1.第一章整式的乘除复习课件

合集下载

2024年七下第一章《整式的乘除》复习课件

2024年七下第一章《整式的乘除》复习课件

2024年七下第一章《整式的乘除》复习课件一、教学内容本课件依据《数学课程标准》和2024年七年级下册教材,对第一章《整式的乘除》进行复习。

详细内容涉及教材第一、二、三节,主要包括整式的乘法法则、整式的除法法则以及乘除混合运算。

二、教学目标1. 让学生熟练掌握整式的乘法法则,能运用法则进行乘法运算。

2. 让学生熟练掌握整式的除法法则,能运用法则进行除法运算。

3. 培养学生解决实际问题时运用整式乘除混合运算的能力。

三、教学难点与重点教学难点:整式的乘除混合运算。

教学重点:整式的乘法法则和除法法则。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生练习本、笔。

五、教学过程1. 实践情景引入(5分钟)通过生活中的实例,让学生了解整式乘除在实际问题中的应用。

2. 例题讲解(15分钟)(1)整式的乘法法则:讲解例题1,让学生理解并掌握法则。

(2)整式的除法法则:讲解例题2,让学生理解并掌握法则。

(3)整式的乘除混合运算:讲解例题3,让学生学会运用法则进行混合运算。

3. 随堂练习(10分钟)学生完成教材课后练习题,巩固所学知识。

4. 答疑解惑(5分钟)针对学生练习过程中出现的问题,进行解答。

5. 课堂小结(5分钟)六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 乘除混合运算例题及解析七、作业设计1. 作业题目:(1)计算:(3x+4y)(2x5y)(2)计算:(6x^27x+2)÷(3x2)(3)应用题:已知甲、乙两数的和是10,甲数比乙数的2倍还多3,求甲、乙两数。

2. 答案:(1)6x^27xy20y^2(2)2x1(3)甲数7,乙数3八、课后反思及拓展延伸1. 反思:关注学生课堂练习的反馈,及时调整教学策略,提高教学效果。

2. 拓展延伸:引导学生探索整式的乘除在实际问题中的更多应用,提高学生的实际应用能力。

重点和难点解析1. 教学内容的覆盖范围和深度。

2. 教学目标的设定,尤其是目标的可衡量性和具体性。

《整式的乘法》整式的乘除PPT课件(第1课时)

《整式的乘法》整式的乘除PPT课件(第1课时)
2n+m=5,n+3=3 则m=5,n=0
ZYT
课堂小结
单 实 质 实质上是转化为同底数幂的运算
项 式法 × 单
则 单项式与单项式相乘,把它们的系数、相 同字母的幂分别相乘,其余字母连同它的 指数不变,作为积的因式.
项 式
注 单项式乘以单项式的结果是否正确,可从以下三 意 个方面来检验:①结果仍是单项式;②结果中含
空地用于绿化,求绿化的面积和剩下的面积.
解:长方形的面积是xym2,绿化的面积是
3 5

3 4
y=
290xy(m2),则剩下的面积
是xy-
9 20
xy=
11 20
xy(m2).
方法总结:掌握长方形的面积公式和单项式
乘单项式法则是解题的关键.
ZYT
中考真题
1.(台州)计算2a2•3a4的结果是( C )
单独因式x别 (2)4y ·(-2xy2); 漏乘漏写 (4)(-2a)3(-3a)2.
解:(1)原式=(3×5)(x2·x3)=15x5;
(2)原式=[4×(-2)](y·y2) ·x=-8xy3;
(3) 原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
(4)原式=-8a3·9a2 =[(-8)×9](a3·a2)=-72a5. 注意 有乘方运算,先算乘方,再算单项式相乘.
ZYT
巩固练习
计算:
(1) 5x3·2x2y ;
单独因式a 别漏乘漏写
(2) -3ab·(-4b2) ;
(3) 3ab·2a;
(4) yz·2y2z2;
解:(1)5x3·2x2y=(5×2)·(x3·x2)·y=10x5y.
(2)-3ab·(-4b2)=[(-3)×(-4)]·a·(b·b2)=12ab3.

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件一、教学内容1. 整式的乘法:多项式乘以多项式,多项式乘以单项式,单项式乘以单项式。

2. 整式的除法:多项式除以多项式,多项式除以单项式,单项式除以单项式。

3. 平方差公式:a^2 b^2 = (a + b)(a b)。

4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2。

二、教学目标1. 掌握整式的乘除运算法则,能够熟练地进行整式的乘除计算。

2. 理解并熟练运用平方差公式和完全平方公式。

3. 提高学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:整式的乘除运算,平方差公式和完全平方公式的运用。

难点:灵活运用平方差公式和完全平方公式解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:笔记本、练习本、文具。

五、教学过程1. 情景引入:以实际生活中的问题引入,例如计算购物时优惠后的价格。

2. 知识回顾:复习整式的乘法、除法,平方差公式和完全平方公式。

3. 例题讲解:讲解典型例题,让学生理解并掌握整式的乘除运算方法和技巧。

4. 随堂练习:布置随堂练习题,让学生巩固所学知识,并及时纠正错误。

5. 课堂互动:组织学生进行小组讨论,分享解题心得和方法。

7. 作业布置:布置课后作业,巩固所学知识。

六、板书设计1. 整式乘法法则2. 整式除法法则3. 平方差公式:a^2 b^2 = (a + b)(a b)4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2七、作业设计1. 题目:计算下列整式的乘除结果。

(1)(x + 2)(x 2)(2)(x + 3)÷(x 1)(3)(a + b)^22. 答案:(1)x^2 4(2)x + 4(3)a^2 + 2ab + b^2八、课后反思及拓展延伸1. 课后反思:本节课学生对整式的乘除运算掌握较好,但在运用平方差公式和完全平方公式解决实际问题时,部分学生还存在一定的困难。

七下第一章《整式的乘除》复习完整ppt课件

七下第一章《整式的乘除》复习完整ppt课件

B. (2a)2 4a2
C. 30 31 3
D. 4 2
6、下列各式运算结果为 x8 的是( A )
A. x4 ·x 4
B. (x 4 )4
C. x16 ¸ ¸ x2
精选
D. x4+x 4
二、填空题:
1.(2008年宁波)计算: (-2a) 2 =___4_a_2___.
2.(2009年海南)计算:a .a2+a3=__2_a_3_.
16. 己知:x+x-1=-3 , 求代数式 : x4+x-4 的值。
精选
(2). 2n4(2)2n
(3 ).3 x 2 (x 3 y 2 2 x ) 4 x ( x 2 y )2
(4).t2(t1)t(5)
精选
( 5 )( . 2 a ) 8 [ ( 2 a ) 2 ] ( 2 a ) 9 ( 2 a ) 3
( 6 )( .x 4 y 6 z )x (4 y 6 z ) (7 ).( 3 )3 ( 3 ) 3 (1)3 (1) 3
精选
11. 己知x+y=3 ,x2+y2=5 则xy 的值等于多少? 12. 己知x-y=4 , xy=21 ,则 x2+y2 的值等于多少?
精选
13. 己知10m=4 , 10n=5 , 求103m+2n 的值。
14. 解方程:(2x-3)2 = (x-3)(4x+2)
精选
15.己知: (x+1)(x2+mx+n) 的计算结果不含x2和x项
33
(8). (0.12)55218
精选
( 9 ). ( 4 a 3 1 a 2 b 2 7 a 3 b 2 ) ( 4 a 2 )

(课件)第一章整式的乘除 小结与复习

(课件)第一章整式的乘除  小结与复习

a0 1(a 0)
湖北鸿鹄志文化传媒有限公司——助您成功
判断:a6 a3 a63 a2 ,10 2 20, ( 4)0 1, (m)5 (m)3 m2 5
练习:计算
10 1 (0.1)2 23 (1 )1 [(2)2009 ]0 2
(2m )2 2m , (x2 )2 (x x2 ), amn amn
湖北鸿鹄志文化传媒有限公司——助您成功
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、 相同字母的幂分别相乘,其余的字母则连同 它的指数不变,作为积的一个因式。
练习:计算下列各式。
(1)(5x3) (2x2 y),(2)(3ab)2 (4b3)
4
湖北鸿鹄志文化传媒有限公司——助您成功
1、若2amb2m+3n和a2n-3b8的和仍是一个单项式, 则m与n的值分别是( B) A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
练习:计算下列各式。
(2xyz)4 , ( 1 a2b)3, (2xy2 )3, (a3b2 )3 2
湖北鸿鹄志文化传媒有限公司——助您成功
4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
am an amn
ap

1 ap
(a

0,
p为正整数 )
(3)(am )2b (a3b2n ),
(4)( 2 a2bc3) ( 3 c5 ) (1 ab2c)

北师大版七年级数学下册第一章整式的乘除复习课件

北师大版七年级数学下册第一章整式的乘除复习课件

a3 • a3 2a3,b4 b4 b8, m2 m2 2m2 (x)3 • (x)2 • (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
a, 2x3 y 4 , 23 mn ,
2 3
Π

4、多项式:几个单项式的和叫多项式。
a 2b 3
5、多项式的项及次数:组成多项式中的单项式叫多 项式的项,多项式中次数最高项的次数叫多项式的次 数。特别注意,多项式的次数不是组成多项式的所有 字母指数和!!!
练习:指出下列多项式的次数及项。
2x3 y2 5m5n 2 , 2x3 y2z 3 ab4 72
第一章 整式的乘除
(复习课)
北师大版数学七年级下 第一章 整式的运算
本章知识结构:
一、整式的有关概念
1、单项式 2、单项式的系数及次数 3、多项式 4、多项式的项、次数 5、整式
二、整式的运算
(一)整式的加减法
1、去括号 2、合并同类项
(二)整式的乘法
1、同底数的幂相乘 2、幂的乘方 3、积的乘方 4、同底数的幂相除 5、单项式乘以单项式 6、单项式乘以多项式 7、多项式乘以多项式 8、平方差公式 9、完全平方公式
(二)整式的除法
就你 这回 些忆 知起 识了
吗 ?
1、单项式除以单项式 2、多项式除以单项式
一、整式的有关概念
1、单项式:数 单与独字一母个乘数积或,字这母样也的是代单数项式式叫。单项式。 2、单项式的系数: 单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。

第一章整式的乘除复习课件北师大版七年级下册

第一章整式的乘除复习课件北师大版七年级下册
熟练掌握本章节知识点,建立整体知识框架。
组)(认真书写,规范步骤)并上传 请同学们点击暂停,完成训练
规定:a0 =1,(a≠0);
请同学们点击暂停,完成训练
同底数幂相除,底数
=10x2
-6x +n
,指•数学有. 余力的同学可以继续完成《新课堂》本章
规定:a0 =1,(a≠0);
综合测评题(B组) 请同学们点击暂停,完成训练
解:原 11式 00.112 213 111
1 1 1221 10 0.01 8
110081140
10
2
本章知识点三
科学记数法
• 把一个数,写成 a×10n 的形式,其中1≤|a|< 10,n是____整__数_,这种方法叫做科学记数法.
|数|≥10 n=整数位数-1
•|数|<1 •n= -(第一个非0数字前所有0的个数)
本章知识点三
科学记数法
• 用科学记数法表示下列各数:请同学们点击暂停,完成训练 • (1) 0.000 001 295=1._2_9__5_×__1_0__-6 • (2) 129.51=._2_9_5__×_1__0_2_ • (3)1.295=1._2__9_5_×__1_0__0__ • (4)一种新型冠状病毒的直径为120 纳米,用科学
( A) a4a3a1 2 ,(B)a6a3a2
(C)(a3)2a5,(D)(a)b2a2b2
训练:
请同学们点击暂停,完成训练
(1)a2 aa5 _a_8____
((23))((ma 2)3n)2a(4m__na_)5_2____(7_m_+_n_)__
(4)(ab3 )3 _-_a_3__b9
(5)x3m xm __x_2__ (6)(a 2 )3 (2a3 )m2 _56_a_

第一章《整式的乘除》复习课件(共35张PPT)

第一章《整式的乘除》复习课件(共35张PPT)

积的乘方 平方差公式 完全平方公式
(a+b)(a-b)=a²-b² (a±b)²=a²±2ab+b²
幂的乘方
同底数幂 的乘法
乘法公式 单项式乘 单项式乘 以单项式 以多项式
多项式乘
幂的运算 整式乘法
以多项式
整式的乘法知识树
√ 积的乘方 平方差公式 完全平方公式 (a+b)(a-b)=a²-b² (a±b)²=a²±2ab+b²
先用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
计算:
(1)(x+2)(x+3)-(x+6)(x-1)
=x²+3x+2X+6-(x²-x+6X-6)=12 (2)(x²+ax+8)(x²-3x+b)结果中不含 x²和x³项,求a、b的值
(x²+ax+8)(x²-3x+b)
x4 3x3 bx2 ax3 3ax2 abx 8x2 24x 8b
杨幂的爸爸妈妈都姓杨,加 上她一共三个姓杨的,即: 杨×杨×杨=杨的三次方, 三次方又是三次幂,所以她 的父母给她取名杨幂。
而在数学中,幂的相关计算有哪些?以幂 的运算为基础的整式乘法又有哪些内容?
整式的乘除知识树
同底数幂 的乘法
幂的乘方
(a
平方差公式
b)(a b) a2
b2
完全平方公式
READY
GO! 一、每组4号黑板作答
(1)9(x+2)(x-2)-(3x-2)² (2)2009²-2010×2008 (3)(x-2)²-(x-1)(x+3) (4)(-2x4)4 +2x10 ·(-2x²)3 (5)(x+2)²-(x+1)(x-1)

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件

Part
02
整式乘除的运算
单项式乘单项式
总结词
基础运算,直接相乘
详细描述
单项式与单项式相乘时,只需将它们的系数、相同字母的幂分别相乘,其余字母、指数不变。例如: $2x^3y times 3x^2y = 6x^{5}y^{2}$。
单项式乘多项式
总结词:逐项相乘
详细描述:单项式与多项式相乘时,需将单项式的每一项分别与多项式的每一项 相乘,然后合并同类项。例如:$2x(x^2 + 3x + 1) = 2x^3 + 6x^2 + 2x$。
七下第一章《整式的 乘除》复习课件
• 整式乘除的回顾 • 整式乘除的运算 • 整式乘除的应用 • 整式乘除的练习与巩固 • 整式乘除的总结与展望
目录
Part
01
整式乘除的回顾
整式的定义与表示
总结词
理解整式的定义和表示方法
详细描述
整式是由常数、变量、运算符以及括号按一定规则组成的数学表达式。整式可 以表示为代数式,其中只包含加、减、乘、除、乘方五种基本运算。常见的整 式有单项式和多项式。
理解概念
深入理解整式乘除的基本 概念和规则,避免混淆和 误解。
拓展学习
可以尝试学习更复杂的整 式运算,如因式分解、分 式的运算等,为后续的学 习打下基础。
有幂的除法时, 容易忽略指数的变化,例 如将$frac{a^2}{b}$误简 化为$ab$。
忽略公因式的提取
在整式除法中,常常需要 提取公因式来简化表达式 ,例如将$a^2 - b^2$误 分解为$(a+b)(a-b)$。
整式乘除的进一步学习建议
加强练习
通过大量的练习来巩固整 式乘除的知识点,提高运 算速度和准确性。

七年级下第1章《整式的乘除》单元复习课件(共25张PPT)

七年级下第1章《整式的乘除》单元复习课件(共25张PPT)

课后作业
Listen attentively
7.(2016普宁期末)若□×2xy=16x3y2,则□内应 填的单项式是( )D A.4x2yB.8x3y2 C.4x2y2 D.8x2y 8.(2016商河期末)下列算式能用平方差公式计 算的是(D) A.(2a+b)(2b﹣a) B. C.(3x﹣y)(﹣3x+y) D.(﹣m﹣n)(﹣m+n) 9.已知6m5nx÷2myn3=3m2n2,则( )B A.x=3,y=2 B.x=5,y=3 C.x=3,y=5 D.x=2,y=3
课后作业
Listen attentively
17.(2016门头沟期末)化简: (8a2b﹣4ab2)÷(﹣4ab).
解:(8a2b﹣4ab2)÷(﹣4ab) =﹣2a+b.
课后作业
Listen attentively
18.计算与求值: (1)(﹣ )﹣2﹣(﹣2016)0+()11×(﹣)12; (2)(3x﹣2)2+(﹣3+x)(﹣x﹣3); (3)(9x4y3﹣6x2y+3xy2)÷(﹣3xy).
C.(x+y﹣z)(﹣z﹣y+x)
D.(2x﹣y)(﹣y﹣2x)
2.计算2x3•3x2的结果是( D)
A.5x5 B.6x6 C.5x6 D.6x5
3.(2015•成都)下列计算正确的是( C)
A.a2+a2=a4
B.a2•a3=a6

C.(﹣a2)2=a4 D.(a+1)2=a2+1
课前小测
Listen attentively
课堂精讲
Listen attentively
【类比精练】 1.(2016陕西)下列计算正确的是( D) A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(﹣3x)2=9x2 解:A、原式=4x2,错误; B、原式=2x5y,错误; C、原式=2xy2,错误; D、原式=9x2,正确, 故选D

七下第一章《整式的乘除》复习课件(1)

七下第一章《整式的乘除》复习课件(1)

七下第一章《整式的乘除》复习课件一、教学内容1. 单项式乘单项式2. 单项式乘多项式3. 多项式乘多项式4. 乘法公式5. 整式的除法6. 整式的混合运算二、教学目标1. 熟练掌握整式的乘除法则,提高运算速度和准确性。

2. 能够运用乘法公式简化计算,解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:乘法公式的运用,整式的混合运算。

2. 教学重点:整式的乘除法则,乘法公式的推导和应用。

四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔。

2. 学具:练习本,计算器。

五、教学过程1. 导入:通过实际情景引入,如购物时商品价格的计算,让学生体会整式的乘除在实际生活中的应用。

2. 知识回顾:引导学生回顾整式的乘除法则,乘法公式等知识点。

3. 例题讲解:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)乘法公式(5)整式的除法(6)整式的混合运算4. 随堂练习:针对每个知识点设计练习题,让学生及时巩固所学知识。

6. 应用:运用所学知识解决实际问题。

六、板书设计1. 七下第一章《整式的乘除》复习2. 内容:整式的乘除法则,乘法公式,例题,练习题。

七、作业设计1. 作业题目:(1)计算题:给出具体数值,让学生计算整式的乘除。

(2)应用题:设计实际情景,让学生运用整式的乘除解决问题。

2. 答案:详细给出作业题目的答案。

八、课后反思及拓展延伸1. 反思:针对课堂教学中出现的问题,进行自我反思,调整教学方法。

2. 拓展延伸:引导学生探索整式的乘除在生活中的其他应用,提高学生的实际运用能力。

重点和难点解析1. 教学难点与重点的确定2. 例题讲解的深度和广度3. 随堂练习的设计4. 作业设计中的应用题5. 课后反思及拓展延伸的深度一、教学难点与重点的确定整式的乘除是初中数学的基础内容,其中乘法公式的运用和整式的混合运算是学生普遍感到难以掌握的部分。

因此,这两个方面应成为教学的重点和难点。

北师大版七下第一章整式的乘除复习课件

北师大版七下第一章整式的乘除复习课件

灵活应用:
1、若am=3,an=5,则am-n=_____ 2、计算(0.2)2012 x 52013=_____ 3、已知a2-b2=30,a-b=6,则 a+b=_____ 4、计算(x+y)2(x-y)2
学以致用
有一位狡猾的地主,把一块边 长为a米的正方形土地租给赵老汉 耕种。隔了一年,他对赵老汉说: “我把你这块地的一边减少6米, 另一边增加6米,继续租给你,你 也没有吃亏,你看如何?”赵老 汉一听,觉得好像没有吃亏,就 答应了。同学们,你们觉得赵老 汉有没有吃亏?为什么?
(am)n=amn
am÷an=am-n (a+b)(a-b)=a2-b2
用相同项的平方减去相反项的平方。
(a+b)2=a2+2ab+b2 (a-b)2 =a2-2ab+b2
首平方,尾平方,积的两倍放中央。
第一章复习
考点攻略
►考点一 幂的运算
3 例 1 2a9-a9=________ =(________) =a7· ________ = a3 a2 a9 a12 ________÷ a3.
易错警示 平方差公式和完全平方公式容易混淆,需要牢记每个 公式的特征.
合作探究:
x y 已知a =18,a =3,
x+2y 求a 的值

点拨提升(注意公式的逆运用)
am.an m n (a ) n (ab) am an (a+b)(a-b) (a+b)2 (a-b)2

am+n mn a n n a b am-n a2-b2 a2+2ab+b2 a2-2ab+b2
用科学计数法表示:0.0000032= 3.2x10-6

第一章-整式的乘除PPT复习课件

第一章-整式的乘除PPT复习课件

1求a2

1 a2
的值
3、己知x+5y=6 , 求 x2+5xy+30y 的值。
点此播放求解视频
五、求证不论x、y取何值,代数式 x2+y2+4x-6y+14的值总是正数。
证明: x2+y2+4x-6y+14 = x2+ 4x + 4+y2-6y+9+1 =(x+2)2+(y-3)2+1 ∵ (x+2)2≥0,(y-3)2 ≥0 ∴ (x+2)2+(y-3)2+1>0
思考题
1、观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 根据前面各式的规律可得
(x-1)(xn+xn-1+ +x+1)=x_n+_1_-_1 (其中n为正整
数)
已知(x+32)2=5184,求(x+22)(x+42)的 值
a2 b2 2bc c2
a2 b2 2bc c2
练习, 计算:
1、a b c2
2、20082-2009×2007 3、 (2a-b)2(b+2a)2
点此播放过程视频
二、活用公式
要注意整数指数
1、 若10x=2,10y=3,求10x幂+y的的值运算法10x则×1的0y=6 逆运用
(a 2b)2
(x3 y2 4 x2 y3) 2 x2 y2
5
5
例1, 计算: 1、(a-2b)2-(a+2b)2 2、(a+b+c)(a-b-c)

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件一、教学内容本节课复习的是七年级下册第一章《整式的乘除》。

具体内容包括:整式的乘法法则、整式的除法法则、多项式乘多项式、平方差公式、完全平方公式以及综合应用。

二、教学目标1. 熟练掌握整式的乘除法则,能够正确进行整式的乘除运算。

2. 熟练运用平方差公式和完全平方公式进行因式分解。

3. 能够解决实际问题中涉及整式乘除的问题,提高解决问题的能力。

三、教学难点与重点重点:整式的乘除法则、平方差公式、完全平方公式。

难点:整式的除法法则、多项式乘多项式的运算、因式分解。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入通过一个实际情景,引导学生思考如何用整式的乘除法则解决问题。

例:一个长方形的长是a+b,宽是ab,求这个长方形的面积。

2. 例题讲解(1)整式的乘法法则(2)整式的除法法则(3)多项式乘多项式(4)平方差公式(5)完全平方公式3. 随堂练习针对每个知识点,设计相应的练习题,让学生当堂巩固所学内容。

六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 多项式乘多项式4. 平方差公式5. 完全平方公式七、作业设计1. 作业题目(1)计算题:a^2 (a+b),(a+b)^2,(ab)^2(2)应用题:已知一个正方形的面积是a^2 b^2,求它的边长。

2. 答案(1)a^3 + a^2b,a^2 + 2ab + b^2,a^2 2ab + b^2(2)边长为a+b或ab。

八、课后反思及拓展延伸1. 反思:本节课学生掌握整式的乘除法则的情况,及时发现问题并进行针对性讲解。

2. 拓展延伸:引入整式的乘除在实际问题中的应用,提高学生解决问题的能力。

如:已知一个长方体的长、宽、高分别是a、a+b、ab,求长方体的体积。

重点和难点解析1. 整式的乘除法则的理解与运用2. 平方差公式和完全平方公式的记忆与运用3. 教学过程中的实践情景引入和例题讲解4. 作业设计中的题目难度与答案解析一、整式的乘除法则1. 乘法法则:掌握分配律、结合律和交换律,能够灵活运用。

整式的乘除复习课件

整式的乘除复习课件

运算步骤:首先确定系数相乘,然 后相同字母的幂相乘,最后将剩余 的字母和指数不变。
注意事项:注意相同字母的幂相乘 时,底数不变,指数相加。
举例说明:例如单项式2x^3与单项 式3y^2相乘,结果是6x^3y^2。
单项式与多项式的乘法
定义:单项式与多项式相乘,就是单项式中的每一项与多项式中的每一项相乘 运算顺序:先乘方,再乘除,最后加减 乘法分配律:$(a+b)(m+n)=am+an+bm+bn$ 注意事项:注意符号和指数的运算
巩固练习题及解析
整式的乘除运算规则练习 常见错误分析 解题技巧分享 综合应用题解析
学生自我评价与反馈
学生自我评价:对整式的乘除运算的掌握程度进行自我评价,包括概念理解、运算技 巧等方面。
反馈内容:针对复习内容提出自己的疑问和建议,以便教师更好地了解学生的学习情 况,为后续教学提供参考。
巩固练习:提供一些与整式的乘除运算相关的练习题,让学生通过练习巩固所学知识, 提高解题能力。
除法法则:多项式 除以多项式时,按 照除法的分配律和 结合律进行计算, 即先计算括号内的 除法,再计算乘法, 最后进行加法或减 法。
注意事项:在多 项式除以多项式 时,需要注意除 数不能为零,且 结果是一个商式 和一个余式的形 式。
举例:以多项式 a(x) = 2x^3 + 3x^2 - 4x + 5 和 b(x) = x^2 x + 2 为例,进 行多项式除以多 项式的运算。
添加副标题
整式的乘除复习课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 整式乘法运算
02 整式乘除的回顾 04 整式除法运算

2024年七下第一章《整式的乘除》复习课件

2024年七下第一章《整式的乘除》复习课件

2024年七下第一章《整式的乘除》复习课件一、教学内容本节课复习教材《数学》七年级下册第一章《整式的乘除》。

具体内容包括:整式的乘法法则、整式的除法法则、多项式乘以多项式、平方差公式、完全平方公式等。

二、教学目标1. 掌握整式的乘法法则,能够熟练运用法则进行计算。

2. 掌握整式的除法法则,能够正确进行整式的除法运算。

3. 学会多项式乘以多项式,熟练运用平方差公式和完全平方公式。

三、教学难点与重点难点:多项式乘以多项式的运算,平方差公式和完全平方公式的应用。

重点:整式的乘除法则,平方差公式和完全平方公式的推导和应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:通过实际生活中的例子,如计算长方形面积,引导学生回顾整式的乘法。

2. 例题讲解:(2)整式的除法法则:讲解例题,引导学生掌握整式除法的步骤和方法。

(3)多项式乘以多项式:讲解例题,指导学生运用分配律进行计算。

(4)平方差公式和完全平方公式:通过实际例题,引导学生发现并掌握平方差公式和完全平方公式。

3. 随堂练习:针对每个知识点,设计练习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 多项式乘以多项式4. 平方差公式5. 完全平方公式七、作业设计1. 作业题目:(1)计算:(x+3)(x4)(2)计算:(6x^25x+1)÷(2x1)(3)运用平方差公式计算:9x^216y^2(4)运用完全平方公式计算:(x3)^22. 答案:(1)x^2x12(2)3x+7(3)(3x+4y)(3x4y)(4)x^26x+9八、课后反思及拓展延伸1. 反思:本节课学生对整式的乘除掌握情况,对平方差公式和完全平方公式的运用是否熟练。

2. 拓展延伸:引导学生探索整式的乘除在实际问题中的应用,如计算长方形、正方形的面积和体积等。

重点和难点解析1. 教学内容的安排与衔接2. 教学目标的制定3. 教学难点与重点的把握4. 教学过程中的实践情景引入、例题讲解和随堂练习5. 板书设计6. 作业设计与答案的详细程度7. 课后反思及拓展延伸的深度和广度一、教学内容的安排与衔接整式的乘除是代数基础中的重要部分,内容的安排应从简单到复杂,从具体到抽象。

北师大版七年级数学下册第一章整式的乘除复习课件

北师大版七年级数学下册第一章整式的乘除复习课件

解:(1)原式=3x·(32)x·(33)x=3x·32x·33x=36x. ∵36x=312,∴6x=12,
解得x=2. (2)∵x=3m+2,∴3m=x-2.
∵y=9m+3m=32m+3m=(3m)2+3m=(x-2)2+x-2=x2-3x+2,
∴y=x2-3x+2.
∵这个多项式既不含二次项,也不含一次项,
∴m+2=0,2m+n=0. 解得m=-2,n=4.
5.下列各式中,结果等于x2-5x-6的是
A.(x-6)(x+1)
B.(x-2)(x+3)
C.(x+6)(x-1)
D.(x-2)(x-3)
(A )
方法点拨:本题求解的关键是得到二次项与一次项,因此在解题时 可以不展开这个乘积式的全部,而只计算x·mx+2·x2=(m+2)x2,x·n+ 2·mx=(2m+n)x,由此也能求得答案,从而避免了一些不必要的计算.
B.(-x)-9÷(-x)-3=x-6
C.x2-x2=1
D.-x(x2-x+1)=-x3-x2-x
3.化简:(-a2)·a5=___-__a_7__.
4.(202X年淮安期末)若a·a3·am=a8,则m=__4___.
5.下面的计算对不对?如果不对,应怎样改正? (1)(a3b)3=a3b3; 解:原式计算错误,应为(a3b)3=a9b3. (2)(6xy)2=12x2y2;
(2)-0.006 02;
解:-0.006 02 =-6.02×10-3.
(3)0.000 060 2; 解:0.000 060 2=6.02×10-5. (4)153.8;
解:153.8=1.538×102.
(5)-34 000.
解:-34 000=-3.4×104.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
a, 2 x y , 2 mn , 4、多项式:几个单项式的和叫多项式。
3
4
2 Π , 3
a b 3
2
5、多项式的项及次数:组成多项式中的单项式叫多 项式的项,多项式中次数最高项的次数叫多项式的次 数。特别注意,多项式的次数不是组成多项式的所有 字母指数和!!!
练习:指出下列多项式的次数及项。
第一章 整式的运算
(复习课)
北师大版数学七年级下 第一章 整式的运算
本章知识结构:
一、整式的有关概念
1、单项式 3、多项式 5、整式
二、整式的运算
2、单项式的系数及次数 4、多项式的项、次数
(一)整式的加减法
1、去括号
2、合并同类项
(二)整式的乘法
1、同底数的幂相乘 2、幂的乘方 3、积的乘方 4、同底数的幂相除 5、单项式乘以单项式 6、单项式乘以多项式 7、多项式乘以多项式 8、平方差公式 9、完全平方公式 (二)整式的除法
就 这 些 知 识

你 回 忆 起 了 吗 ?
1、单项式除以单项式
2、多项式除以单项式
一、整式的有关概念
数与字母乘积,这样的代数式叫单项式。 1、单项式: 单独一个数或字母也是单项式。 2、单项式的系数: 单项式中的数字因数。 3、单项式的次数:单项式中所有的字母的指数和。 练习:指出下列单项式的系数与指数各是多少。
2 x y 5m n 2
3 2 5

2 x3 y 2 z 3 4 ab 7 2
6、整式:单项式与多项式统称整式。(分母含
有字母的代数式不是整式)
二、整式的运算
(一)整式的加减法 基本步骤:去括号,合并同类项。
(二)整式的乘法
1、同底数的幂相乘
法则:同底数的幂相乘,底数不变,指数相加。
练习:计算下列各式。
(1)(5 x ) (2 x y ), (2)( 3ab) (4b )
3 2 2 3
(3)( a ) b ( a b ),
m 2 3 2n
2 2 3 3 5 1 2 (4)( a bc ) ( c ) ( ab c) 3 4 3
6、单项式乘以多项式
练习:计算下列各题。
1 6 4 3 (1)( a b c) (2a c) 4 1 5 2 ( 2) 6( a b ) [ ( a b ) ] 3 2 3 3 2 (3)(5 x y 4 x y 6 x) (6 x) 1 3m 2 n 2 m1 2 3 2 m1 3 2 m 1 2 (4) x y x y x y ) (0.5 x y ) 3 4
m 4
2m 2
3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再把 所得的幂相乘。(即等于积中各因式乘方的积。) 符号表示:
( ab) a b , (其中n为正整数),
n n n
( abc) a b c (其中n为正整数)
n n n n
练习:计算下列各式。
1 2 3 2 3 3 2 3 (2 xyz) , ( a b) , (2 xy ) , (a b ) 2
2 2
2
特别说明 : 完全平方公式 是根据乘方的意义和 多项式乘法法则得到的, 因此(a b) a b
2 2 2
练习:1、判断下列式子是否正确, 并说明理由。
(1)( x 2 y )( x 2 y ) x 2 y ,
2 2
切要 记特 ,别 切注 记意 !哟 ,
( 2)( 2a 5b) 4a 25b ,
2、计算下图中阴影部分的面积
2b b a
8、平方差公式 法则:两数的各乘以这两数的差, 等于这两数的平方差。
数学符号表示:
(a b)( a b) a b
2
2
其中a, b既可以是数, 也可以是代数式.
说明:平方差公式是根据多项式乘以多项式 得到的,它是两个数的和与同样的两个数的 差的积的形式。
法则:单项式乘以多项式,就是根据分配律用单 项式的去乘多项式的每一项,再把所得的积相加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一个多项式的每 一项去乘另一个多项式的每一项,再把所得的积 相加。 练习: 1、计算下列各式。
(1)( 2a ) ( x 2 y 3c), ( 2)( x 2)( y 3) ( x 1)( y 2) 1 (3)( x y )( 2 x y ) 2
(其中m、n为正整数)
(a ) a
m n
mn
[( a ) ] a (其中m、n、P为正整数)
m n
4 4
p
mnp
练习:判断下列各式是否正确。
(a ) a
4 4
a , [(b ) ] b
8 2 3 4 4n2 4 m
234
b
24
( x )
2 2 n 1
x
, (a ) (a ) (a )
4
4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。 数学符号表示:
(其中m、n为正整数)
a a a
m n
mn
1 a p (a 0, p为正整数) a 0 a 1(a 0)
p
判断: 6
a a a
3
6 3
a ,10 20,
2
2
4 0 5 3 2 ( ) 1, (m) (m) m 5
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
( a b) a 2ab b ;
2 2 2
( a b) a 2ab b
2 2
2
其中a, b既可以是数, 也可以是代数式.
即 : (a b) a 2ab b
四、课堂练习:
1、若2amb2m+3n和a2n-3b8的和仍是一个单项式, 则m与n的值分别是( ) B A 1,2; B 2,1 C 1,1, D 1,3 2、下列运算正确的是:( C ) A x3· 2=x6 x B x3-x2=x C(-x)2· (-x)=-x3 D x6÷x2=x3 3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为( B ) A 1 B 2 C 3 D 4
练习:计算
1 1 2009 0 10 (0.1) 2 ( ) [( 2) ] 2 m 2 m 2 2 2 mn m n (2 ) 2 , ( x ) ( x x ), a a
1 2 3
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、 相同字母的幂分别相乘,其余的字母则连同 它的指数不变,作为积的一个因式。
数学符号表示:
(其中m、n为正整数)
a a a
m n
4 8 2 2
m n
练习:判断下列各式是否正确。
a a 2a , b b b , m m 2m
3 3 3 4
2
( x) ( x) ( x) ( x) x
3 2 6
6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。 数学符号表示:
(4)( x 3 y 2 z )( x 3 y 2 z ) (5)199 .9 , (6)2010 2009
2 2 2
3、简答下列各题:
1 1 2 (1)已知a 2 5, 求( a ) 的值. a a 2 2 2 ( 2)若 x y 2, x y 1, 求xy的值.
4请你观察图形,依据图形面积间的关系,不需 要添加辅助线,便可得到两个你非常熟悉的 公式,这两个公式分别是 和 。
9、若(x2+mx+8)(x2-3x+n) 展开后不含x2项和x3项,求m、n 的值
再 见
2
(3)如果( m n) z m 2mn n ,
2 2 2
则z应为多少 ?
(二)整式的除法
1、单项式除以单项式 法则:单项式除以单项式,把它们的系数、相同 字母的幂分别相除后,作为商的一个因式,对于 只在被除式里含有的字母,则连同它的指数一起 作为商的一个因式。 2、多项式除以单项式 法则:多项式除以单项式,就是多项式的每一项 去除单项式,再把所得的商相加。
2 2 2
1 1 2 2 (3)( x 1) x x 1, 2 4 (4)无论是平方差公式, 还是完全 平方公式, a, b只能表示一切有理数.
2、计算下列式。
(1)( 6 x y )( 6 x y ) ( 2)( x 4 y )( x 9 y ) (3)(3 x 7 y )( 3 x 7 y )
相关文档
最新文档