( )A.13 B.152C.272D.123.(·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()A.6种 B.5种 C.4种 D.3种4.(·成都)如图,在□ABCD中,AB=13,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.5.(·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.6.(·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.7.(·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.参考答案类型1 三角形中的折叠问题1.B 提示:∵△ABC 为等边三角形,∴∠A =∠B=∠C=60°.又∵折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF ,∴∠EDF =∠C=60°,CE =DE ,CF =DF.∴∠ADE+∠FDB=120°.∴∠AED =∠FDB.∴△AED∽△BDF.∴AE BD =AD BF =DEFD .设等边△ABC 边长为6个单位,CE =x ,CF =y ,AE =6-x ,BC =6-y ,∴6-x 4=26-y =x y ,解得x =145,y =72.∴x ∶y =4∶5,故选择B.2.65°3.1.54.(10,3)类型2 四边形及其他图形中的折叠问题1.D 2.A3.B 提示:由题意,易知y =-x 2+2x +3与x 轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x 轴对称点的坐标为(1,-4).当直线y =x +b 过(-1,0)时,b =1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y =x +b 过(3,0)时,b =-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3<b<1时,此时直线与新的函数图象有三个交点;当直线y =x +b 过(1,-4)时,b =-5,此时直线与新的函数图象有三个交点;观察图象,易知:当-5≤b<-3时,此时直线与新的函数图象有四个交点;观察图象,易知:当b<-5时,此时直线与新的函数图象有二个交点;综上,直线y =x +b 与此新图象的交点的个数的情况有5种,故选B.4.35. 6 提示:作AH⊥BC 于H.∵分别以AE ,BE 为折痕将两个角(∠D,∠C)向内折叠,点C ,D 恰好落在AB 边的点F 处,∴DE =EF ,CE =EF ,AF =AD =2,BF =CB =3.∴DC=2EF ,AB =5.∵AD∥BC,∠C =90°, ∴四边形ADCH 为矩形,∴AH =DC =2EF ,HB =BC -CH =BC -AD =1.在Rt△ABH 中,AH =AB 2-BH 2=26,∴EF = 6. 6.2≤x≤87.(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD =CE ,DC =EA ,∠ACD =∠CAE. 在△CED 与△ADE 中,⎩⎪⎨⎪⎧CE =AD ,DE =ED ,DC =EA ,∴△DEC ≌△EDA.(2)∵∠ACD=∠CAE,∴AF =CF.设DF =x ,则AF =CF =4-x ,在Rt△ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x)2,解得x =78,即DF =78.(3)由矩形PQMN 的性质得PQ∥CA, ∴PE CE =PQCA. 又∵CE=3,AC =AB 2+BC 2=5.设PE =x(0<x <3),则x 3=PQ 5,即PQ =53x.过E 作EG⊥AC 于G ,则PN∥EG,∴CP CE =PN EG. 又∵在Rt△AEC 中,EG ·AC =AE·CE,解得EG =125.∴3-x 3=PN 125,即PN =45(3-x).设矩形PQMN 的面积为S ,则S =PQ·PN=-43x 2+4x =-43(x -32)2+3(0<x <3).∴当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。
2020年中考数学动态问题-折叠中函数综合题型(含答案)
专题05 动点折叠类问题中函数及其综合题型一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.(1)函数中的折叠问题主要考查对函数性质的把握及综合运用知识的能力.(2)综合题型此类题目困难重重,以2019年安徽省中考第10题而言,充分体现了数学思想的表达,解题中用到的有最短路径、三角函数、所求变量的变化规律等等,充分体现了新课标对考查学生数学素养的要求.通过研究历年中考真题并结合2019年各省(市)的中考真题,特总结出此专题. 期望能给各位老师及同学以学习教学一些启发,一些指引,培养出学生的解题素养.二、精品例题解析题型一:折叠综合题型例1.(2019·安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8题型二:折叠与相似例2.(2019·济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y .①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.题型三:折叠与全等例3.(2019·临沂)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH ,显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线,仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.题型四:折叠与反比例函数例4.(2019·衢州)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)k y k x=≠图象经过点C ,且=1BEF S ∆,则k 的值为 .题型五:几何图形中动点折叠问题例5.(2019·衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE 为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.题型六:函数图象中动点折叠问题例6.(2019·湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC 3D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.二、精品例题解析题型一:折叠综合题型例1.(2019·安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A .0B .4C .6 D.8【分析】当P 在边AD 上运动时,根据轴对称知识,求出PE +PF 的最小值及其变化规律,进而与9进行比较,得出结论.【答案】D .【解析】解:作点E 关于AD 的对称点E ’,连接E ’F ,交AD 于P ,此时PE +PF 的值为最小,最小值为E ’F 的长,如下图所示,过F 作FH ⊥EE ’于H ,EE ’交AD 于点G , D C EF P E'HG由题意知:AE =EF =FC =4,四边形ABCD 是正方形,AC 为对角线,∴∠FFH =∠ACB =45°,∴FH =EH =EG =E ’G 2EF =22, 在Rt △HFE ’中,由勾股定理得:E ’F 22'459E H HF +=<,当点P 在点A 处时,PE +PF =12>9,当点P 在D 点时,连接BD 交AC 于点O ,如下图所示, A D CBE F (P )O∴OD =6,OE =2,在Rt △PEO 中,由勾股定理得:PE =22210OE OD +=,PE +PF =4109>,综上所述,当点P 在AD 上运动时,PE +PF 的值的变化规律为从12逐渐减小至45,后增大至410,在这个变化过程中,有两个P 点使得PE +PF =9,∴在正方形ABCD 边上有8个点符合要求,故答案为:D .题型二:折叠与相似例2.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G .(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y .①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【分析】(1)由翻折并利用勾股定理构建方程即可解决问题.(2)①由△ADM ∽△GMN ,可得=,由此即可解决问题.②有两种情形:当MN=MD时,当MN=DN时. 分别求解即可解决问题.【答案】见解析.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=m,则DE=EF=8﹣m.在Rt△ABF中,由勾股定理得:BF=6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,由勾股定理得:(8﹣m)2=m2+42,解得:m=3,∴EC=3.(2)①如下图中,∵AD∥CG,∴AD DE CG EC,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,由勾股定理得:AG=5,在Rt△DCG中,由勾股定理得:DG=10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM ∽△GMN , ∴AD AM HM NG =, ∴101085x yx =--, 整理得:()2214511045210510y x x x =-+=-+. ∴当x =45时,y 有最小值,最小值为2.②存在.当MN =MD 时,∵∠MDN =∠GMD ,∠DMN =∠DGM ,∴△DMN ∽△DGM ,∴MD MN DG MG=, ∵MN =DM ,∴DG =GM =10,∴x =AM =85﹣10.当MN =DN 时,过M 作MH ⊥DG 于H .∵MN =DN ,∴∠MDN =∠DMN ,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵BH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得GH MG GB AG,∴MG=55,∴x=AM=115.综上所述,满足条件的x的值为85﹣10或115 2.题型三:折叠与全等例3.(2019·临沂)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH,显然AE是∠DAF的平分线,EA是∠DEF的平分线,仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【答案】见解析.【解析】解:∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°,由折叠知:△ADE≌△AFE,∴AD=AF=AB,∠AFG=90°,在Rt△AGB和Rt△AGF中,∵AG=AG,AF=AB,∴Rt△AGB≌Rt△AGF,∴∠6=∠7,∠3=∠4,即AG是∠BAF的平分线,GA是∠BGF的平分线;∵∠AGH=90°,∴∠6+∠HGC=90°,∠7+∠EGH=90°,∴∠HGC= EGH,即GH是∠EGC的平分线;过H作HN⊥BM于N,∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=90°,∴∠GAH=2+∠3=45°,∴AG=GH,∴△ABG≌△GNH,∴NH=BG,GN=AB=BC,∴GN-GC= BC-GC,即BG=CN=NH,∴∠HCN=45°,∠DCH=45°,即CH 是∠DCM 的平分线.题型四:折叠与反比例函数例4.(2019·衢州)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)k y k x=≠图象经过点C ,且=1BEF S ∆,则k 的值为 .【答案】24.【解析】解:由题意知:AB =CD =3BE ,S △BEF = S △OBF =1∵ABCD 为平行四边形,即AB ∥CD ,∴BF :FC =BE :CD =1:3,连接OC ,OF ,如下图所示,则S △OBF :S △OFC =BF :FC =1:3,∴S △OBC =4,∵S △OBC :S △ODC =OB :CD =1:3,∴S △ODC =12,∴k =24,故答案为:24.题型五:几何图形中动点折叠问题例5.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以lcm /s 的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE 为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【答案】见解析.【解析】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,即6+t=2(6﹣t),解得:t=3,故t=3时,△BPQ是直角三角形.(2)存在.理由:如下图,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=12∠ABC=30°,∴EF=2EM,∴t=2•(3﹣12 t),解得t=3.(3)如下图,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=12(AK+CK)=12AC=3(cm).(4)如下图,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,由勾股定理得:AM=33,根据两点之间线段最短,得:AB′≥AM﹣MB′,即AB′≥33﹣3,故AB′的最小值为33﹣3.题型六:函数图象中动点折叠问题例6.(2019·湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC=3,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.【答案】见解析【解析】解:(1)∵OA=3,tan∠OAC=3 3,在Rt△AOC中,tan∠OAC=3=3 OCOA,∴OC=3,∵ABCD是矩形,∴BC=OA=3,又D是BC的中点,∴CD=3 2 ,即D的坐标为(32,3)(2)①由tan∠OAC3知:∠OAC=30°,∴∠ACB=∠OAC=30°,若△DBF折叠后,B的落点为B’由折叠性质,知:DB’=DB=DC,∠BDF=∠B’DF,∴∠DB’C=∠ACB=30°,∴∠BDB’=60°,∠BDF=30°,在Rt△BDF中,BF=BD·tan30°3,∵AB∴AF=BF在△BFD和△AFE中,∠BFD=∠EFA,∠B=∠FAE=90°,AF=BF,∴△BFD≌△AFE,∴AE=BD=3 2即OE=OA+AE=9 2,故E点坐标为(92,0)②由题意知:F点横坐标不变为3,而∠DFB=60°,即G点与F点的连线与y轴平行,即G点横坐标不变,所以G点运动轨迹为一条线段,求出P点从O点至M点运动过程中,G点的纵坐标的差即为G点运动路径的长.2+bx,将点D(32, B(3934293a ba b⎧+=⎪⎨⎪+=⎩,解得:9a b ⎧=-⎪⎨⎪=⎩,即抛物线解析式为:2y x = 令y =0,得12902x x ==,, 即E (92,0),设直线DE 的解析式为:y =kx +b ,将D (32、E (92,0)代入得:32y x =-+, 令x =3,得y即F(3, 由BF =BG 得,G (3).+bx +c ,将点D (32, B (3,M (0)代入解析式,可得: 934293a b c a b c c ⎧++=⎪⎪⎪++=⎨⎪⎪=⎪⎩,抛物线解析式为:22733y x x =-++ 令y =0,得12362x x =-=,, 即E (6,0),设直线DE 的解析式为:y =kx +b ,将D (32、E (6,0)代入得:y x =+令x =3,得y ,即F (3, 3),由BF =BG 得,G (3,3)即G 点由(3,2)运动至(3,3),运动路径长为:2-3=6.。
中考数学点对点-几何折叠翻折类问题(解析版)
专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
中考数学专题复习图形的折叠型题PPT课件
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后
所得扇形的总个数(S)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 **** n
所得扇形的总个数(S)
47
***
(3)请你推断,能不能按上述操作过程,将本来的圆形 纸板剪成33个扇形?为什么?
例26、如图,若把边长为1的正方形ABCD的四个
例25、如图,⊙O表示一圆形纸板,根
O
据要求,需通过多次剪裁,把它剪成若 干个扇形面,操作过程如下:第1次剪,
第25题图
将圆形纸板等分为4个扇形;第2次剪裁,将上次得的
扇形面中的一个再等分成4个扇形;以后按第2次剪裁
的作法进行下去.(1)请你在⊙O中,用尺规作出第2次
剪裁后得到的7个扇形(保留痕迹不写作法).
角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎 样剪,才能使剩下的图形仍为正方形,且剩下图
形的面积为原正方形面积的 5 ,请说明理由(写
出证明及计算过程).
9
E
A M DA M
例22、电脑CPU蕊片由一种叫“单晶硅”的材料制
成,未切割前的单晶硅材料是一种薄型圆片,叫 “晶圆片”。现为了生产某种CPU蕊片,需要长、 宽都是1cm 的正方形小硅片若干。如果晶圆片的直 径为10.05cm。问一张这种晶圆片能否切割出所需尺 寸的小硅片66张?请说明你的方法和理由。(不计 切割损耗)
典例精析
一.折叠后求度数 例1、将一张长方形纸片按如图所示的方式折 叠,BC、BD为折痕,则∠CBD的度数为( ) A.600 B.750 C.900 D.950
例2、如图,把一个长方形纸片沿EF折叠后,点D、C
分别落在D′、C′的位置,若∠EFB=65°,则 ∠AED′等于( ) A.50° B.55° C.60° D.65°
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
初二数学培优专题(5)——折叠问题(答案详解)
初二数学培优专题(5)
答案 (一)正方形内的十字架结构
【例 1】如图,将边长为 4 的正方形纸片 ABCD 折叠,使得点 A 落在 CD 的中点 E 处,折痕为 FG,点 F
在 AD 边,求折痕 FG 的长;
【解析】连接 AE,由轴对称的性质可知,AE⊥FG(应该是 FG 垂直平分 AE)
这样就可以直接用上面的结论啦!所以由垂直得到相等,所以 FG=AE= 42 22 2 5
在 AD 边,求折痕 FG 的长;
【变式 2】如图,将边长为 A 落在 F 处,折痕为 MN.
的正方形 ABCD 折叠,使点 D 落在 BC 边的中点 E 处,点
(1)求线段 CN 的长;
(2)求以线段 MN 为边长的正方形的面积;
(3)求线段 AM 的长度.
1
初二数学培优专题(5)
(二)折痕垂直于对称点的连线
,即
;
(2)在
中,
,
,
由勾股定理得:
,
如图,过点 M 作
于点 G,则由题意可知
,
.
连接 DE,交 MG 于点 I.
由折叠可知,
在
与
(3)
, ,
. 中,
,
. ;
, .
, (对顶角相等),
.
7
初二数学培优专题(5)
(二)折痕垂直于对称点的连线
结论:折痕上的点到对应点距离相等
【例 2】如图,在矩形 ABCD 中,AB=4,AD=3,将矩形折叠使得点 D 与 BC 上的点 E 重合,折 痕分别交 AB、CD 于点 G、F,若 BE=1,求 AG 的长.
(四)折叠中的分类讨论
【例 4】如图,矩形 ABCD 中, AB 3 , BC 4 ,点 E 是 BC 边上一点,连接 AE,把 B 沿 AE 折叠,使点 B 落在点 B'处。当 CEB ' 为直角三角形时,BE 的长为_____ 。
中考数学中的折叠问题专题复习
中考数学中的折叠问题专题复习中考数学中的折叠问题专题复习一、教学目标1、基础知识目标:使学生进一步巩固掌握折叠图形的性质,会利用其性质进行有关的计算和证明。
2、能力训练目标:提升学生的空间想象能力、抽象思维能力、逻辑推理能力及综合运用数学知识解决问题的能力。
3、情感态度与价值观要求:鼓励学生积极参与数学学习活动,对数学证明有好奇心和求知欲。
二、教学重点、难点重点:会利用折叠图形的性质进行有关的计算和证明。
难点:综合运用所学数学知识进行有关的计算和证明。
三、教学方法讲、练、测相结合的教学方法,在老师的引导下,通过讲、练、测的有机结合,达到知识、技能、方法的全线突破。
四、教学程序及设想1、巧设情景,设疑引入观察与发现:小明将纸片ABC (AB>AC )沿过A 的直线折叠,使得AC 落在AB 边上,折痕为AD, 展开纸片;再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF,展开纸片后得到AEF (如图1)。
小明认为AEF 是等腰三角形,你同意吗?请说明理由。
引出课题。
2、运用性质,折叠问题实质上就是轴对称变换归类探究。
归类一:折叠后求角的度数典例解析:将矩形纸片ABCD 折叠,使得D 点与B 重合,点C 落在点C'处,折痕为EF,如果∠ ABE =20°,则∠ EFC'=()A. 125 °B. 80 °C. 75 °D. 无法确定评析:本题只要抓住折叠的本质特征,折叠前后的两个图形全等,找出翻折前后的一些不变量,其次要注意利用矩形的性质,如矩形的每个角都是90°、对边互相平行等。
体验感悟:随后给学生一定的时间去感悟和体会这类题的解题思路和方法。
1、如图所示,把一张长方形纸条ABCD 沿AF 折叠,已知∠ ADB=20°,那么,∠ BAF 为多少度时,才能使AB' ∥BD?(∠ BAF =55°)利用折叠的性质求角的度数,当条件中有某些角的度数时,综合题中的其他条件,找已知角和未知角的关系,从而求的未知角的度数。
中考数学二轮专题复习图形变换——折叠问题【含答案】
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
(完整版)中考数学中的折叠问题
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
初三复习 数学几何中折叠问题 4大类 分类 含答案
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
中考复习专题折叠压轴题(无答案)
中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。
折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。
折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600B.750C.900D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于()A.50°B.55°C.60°D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。
中考数学专题复习学案:折叠类题目中的动点问题含答案
专题:折叠类题目中的动点问题折叠问题是中考的热门也是难点问题,平时与动点问题联合起来,这种问题的题设平时是将某个图形按必定的条件折叠,经过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。
此类问题立意新奇,充满着变化,要解决此类问题,除了能依据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。
种类一、求折叠中动点运动距离或线段长度的最值例 1.着手操作:在矩形纸片ABCD 中, AB=3,AD =5.如图例1-1所示,折叠纸片,使点 A 落在 BC 边上的 A’处,折痕为PQ ,当点在BC边上挪动时,折痕的端点、也随之挪动 . 若限制点、分别在、边上挪动,则点A’A ’P Q P Q AB AD在 BC 边上可挪动的最大距离为.图例 1-1【答案】 2.【分析】此题依据题目要求正确判断出点A'的最左端和最右端地点.当点Q与点D重合时,A '的地点处于最左端,当点P 与点 B 重合时,点 A'的地点处于最右端. 依据分析结果,作出图形,利用折叠性质分别求出两种状况下的BA'或 CA'的长度,两者之差即为所求.①当点 Q 与点 D 重合时, A '的地点处于最左端,如图例1-2 所示 .确立点 A'的地点方法:由于在折叠过程中, A 'Q= AQ ,因此以点 Q 为圆心,以 AQ 长为半径画弧,与BC 的交点即为点A '.再作出∠ A' QA 的角均分线,与AB 的交点即为点P.图例 1-2图例1-3由折叠性质可知,AD = A' D=5,在 Rt△A' CD 中,由勾股定理得,A'C A' D2CD252324②当点 P 与点 B 重合时,点A'的地点处于最右端,如图例1-3 所示 .确立点 A'的地点方法:由于在折叠过程中, A 'P= AP,因此以点P 为圆心,以AP 长为半径画弧,与BC 的交点即为点A '.再作出∠ A' PA 的角均分线,与AD 的交点即为点Q.由折叠性质可知,AB= A' B=3,因此四边形AB A' Q 为正方形.因此 A'C= BC-A'B=5-3=2.综上所述,点 A 挪动的最大距离为4-2=2.故答案为: 2.【点睛】此类问题难度较大,主要观察学生的分析能力,作图能力。
浙教版初中数学中考复习-折叠问题 (共46张PPT)
解析:
• 【分析】由△ABE沿AE折叠到△AEF,得出∠BAE=∠FAE,由∠AEB=55°,∠ABE= 90°,
•
求出∠BAE.
• 【解析】∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE.
•
∵∠AEB=55°,∠ABE=90°,
•
∴∠BAE=90°-55°=35°,
•
∴∠DAF=∠BAD-∠BAE-∠FAE=90°-35°-35°=20°
42
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
解析:
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
43
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
考向六:折叠综合问题
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
45?解决折叠问题时一是要对图形折叠有准确定位抓住图形之间最本质的位置关系从点线面三个方面入手发现其中变化的量和不变的量发现图形中的数量关系
折叠问题
考情分析:
• 折叠操作就是将图形的一部分沿着一条直线翻折180°,使它与另一部分图形在 这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果.折叠的问题的实 质是图形的轴对称变换,折叠更突出了轴对称知识的应用. • 折叠(或翻折)在三大图形变换中是比较重要的,考查的较多,无论是选择题、填 空题,还是解答题都有以折叠为背景的试题.常常把矩形、正方形的纸片放置于直 角坐标系中,与函数、直角三角形、相似形等知识结合,贯穿其他几何、代数知识 来设题.
边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为
2023年中考数学专题复习课件: 折叠问题
由(1)得∠AHG=45°,∴∠DHA=45°,∴∠DHF=90°,∴DH⊥BH,∵
∴,即Βιβλιοθήκη ,解得AG=,32 12 10
AG AB AB AE
9 10 10
AG 3 3 10
第4题图
∵S△ABE=
1 2
AE·BG= 1 AB·BE,∴BG=
2
AB BE 3 1 3 10
AE
10 10
(1)证明:由折叠的性质可得△ABE≌△AFE, ∴∠BAE=∠FAE, ∠AGF=90
第4题图
∵四边形ABCD是正方形,∴∠BAD=90°,∴∠BAE+∠FAE+∠FAH+∠
第4题图
(2)若AB=3,BE=1,求点D到直线BH的距离; (2)解:如图,连接DH. ∵四边形ABCD是正方形,∴AB=AD,由折叠的性质得,AB=AF,∴AD=
第2题图②
②求AE的长. ②解:由折叠的性质,得CH=BC=3,在Rt△CHD中,DC=2,∴DH=
CH 2 CD2 5 5
第2题图②
又∵∠HAE=∠CDH=90°,∴△HAE∽△CDH,
∴
DH AE
CD ,即
HA
5 AE
2 3
5
,解得AE=
.
3 55
2
第2题图②
3. 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点P为AB边上 一点(不与A、B重合),将△ABC沿CP折叠后展开,再将∠C翻折,使点 C与点P重合,折痕分别为CP,MN,连接PM,PN.(1)若四边形PMCN 是正方形,求PC的长;
1
1
1
2
2
2
∴
,∴NG= AB.
BF,∵∠A=90°,∴∠A=∠N
2022年中考数学专题复习 折叠题(含解析)
2022年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有以下四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是〔〕A.①②③B.①②④C.②③④D.①②③④解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF〔ASA〕,∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.应选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,假设EB为∠AEG的平分线,EF和BC的延长线交于点H.以下结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤假设,那么.以上命题,正确的有〔〕A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,那么G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,那么有y2+〔2y﹣2x〕2=〔2y﹣x〕2,解得x1=y〔不合题意舍去〕,x2=y.那么,故正确.故正确的有3个.应选B.点评:此题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答此题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,假设CF=1,FD=2,那么BC的长为〔〕A.3B.2C.2D.2解答:解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM〔AAS〕,∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.应选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.那么以下结论:①BG=DE且BG⊥DE;②△ADG 和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的选项是〔〕A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=〔CW+FJ〕=WC=〔BH+HE〕=BE;易证:△ABE≌△DAQ〔SAS〕,∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S▱ADQG,②正确.所以,①②③④都正确;应选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MN∥AB,MC=6,NC=,那么四边形MABN的面积是〔〕A.B.C.D.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.应选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,那么∠A′的大小是〔〕A.40°B.36°C.32°D.30°解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.应选B.点评:此题考查了折叠的性质,解答此题的关键是掌握翻折前后的对应角相等,注意此题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB 与AC重合,得△AB′D,那么△ABC与△AB′D重叠局部的面积为〔〕A.B.C.3﹣D.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C•cos∠B′=〔2﹣2〕×=3﹣,∴DE===,∴S阴影=AC•DE=×2×=.应选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,那么BD的长度为〔〕A.B.C.D.解答:解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,那么CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.应选B.点评:此题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是〔〕A.1 B.C.D.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×〔﹣1〕+×〔﹣1〕〔﹣1〕=1.应选A.点评:此题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。
通用版中考数学二轮复习专题5折叠问题课件
解:(2)∵由(1)知 AD′= 3,∴BD′=1, ∵将四边形 BCED′沿 D′E 向左翻折,压平后得四边形 B′C′ED′, ∴B′D′=BD′=1,∵由(1)知 AD′=AD=D′E=DE= 3, ∴四边形 ADED′是正方形,∴B′F=AB′= 3-1,
10.(2016·绍兴)如图,矩形ABCD中,AB=4,BC=2,E是AB的中 点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形 ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,求DF 的长.
解:如图,当直线 l 在直线 CE 上方时,连结 DE 交直线 l 于 M, ∵四边形 ABCD 是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4, AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE, △ECB 是等腰直角三角形,∴∠AED=∠BEC=45°,
14.如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形 沿着过点 E 的直线翻折后,点 C,D 分别落在边 BC 下方的点 C′,D′处,且 点 C′,D′,B 在同一条直线上,折痕与边 AD 交于点 F,D′F 与 BE 交于点 G.设 AB=t,那么△EFG 的周长为 2 3t .(用含 t 的代数式表示)
【解析】等边三角形 EFG 的高=AB=t,计算得边长为233t.
15.如图,在矩形 ABCD 中,点 E 在边 CD 上,将该矩形沿 AE 折叠, 使点 D 落在边 BC 上的点 F 处,过点 F 作 FG∥CD,交 AE 于点 G, 连结 DG. (1)求证:四边形 DEFG 为菱形; (2)若 CD=8,CF=4,求DCEE的值.
中考数学专题考试——折叠剪切问题
图 (2) 中考数学专题复习——折叠剪切问题折叠剪切问题是考察学生地动手操作问题,学生应充分理解操作要求方可解答出此类问题.一、折叠后求度数【1】将一张长方形纸片按如图所示地方式折叠,BC 、BD 为折痕,则∠CBD 地度数为( )A .600 B .750 C .900 D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′地位置,若∠EFB=65°,则∠AED ′等于( )A .50° B .55° C .60° D .65° 答案:A【3】 用一条宽相等地足够长地纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示地正五边形ABCDE,其中∠BAC=度.答案:36°二、折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 地面积为( )A .4B .6 C .8 D .10图(1)第3题图答案:C【5】如图,正方形硬纸片ABCD 地边长是4,点E 、F 分别是AB 、BC 地中点,若沿左图中地虚线剪开,拼成如下右图地一座“小别墅”,则图中阴影部分地面积是A .2 B .4 C .8 D .10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm.操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c.则△GFC 地面积是( )E A A A B B C C C GD D D F F 图a 图b 图c 第6题图A.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2答案:B三、折叠后求长度【7】如图,已知边长为5地等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上地点D 地位置,且ED BC ⊥,则CE 地长是( )(A)15 (B)10-(C)5 (D)20-答案:D 四、折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中地虚线剪下,得到①、②两部分,将①展开后得到地平面图形是( )A .矩形B .三角形C .梯形D .菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形地是( )A. B. C. D.答案:D【10】小强拿了张正方形地纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中地虚线(虚线与底边平行)剪去一个角,再打开后地形状应是( )第7题图第8题图第9题图第10题图答案:D 【11】将一圆形纸片对折后再对折,得到图1,然后沿着图中地虚线剪开,得到两部分,其中一部分展开后地平面图形是( )答案:C【12】如图1所示,把一个正方形三次对折后沿虚线剪下,则所得地图形是( )答案:C【13】 如图,已知BC 为等腰三角形纸片ABC 地底边,AD ⊥BC ,AD=BC. 将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等地四边形地个数是( )A.1B.2A B CD 图3图1第12题图C.3D.4答案:D五、折叠后得结论【14】亲爱地同学们,在我们地生活中处处有数学地身影.请看图,折叠一张三角形纸片,把三角形地三个角拼在一起,就得到一个著名地几何定理,请你写出这一定理地结论:“三角形地三个内角和等于_______°.”答案:180【15】从边长为a 地正方形内去掉一个边长为b 地小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证地等式是(A.a 2–b 2 =(a+b)(a-b) B.(a –b)2 = a 2–2ab+b 2C.(a+b)2 =a 2+2ab+ b 2 D.a 2+ ab = a (a+b) 答案:A【16】如图,一张矩形报纸ABCD 地长AB =a cm ,宽BC =b cm ,E 、F 分别是AB 、CD 地中点,将这张报纸沿着直线EF 对折后,矩形AEFD 地长与宽之比等于矩形ABCD 地长与宽之比,则a ∶b 等于( ). A .1:2B .2:1C .1:3D .3:1答案:A六、折叠和剪切地应用【17】将正方形ABCD 折叠,使顶点A 与CD 边上地点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).(1)如果M 为CD 边地中点,求证:DE ∶DM ∶EM=3∶4∶5;第15题图(1)第17题图 (2)ABCDEF MG第19题图(2)如果M 为CD 边上地任意一点,设AB=2a ,问△CMG 地周长是否与点M 地位置有关?若有关,请把△CMG 地周长用含DM 地长x 地代数式表示;若无关,请说明理由.答案:(1)先求出DE=AD 83,AD DM 21=,AD EM 85=后证之. (2)注意到△DEM ∽△CMG ,求出△CMG 地周长等于4a ,从而它与点M 在CD 边上地位置无关.【18】同学们肯定天天阅读报纸吧?我国地报纸一般都有一个共同地特征:每次对折后,所得地长方形和原长方形相似,问这些报纸地长和宽地比值是多少?答案:2∶1.【19】用剪刀将形状如图1所示地矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 地中点.用这两部分纸片可以拼成一些新图形,例如图2中地Rt △BCE 就是拼成地一个图形.(1)用这两部分纸片除了可以拼成图2中地Rt △BCE外,还可以拼成一些四边形.请你试一试,把拼好地四边形分别画在图3、图4地虚框内.(2)若利用这两部分纸片拼成地Rt △BCE 是等腰直角三角形,设原矩形纸片中地边AB 和BC 地长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 地方程01)1(2=++--m x m x 地两个实数根,试求出原矩形纸片地面积.答案:(1)如图(2)由题可知AB =CD =AE ,又BC =BE =AB +AE∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 地两根E B A C B A M C D M 图3 图4 图1 图2 第21题图 BACBAMCE M图3图4E第21题答案图∴⎩⎨⎧+=⋅-=+1212m a a m a a消去a ,得 071322=--m m 解得 7=m 或21-=m 经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去. 7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片地面积为8c m 2.【20】电脑CPU 蕊片由一种叫“单晶硅”地材料制成,未切割前地单晶硅材料是一种薄型圆片,叫“晶圆片”.现为了生产某种CPU 蕊片,需要长、宽都是1cm 地正方形小硅片若干.如果晶圆片地直径为10.05cm.问一张这种晶圆片能否切割出所需尺寸地小硅片66张?请说明你地方法和理由.(不计切割损耗)答案:可以切割出66个小正方形. 方法一:(1)我们把10个小正方形排成一排,看成一个长条形地矩形,这个矩形刚好能放入直径为10.05cm 地圆内,如图中矩形ABCD.∵AB =1 BC =10∴对角线2AC =100+1=101<205.10(2)我们在矩形ABCD 地上方和下方可以分别放入9个小正方形.GFH E D C B A∵新加入地两排小正方形连同ABCD 地一部分可看成矩形EFGH ,矩形EFGH 地长为9,高为3,对角线9098139222=+=+=EG <205.10.但是新加入地这两排小正方形不能是每排10个,因为:109910031022=+=+>205.10(3)同理:8925645822=+=+<205.1010625815922=+=+>205.10∴可以在矩形EFGH 地上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层.(4)再在原来地基础上,上下再加一层,共7层,新矩形地高可以看成是7,那么新加入地这两排,每排都可以是7个但不能是8个.∵9849497722=+=+<205.1011349647822=+=+>205.10(5)在7层地基础上,上下再加入一层,新矩形地高可以看成是9,这两层,每排可以是4个但不能是5个.∵9781169422=+=+<205.1010681259522=+=+>205.10现在总共排了9层,高度达到了9,上下各剩下约0.5cm 地空间,因为矩形ABCD 地位置不能调整,故再也放不下一个小正方形了.∴10+2×9+2×8+2×7+2×4=66(个) 方法二:学生也可能按下面地方法排列,只要说理清楚,评分标准参考方法一. 可以按9个正方形排成一排,叠4层,先放入圆内,然后: (1)上下再加一层,每层8个,现在共有6层.(2)在前面地基础上,上下各加6个,现在共有8层. (3)最后上下还可加一层,但每层只能是一个,共10层. 这样共有:4×9+2×8+2×6+2×1=66(个)【21】在一张长12cm 、宽5cm 地矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点地方法折出菱形EFGH (见方案一),张丰同学沿矩形地对角线AC 折出∠CAE=∠DAC ,∠ACF=∠ACB 地方法得到菱形AECF (见方案二),请你通过计算,比较李颖同学和张丰同学地折法中,哪种菱形面积较大?答案:(方案一)4151254622AEHS S S=-=⨯-⨯⨯⨯矩形菱形230(cm )=(方案二)设BE=x ,则CE=12-xAE ∴由AECF 是菱形,则AE 2=CE 22225(12)x x ∴+=-11924x ∴=2ABES S S-矩形菱形=111912525224=⨯-⨯⨯⨯35.21(m)≈比较可知,方案二张丰同学所折地菱形面积较大.【22】正方形提供剪切可以拼成三角形.方法如下:(方案一)ADEFBC (方案二)第23题图仿上面图示地方法,及韦达下列问题: 操作设计:(1)如图(2),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积地矩形.(2)如图(3)对于任意三角形,设计一种方案,将它分成若干块,再拼成一个原三角形等面积地矩形.答案:(1)(2)略.【23】如图,⊙O 表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到地扇形面中地一个再等分成4个扇形;以后按第2次剪裁地作法进行下去.(1)请你在⊙O 中,用尺规作出第2次剪裁后得到地7个扇形(保留痕迹,不写作法). (2)请你通过操作和猜想,将第3、第4和第n 次裁剪后所得扇形地总个数(S)填入下表第24题图(2) 第24题图(3) 方法一: 方法二:第24题答案图(1) 第24题答案图(2)第25题图 O(3)请你推断,能不能按上述操作过程,将原来地圆形纸板剪成33个扇形?为什么? 答案:(1)由图知六边形各内角相等. (2) 七边形是正七边形.(3)猜想:当边数是奇数时(或当边数是3,5,7,9,…时),各内角相等地圆内接多边形是正多边形.【24】如图,若把边长为1地正方形ABCD 地四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1.试问怎样剪,才能使剩下地图形仍为正方形,且剩下图形地面积为原正方形面积地95,请说明理由(写出证明及计算过程).答案:剪法是:当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1为正方形,且S=95.在正方形ABCD 中, AB=BC=CD=DA=1,∠A=∠B=∠C=∠D=90°. ∵AA 1=BB 1=CC 1=DD 1, ∴A 1B=B 1C=C 1D=D 1A.∴△D 1AA 1≌△A 1BB 1≌△B 1CC 1≌△C 1DD 1. ∴D 1A 1=A 1B 1=B 1C 1=C 1D 1,∴∠AD 1A 1=∠BA 1B 1=∠CB 1C 1=∠DC 1D 1. ∴∠AA 1D+∠BA 1B 1=90°,即∠D 1A 1B 1=90°. ∴四边形A 1B 1C 1D 1为正方形.设AA 1=x , 则AD 1=1-x.∵正方形A 1B 1C 1D 1地面积=95, ∴S △AA1D1=91 即21x(1-x)=91, 整理得9x 2-9x+2=0.解得x 1=31,x 2=32. 当AA 1=31时,AD 1=32,当AA 1=32时,AD 1=31.∴当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1仍为正方形且面积是原面积地95.折叠问题专题研究上虞市滨江中学 潘建德一、教学目标:1、理解折叠问题地本质2、了解折叠问题解题策略,学会应用这些策略解决折叠问题3、渗透方程思想及中考复习以“本”为本地导向 二、教学重点:通过动手操作、应用轴对称性解决折叠问题 三、教学难点:折叠型综合题地分析 四、教学过程:1、引入:出示08绍兴8题:将一张纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ(如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1地形状,则CPD ∠地大小是( )A .120 B .90 C .60 D .45此题凸显地主题是图形地折叠,折叠问题在近几年地中考中越来越常见,据统计,在08年我省11个地区地中考卷中有7个地区都出现了折叠型考题,其中有5个地区中考卷地压轴题是折叠型问题,包括绍兴地区,折叠问题已成为中考地热门问题之一.点出课题.2、解题策略(一)——重过程“折”(1)如何迅速且准确地解决08绍兴卷第8题?(学生:动手折一折)学生动手操作,后教师归纳:题型一:考察空间想象能力与动手操作能力地实践操作题.解题策略:重过程——“折”.(2)学生进一步尝试.题2:(2008山东东营)将一正方形纸片按下列顺序折叠,然A.B.C.D.AB CDFE 后将最后折叠地纸片沿虚线剪去上方地小三角形.将纸片展开,得到地图形是()3、解题策略(二)——重本质“叠”(1)本质探究:题3:如图,长方形ABCD沿AE折叠,使D落在边BC上地F点处,如果∠BAF=30°,AD=2,则∠DAE=___,EF=_______.学生解决后讲解方法,教师:显然,折叠问题不能只靠动手操作来解决,我们必须透过现象看本质.那么折叠地本质是什么呢?学生讨论后教师归纳:折叠问题地实质是图形地轴对称变换,所以在解决折叠问题时可以充分运用轴对称地思想和轴对称地性质.根据轴对称地性质可以得到:(1)轴对称是全等变换:折叠重合部分一定全等(有边、角地相等);(2)点地轴对称性:互相重合两点(对称点)之间地连线必被折痕(对称轴)垂直平分(有Rt△,可应用勾股定理得方程).(2)初步应用:题4:08丽水8:如图,在三角形ABC中,AB>AC,D、E分别是AB、AC上地点,△ADE沿线段DE翻折,使点A落在边BC上,记为A'.若四边形ADA E'是菱形,则下列说法正确地是()A.DE是△ABC地中位线B.AA'是BC边上地中线C.AA'是BC边上地高D.AA'是△ABC地角平分线分析:此题虽有多种说明方法,即可应用折叠地全等性得到,也可根据折叠地点轴对称性得到.(3)题5:09绍兴市属期末23.(本题满分12分)课堂上,老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠,分别求折痕地长.(1) 如图1, 折痕为AE;(2) 如图2, P,Q分别为AB,CD地中点,折痕为AE;(3) 如图3, 折痕为EF.ACDEA'(第8题)分析:题(1)题(2)主要应用折叠地全等性,题(3)连结对称点地连线BD ,根据折叠中点地轴对称性得EF 是BD 地中垂线,BO=4125,同时根据矩形地中心对 称性知,EF=2E0,在Rt △CDE 中,根据勾股定理可解得DE=241,根据折叠全等性得BE=DE=241,在Rt △BOE 中根据勾股定理得EO=412,故EF=414.由此题得心得:在解决折叠类计算题时,根据Rt △地勾股定理应用方程思想是常用方法. 题后说明:此题(2)是课本习题原题,(1)、(3)都根据课本原题改变而成.根据课本原题改变成中考题,是中考卷出题地一个新地方向,所以我们在中考复习中仍应以“本”为本,不断对课本习题进行探索和挖掘.(4)题6:08绍兴24题(2)(3)(简述):将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.6OP t =-,23OQ t =+. (1)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上地点D 处,求点D地坐标;(2)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PE 与AC 能否垂直?此题(1)让学生自己解决,教师适当点拨.题(2)根据情况可留作课后解决,教师点透解题地着眼点.4、反思小结:折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力地实践操作题,到直接运用折叠相关性质地说理计算题,发展到基于折叠操作地综合题,甚至是压轴题.其中“折”是过程,“叠”是结果.折叠问题地实质是图形地轴对称变换,所以在解决有关地折叠问题时可以充分运用轴对称地思想和轴对称地性质.借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.图1 (第24题图)初中几何综合复习(讲稿)—矩形折叠问题同学们好,今天我和大家一起研究平面图形地折叠问题.首先,在最近几年地中考中题折叠问题中频频出现,这对于我们识别和理解几何图形地能力、空间思维能力和综合解决问题地能力都提出了比以往更高地要求.希望通过今天地讨论,使同学们对折叠问题中有关地几何图形之间地位置关系和数量关系有进一步认识;在问题分析和解决地过程中巩固头脑中已有地有关几何图形地性质以及解决有关问题地方法;并在观察图形和探索解决问题地方法地过程中提高分析问题和解决问题地能力.那么,什么是折叠问题呢?这个问题应分两个方面,首先什么是折叠,其次是和折叠有关地问题.下面我们将对它们分别进行讨论一. 折叠地意义1.折叠,就是将图形地一部分沿着一条直线翻折180º,使它与另一部分在这条直线地同旁,与其重叠或不重叠;显然,“折”是过程,“叠”是结果.如图(1)是线段AB沿直线l折叠后地图形,其中OB'是OB在折叠前地位置;图(2)是平行四边形ABCD沿着对角线AC折叠后地图形,△ABC是△AB'C在折叠前地位置,它们地重叠部分是三角形;(2)图形在折叠前和折叠后翻折部分地形状、大小不变,是全等形如图(1)中OB'=OB;如图(2),△AB'C≌△ABC;(3) 图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称如图(1)OB'和OB关于直线l成轴对称;如图(2)△AB'C和△ABC关于直线AC成轴对称.二.和折叠有关地问题图形经过折叠,其翻折地部分折叠前地图形组合成新地图形,新地图形中有关地线段和角地位置、数量都有哪些具体地关系呢?这就是我们今天要重点讨论地问题.下面,我们以矩形地折叠为例,一同来探讨这个问题.问题1:将宽度为a地长方形纸片折叠成如图所示地形状,观察图中被覆盖地部分△A'EF.(a)△A'EF是什么三角形?结论:三角形AE'F是等腰三角形证明:方法一,∵图形在折叠前和折叠后是全等地,∴∠1= ∠2,又∵矩形地对边是平行地∴∠1=∠3,∴∠2=∠3,∴A'E=A'F三角形AE'F是等腰三角形方法二:∵图形在折叠前和折叠后地形状、大小不变,只是位置不同∴表示矩形宽度地线段EP和FQ相等,即∆A'EF地边A'E和A'F上地高相等,∴A'E=A'F三角形AE'F是等腰三角形(b)改变折叠地角度α地大小,三角形A'EF地面积是否会改变?为什么?答:不会改变.分析:α地改变影响了A'E地长度,但却不能改变边A'E上地高,三角形A'EF地面积会随着α地确定而确定.例一:在上面地图中,标出点A'在折叠前对应地位置A,四边形A'EAF是什么四边形?分析:(1)由前面地分析可知A'与A'在折叠前地位置A关于折痕EF成轴对称,所以作A'关于EF地对称点即可找到点A(过点A'作A'A⊥ EF交矩形地边于点A). 同学们还可以动手折叠一下,用作记号地方法找到点A.(2)四边形AEA'F是菱形证法一:∵ A是A'在折叠前对应地位置,∴A和A'关于直线EF轴对称,∴AA'⊥EF,且AO=A'O,又∵AE∥A'F,∴EO∶OF=AO∶OA',∴EO=OF∴四边形AEA'F是菱形证法二:A是A'在折叠前对应地位置,∴∆AEF≌∆A'EF,A'E=A'E,AF=AF,又∵∆AEF是等腰三角形(已证),A'E=A'F,∴A E=AF=A'E=A'F,∴四边形AEA'F是菱形.例2.在上题地图中,若翻折地角度α=30°,a=2,求图中被覆盖地部分△A'EF.地面积..分析:图中被覆盖地部分△A'EF是等腰三角形,其腰上地高就是原矩形地宽度2,所以,本题地解题关键就是要求出腰A'F 或A'E地长.答:S四边形AEA'F=2S△A'EF=(8/3)√3(解答过程略)练一练:当α地大小分别45°、60°时,图中被覆盖地部分△A'EF.地面积是多少?例题3. 如图:将矩形ABCD对折,折痕为MN,再沿AE折叠,把B点叠在MN 上,(如图中1地点P),若AB=√3,则折痕AE地长为多少?分析:折痕AE为直角三角形ABE地斜边,故解决本题地关键是求PE(或BE)地长.解法一:由折叠地意义可知,AP⊥EP,延长EP交AD于F, 则FE=FA(在问题一中已证)∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶1,又∠APE= ∠D=90°, ∴AE=AF∴AE=AF=EF,∴ ∠1= ∠2=30°,∠1=30°∴AE=2.∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD ∥BC且AN是AP地一半∴ MN⊥AN∴AE=AF又FE=FA(问题1地结论)∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴AE=2.由BC∥MN∥DA且M、N分别为CD和AB地中点可得EP=PF,EO=AO∴PO=AF,又PO=AE,∴AE=AF∴AE=AF=EF,∠EAF=60°(其余同上)例题4.在例3中,若M、N分别为CD、AB地三等分点(如图),AB=√5,其他条件不变,折痕AE地长为多少?分析:本题与上一题略有不同,MN由原来地二等分线变为三等分线,其他条件不变.所以本题地解题关键还是求出EB(或EP)地长解:延长EP交AD于F, 则FE=FA(已证)∵ M、N分别是矩形地边AB和CD地三等分点∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶2,设EP=x, 则PF=2x, AF=EF=3x,在直角三角形APF中有AP²+PF²=AF²∴5+(2x)²=(3x)²,∴x=1, ∴AE²=1+5=6,∴AE=√6例4 如图3,有一张边长为3地正方形纸片(ABCD),将其对折,折痕为MN,再将点B折至折痕MN上,落在P点地位置,折痕为AE.(1)求MP地长;(2)求以PE为边长地正方形地面积.分析:将本题与例题2比较,不难看出它们地共同之处,显然,解决本题地关键是求PE和PN地长解法一:延长EP交AD地延长线于F, 则FE=FA(已证)M、N分别是矩形地边AB和CD地中点,∴ MN∥AD ∥B C且AN是AP地一半∴MN⊥AN∴AE=AF∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴PN=(3/2)√3,(1)∴MP=1-PN=3-(3/2)√3,又AP=3,∴EP=√3,(2)∴以EP为边长地正方形地面积为3.其他解法请同学们思考.例5.如图,将矩形ABCD折叠,使C点落在边AB上,(如图中地M点),若AB=10,BC=6,求四边形CNMD地面积分析:本题与上一题区别在于点C折叠后落在矩形地边AB上,由折叠地意义可以知道,ΔACN和ΔAMN是全等地,所以,求四边形CNMD地面积地关键就是求ΔDCN或ΔDMN地面积,所以本题地解题关键还是求出NC(或BN)地长.解:在直角三角形ADM中,AD=6,DM=DC=10,由勾股定理可以求得AM=8.BM=10-8=2. 设NC=x,则MN=x,BN=6-x,在Rt△BMN中,MN2=BN2+BM2∴x2=(6-x)2+4∴x=10/3S四边形CNMD =2S△DCN=(10/3)*10=100/3例6.将长为8,宽为6地矩形ABCD折叠,使B、D重合,(1)求折痕EF地长.(2)求三角形DEF地面积分析:由矩形折叠地意义可知,EF垂直平分BD(O为BD地中点由AB//DC可得EO:FO=BO:DO=1:1 ∴O为EF地中点,所以可设法先求出EO地长,或直接求EF地长,进而求三角形DEF面积.解(法一):∵D、B关于EF成轴对称∴EF垂直平分DB,又DC⊥CB,∴△DOE∽△DCB在Rt△DCB中,由勾股定理可得BD=10又AB∥DC∴EO:OF=DO:OB∴DO=5(1)由△DOE∽△DCB得DO:DC=DE:BC∴EO:6=5:8∴EO=15/4∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=75/4(2)S△DEF解(法二):(1)过C作CP∥EF,交AB于P∵EF⊥DB∴CP⊥DB易得△CBP∽△DCB∴CP:BD=CB:DC∴CP=10*6/28=15/2∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=(2)S△DEF75/4同学们,图形折叠问题中题型地变化比较多,但是经过研究之后不难发现其中地规律,从今天我们对矩形折叠情况地讨论中可以得到以下几点经验:1.图形地翻折部分在折叠前和折叠后地形状、大小不变,是全等形;2图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称;3.将长方形纸片折叠成如图所示地形状,图中重叠地部分△AE'F是等腰三角形;4.解决折叠问题时,要抓住图形之间最本质地位置关系,从而进一步发现其中地数量关系;5.充分挖掘图形地几何性质,将其中地基本地数量关系,用方程地形式表达出来,并迅速求解,这是解题时常用地方法之一.今天地讨论就到这里,最后祝同学们在中考中取得好地成绩.中考专题复习——折叠问题动手折一折,并思考:(1)用一张矩形地纸,通过折叠,使较短地边AB 落在较长地边AD 上,分析重叠部分展开后地形状.(2)将一张正方形纸,通过两次对折,成为一个正方形,再折叠一次,分析折痕所围成地图形.题组一:(1)如图(1),点E 是矩形ABCD 地边CD 上地点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上地F 点处,如果∠BAF =60o ,则∠DEA =____________.(2)如图(2),已知:点E 是正方形ABCD 地BC 边上地点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.(3)如图(3),AD 是△ABC 地中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C ´地位置,若BC =2,则BC ´=_________. 图(1)图(2)题组二: 图(3)(4)如图(4),已知矩形ABCD 中,AD =8,AB =4.沿着对角线BD 将矩形ABCD 折叠,使点C 落在C ´处,BC ´交AD 于E .求出未知地线段. A BCDEABCDA BCD(5)如图(5),矩形ABCD 地长、宽分别为5和3,将顶点C 折过来,使它落在AB 上地C ´点(DE 为折痕),那么阴影部分地面积是________.图(4) 图(5)题组三:(6)如图(6),P 是以AB 为直径地半圆上地一点,PA =4,AB =10,将半圆折叠使弦PA 正好落在AB上,则折痕AC 地长为___________.图(6)(7)如图(7),把正三角形ABC 地外接圆对折,使点A 落在弧BC 地中点A ´,若BC =6,则折痕在△ABC 内地部分DE 地长为_____.提高题:(1)一张宽为3、长为4地矩形纸片ABCD ,先沿对角线BD 对折,点C 落在C ´地位置,BC ´交AD 于G (如图8).再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M (如图9),则ME 地长为__________.C ´GABCDA BCDABCPP ´B A DA DC ´图(9)图(8)(2)如图(10),在矩形ABCD 中,AB =2,AD =1,如图将矩形折叠使B 点落在AD 上,设为B ’,顶点C 到C ’点,B ’C ’交DF 于G .(1) 求证:△AB ’E ∽△C ’GF ;(2)若AB ’=x ,S B ’EFC ’=y ,求y 关于x 之间地函数解析式; (3)当B ’在何处时,y 地值最小,y 地最小值是多少?图(10)折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质.轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上. 压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠地选择题填空题,很有必要.1、(2009年浙江省绍兴市)如图,D E ,分别为ABC △地AC ,BC 边地中点,将此三角形沿DE 折叠,使点C 落在AB 边上地点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°C ´A BC D EFB ´G图(7)(第18题图)AC B2、(2009湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=()A .40° B .30°C .20°D .10°3、(2009年日照市)将三角形纸片(△ABC )按如图所示地方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点地三角形与△ABC 相似,那么BF 地长度是.4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上地高.将△ABC 按如图所示地方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 地周长为A .9.5B .10.5C .11D .15.55、(2009泰安)如图,在Rt △ABC 中, ∠ACB=90°,∠A <∠B ,沿△ABC 地中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 地值为.6、(2009年上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上地点,联结AM(如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 地中点处,那么点M 到AC 地距离是.第2题图 A 'BD AC7、(2009宁夏)如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上地中线,将ADC △沿AC 边所在地直线折叠,使点D 落在点E 处,得四边形ABCE . 求证:EC AB ∥.8、(2009年清远)如图,已知一个三角形纸片ABC ,BC 边地长为8,BC 边上地高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 地长为x ,MN 上地高为h .(1)请你用含x 地代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面地点为1A ,1A MN △与四边形BCNM 重叠部分地面积为y ,当x 为何值时,y 最大,最大值为多少?A图3BM C BC NM AE C B A D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的折叠问题【专题思路剖析】图形的折叠实际就是反射变换或者说是对称变换,或者说是翻折。
这类问题大都联系实际,内容丰富,解法灵活,具有开放性,有利于考查解题者的动手能力,空间观念和几何变换的思想。
折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.图形折叠问题既考查学生的动手能力,又考查了想象能力,涉及到画图、测量、猜想证明、归纳等问题,它与代数、几何均有联系。
折叠问题将图形的变换与学生的实际操作能力紧密联系起来。
在折叠过程中,通过观察图形中的变与不变,灵活应用平面图形的基本性质及定理解决问题。
近年来,折叠问题(对称问题)是中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几类典型的折叠问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
【典型例题赏析】类型1:三角形中的折叠问题折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.例题1:4.(2015•乌鲁木齐,第7题4分)如图,△ABC的面积等于6,边AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题).分析:过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.解答:解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴12×AC×BN=6,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,故选A.点评:本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.【变式练习】(2014•黑龙江牡丹江, 第7题3分)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()第1题图A.30°B.40°C.50°D.60°考点:翻折变换(折叠问题).分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案.解答:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.类型2:四边形及其他图形中的折叠问题矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.例题2:(2015•山东泰安,第20题3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE 折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A.2 B.4 C.D.2考点:翻折变换(折叠问题)..分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.解答:解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故选:B.点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件EF=EC是解题的关键.【变式练习】(2015•铜仁市)(第8题)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3 B. C.5 D.考点:翻折变换(折叠问题).分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.解答::设ED=x,则AE=8﹣x;∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=42+(8﹣x)2,解得:x=5,∴ED=5.故选:C.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.【拓展演练】1. (2015•江苏泰州,第16题3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.2,(2015•宁夏第15题3分)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.3. (2015•青海西宁第20题2分)如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD n= .4. (2015•滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E 的坐标为.5. (2014•上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).6. (2014•山西,第23题11分)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE 与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.【拓展演练】参考答案1. (2015•江苏泰州,第16题3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.考点:翻折变换(折叠问题);勾股定理;矩形的性质..分析:由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.解答:解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.点评:本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键2,(2015•宁夏第15题3分)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.考点:翻折变换(折叠问题)..分析:设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.解答:解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=,故答案为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.3. (2015•青海西宁第20题2分)如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD n= .考点:翻折变换(折叠问题);等边三角形的性质..专题:规律型.分析:根据等边三角形的性质依次求出边上的高,找出规律即可得到结果.解答:解:∵△ABC是边长为1的等边三角形,BD为AC边上的高,∴BD=,∵△BEF是边长为等边三角形,∴BD1=,∴BD2=,…∴BD n=,故答案为:.点评:本题考查了翻折变换﹣折叠问题,等边三角形的性质,根据已知条件找出规律是解题的关键.4. (2015•滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E 的坐标为.考点:翻折变换(折叠问题);坐标与图形性质.分析:根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC可得点E的坐标.解答:解:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).点评:本题考查折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等;对应点的连线段被折痕垂直平分.也考查了矩形的性质以及勾股定理.5. (2014•上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).考点:翻折变换(折叠问题)分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∴AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.6. (2014•山西,第23题11分)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE 与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.考点:四边形综合题.分析:(1)由对折得出CB=CB′,在RT△B′FC中,sin∠CB′F==,得出∠CB′F=30°,(2)连接BB′交CG于点K,由对折可知,∠B′AE=∠B′BE,由∠B′BE+∠KBC=90°,∠KBC+∠GCB=90°,得到∠B′BE=∠GCB,又由折叠知∠GCB=∠GCB′得∠B′AE=∠GCB′,(3)连接AB′利用三角形全等及对称性得出EB′=NP=FD′=MQ,由两次对折可得,OE=ON=OF=OM,OB′=OP=0D′=OQ,四边形B′PD′Q为矩形,由对折知,MN⊥EF,于点O,PQ⊥B′D′于点0,得到四边形B′PD′Q为正方形,解答:解:(1)如图1,由对折可知,∠EFC=90°,CF=CD,∵四边形ABCD是正方形,∴CD=CB,∴CF=BC,∵CB′=CB,∴CF=CB′∴在RT△B′FC中,sin∠CB′F==,∴∠CB′F=30°,(2)如图2,连接BB′交CG于点K,由对折可知,EF垂直平分AB,∴B′A=B′B,∠B′AE=∠B′BE,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠B′BE+∠KBC=90°,由折叠知,∠BKC=90°,∴∠KBC+∠GCB=90°,∴∠B′BE=∠GCB,又由折叠知,∠GCB=∠GCB′,∴∠B′AE=∠GCB′,(3)四边形B′PD′Q为正方形,证明:如图3,连接AB′由(2)可知∠B′AE=∠GCB′,由折叠可知,∠GCB′=∠PCN,∴∠B′AE=∠PCN,由对折知∠AEB=∠CNP=90°,AE=AB,CN=BC,又∵四边形ABCD是正方形,∴AB=BC,∴AE=CN,在△AEB′和△CNP∴△AEB′≌△CNP∴EB′=NP,同理可得,FD′=MQ,由对称性可知,EB′=FD′,∴EB′=NP=FD′=MQ,由两次对折可得,OE=ON=OF=OM,∴OB′=OP=0D′=OQ,∴四边形B′PD′Q为矩形,由对折知,MN⊥EF,于点O,∴PQ⊥B′D′于点0,∴四边形B′PD′Q为正方形,点评:本题主要考查了四边形的综合题,解决本题的关键是找准对折后的相等角,相等边.。