运筹学试题及答案(两套)
运筹学试题及答案(两套)
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0,0, 4, 3) B.(3, 4, 0, 0)C.(2,0, 1,0) D.(3,0,4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划,对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(min22211+-+++=ddpdpZB.)(min22211+-+-+=ddpdpZC.)(min22211+---+=ddpdpZD.)(min22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”.每小题1分,共15分)11。
运筹学期末考试题及答案
运筹学期末考试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都是非负的B. 目标函数是最大化C. 所有约束条件都是等式D. 所有变量都是正的答案:A2. 单纯形法中,如果某变量的检验数大于0,则该变量:A. 可以增加B. 可以减少C. 不能增加也不能减少D. 可以增加也可以减少答案:A3. 在对偶理论中,如果原问题的最优解是无界的,则对偶问题的:A. 无解B. 有唯一最优解C. 有无穷多解D. 无界答案:A4. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算最优值D. 确定初始状态答案:B5. 网络流问题中,增广路径是指:A. 从源点到汇点的路径B. 从汇点到源点的路径C. 流量可以增加的路径D. 流量可以减少的路径答案:C6. 整数规划问题中,分支定界法的基本思想是:A. 将整数变量分解为两个二元变量B. 将问题分解为多个子问题C. 通过松弛变量将问题转化为线性规划问题D. 通过增加约束条件来缩小解空间答案:B7. 排队论中,M/M/1队列的平均等待时间是:A. 1/μ - λ/μ^2B. λ/μ - 1/μC. λ/μ^2 - 1/μD. 1/μ - λ/μ^2答案:A8. 敏感性分析的目的是:A. 确定最优解B. 确定最优解的稳定性C. 确定目标函数系数的变化范围D. 确定约束条件的变化范围答案:B9. 决策树分析中,期望值的计算是基于:A. 每个分支的概率B. 每个分支的收益C. 每个分支的概率和收益D. 每个分支的成本答案:C10. 博弈论中,纳什均衡是指:A. 每个玩家都有最优策略B. 每个玩家的策略都是最优的C. 没有玩家可以通过单方面改变策略来提高自己的收益D. 所有玩家的策略都是固定的答案:C二、计算题(每题10分,共30分)1. 给定线性规划问题的标准形式,求解最优解。
Max Z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 102x1 + x2 ≤ 8x1, x2 ≥ 02. 使用单纯形法求解以下线性规划问题的最优解。
运筹学期末试题及答案
运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。
2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。
3. 描述网络流问题中的最短路径算法,并简述其基本原理。
三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。
2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。
边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。
使用最小成本流算法求解此问题,并计算总成本。
四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。
运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。
数学:运筹学试题及答案
数学:运筹学试题及答案1、判断题求最小值问题的目标函数值是各分支函数值的下界。
正确答案:对2、填空题动态规划大体上可以分为()、()、()、()四大类。
正确答案:离散确定型;离散随机型;连续确定型;连续随机(江南博哥)型3、多选系统模型按照抽象模型形式可以分为()A.数学模型B.图象模型C.模糊性模型D.逻辑模型E.仿真模型正确答案:A, B, D, E4、单选线性规划一般模型中,自由变量可以代换为两个非负变量的()A.和B.差C.积D.商正确答案:B5、填空题运筹学的目的在于针所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
发挥和提高系统的(),最终达到系统的()。
正确答案:效能及效益;最优目标6、填空题采用人工变量法时,若基变量中出现了()的人工变量,表示在原问题有解。
正确答案:非零7、填空题满足()的基本解称为基本可行解。
正确答案:非负条件8、填空题在箭线式网络图中从始点出发,由各个关键活动连续相接,直到终点的费时最长的线路称为()。
正确答案:关键线路9、单选在求解运输问题的过程中可运用到下列哪些方法()。
A.西北角法B.位势法C.闭回路法D.以上都是正确答案:D10、问答题请简要回答一般系统模型的三个特征。
正确答案:①它是现实世界一部分的抽象和模仿;②它由那些与分析的问题有关的要素所构成;③它表明了系统有关要素间的逻辑关系或定量关系。
11、名词解释初始基本可行解正确答案:多个基本可行解中一个,一般情况下在求最大时取最小的基本可行解,求最小时取最大的基本可行解。
12、名词解释不确定条件下的决策正确答案:指在需要决策的问题中,只估测到可能出现的状态,但状态发生的概率,由于缺乏资源和经验而全部未知。
它属于不确定情况下的决策.13、名词解释时间优化正确答案:时间优化是在人力材料设备资金等资源基本上有保证的条件下寻求最短的工程周期14、填空题企业在采购时,供应方根据批发量的大小定出不同的优惠价格,这种价格上的优惠称为()正确答案:数量折扣15、填空题常用的两种时差是工作总时差和工作()正确答案:自由时差16、多选根据对偶理论,在求解线性规划的原问题时,可以得到以下结论()A.对偶问题的解B.市场上的稀缺情况C.影子价格D.资源的购销决策E.资源的市场价格正确答案:A, C, D17、问答题运用单纯形法求解线性规划问题的步骤是什么?正确答案:(1)确定初始基可行解(2)检验初始基可行解是否最优(3)无解检验(4)进行基变换(5)进行旋转运算,之后回到步骤2,循环直到完成整个问题的求解18、单选设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。
运筹学典型考试试题及答案
二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1) 写出该线性规划的对偶问题。
2) 若C2从4变成5, 最优解是否会发生改变, 为什么? 若b2的量从12上升到15, 最优解是否会发生变化, 为什么?如果增加一种产品X6, 其P6=(2,3,1)T, C6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的, 所以最优解不变。
3)当若b 2的量从12上升到15 X =9/8 29/8 1/4由于基变量的值仍然都是大于0的, 所以最优解的基变量不会发生变化。
4)如果增加一种新的产品, 则 P6’=(11/8,7/8, -1/4)T σ6=3/8>0所以对最优解有影响,该种产品应该生产计算检验数由于存在非基变量的检验数小于0, 所以不是最优解, 需调整 调整为:重新计算检验数所有的检验数都大于等于0, 所以得到最优解3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者, 规定每个承包商只能且必须承包一个项目, 试在总费用最小的条件下确定各个项目的承包者, 总费用为多少?各承包商对工程的报价如表2所示:X= 0 1 0 0 1 0 0 00 0 0 1总费用为504.考虑如下线性规划问题(24分)Max z=-5x1+5x2+13x3s.t..-x1+x2+3x3≤2012x1+4x2+10x3≤90x1, x2, x3≥0回答以下问题:1)求最优解2)求对偶问题的最优解3)当b1由20变为45, 最优解是否发生变化。
4)求新解增加一个变量x6, c6=10, a16=3, a26=5, 对最优解是否有影响5)c2有5变为6, 是否影响最优解。
最新运筹学试题及答案(共两套)
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
《运筹学》期末考试试题及参考答案
�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22
�
�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1
�
3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �
�
x2 � 0
18
60
费销
用 地
B1
B2
B3
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。
1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。
1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。
答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。
答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。
答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。
答案:网络三、问答题:根据题目要求,回答问题。
1. 什么是线性规划?请简要解释线性规划的基本原理。
答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。
其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。
2. 动态规划在运筹学中的应用有哪些?请举例说明。
答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。
举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。
3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
运筹学试题及答案
运筹学试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式中,目标函数的系数是:A. 非负B. 非正C. 任意实数D. 非零答案:A2. 整数规划问题与线性规划问题的主要区别在于:A. 目标函数B. 约束条件C. 变量D. 解的类型答案:C3. 以下哪个不是网络流问题的组成部分?A. 节点B. 边C. 权重D. 目标函数答案:D4. 动态规划的基本原理是:A. 贪心算法B. 分治法C. 迭代法D. 穷举法答案:B5. 以下哪个算法不是用于求解旅行商问题(TSP)?A. 分支定界法B. 动态规划C. 遗传算法D. 线性规划答案:D6. 以下哪个不是图论中的基本概念?A. 节点B. 边C. 权重D. 目标函数答案:D7. 以下哪个是最短路径问题的特例?A. 最小生成树B. 最大流C. 旅行商问题D. 网络流问题答案:A8. 在运输问题中,目标函数通常是:A. 最小化成本B. 最大化利润C. 最小化时间D. 最大化距离答案:A9. 以下哪个是排队论中的基本概念?A. 节点B. 边C. 服务台D. 权重答案:C10. 以下哪个是库存管理中的基本概念?A. 节点B. 边C. 订货点D. 权重答案:C二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的特点?A. 线性目标函数B. 线性约束条件C. 非线性目标函数D. 非线性约束条件答案:A, B2. 以下哪些是动态规划算法的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:A, B, C3. 以下哪些是整数规划问题的求解方法?A. 线性规划B. 分支定界法C. 贪心算法D. 动态规划答案:B, D4. 以下哪些是网络流问题的类型?A. 最大流B. 最小生成树C. 旅行商问题D. 最短路径答案:A, D5. 以下哪些是排队论中的基本概念?A. 到达率B. 服务率C. 服务台数量D. 权重答案:A, B, C三、判断题(每题1分,共10分)1. 线性规划问题的目标函数一定是最大化。
《运筹学》期末考试试卷A-答案
《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。
答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。
答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。
答案:非线性4. 动态规划适用于解决________决策问题。
答案:多阶段5. 排队论中的基本参数包括________、________和________。
答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。
答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。
线性规划问题通常包括目标函数、约束条件和非负约束。
目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。
2. 请简要阐述整数规划的特点。
答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。
运筹学期末试题及答案
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。
运筹学题库及详解答案
运筹学题库及详解答案1. 简述线性规划的基本假设条件。
答案:线性规划的基本假设条件包括目标函数和约束条件都是线性的,所有变量的取值范围都是连续的,并且目标函数和约束条件都是确定的。
2. 解释单纯形法的基本原理。
答案:单纯形法是一种求解线性规划问题的算法。
它从一个初始可行解开始,通过迭代的方式,每次选择一个非基变量,通过行操作将其变为基变量,同时保持解的可行性,直到达到最优解。
3. 什么是对偶问题?请给出一个例子。
答案:对偶问题是指一个线性规划问题与其对应的另一个线性规划问题之间的关系。
它们共享相同的技术系数矩阵,但目标函数和约束条件互换。
例如,如果原问题是最大化目标函数 \( c^T x \) 受约束\( Ax \leq b \),对偶问题则是最小化 \( b^T y \) 受约束 \( A^T y \geq c \)。
4. 如何确定一个线性规划问题的最优解?答案:确定线性规划问题的最优解通常需要满足以下条件:(1) 所有约束条件都得到满足;(2) 目标函数的值达到可能的最大值(最大化问题)或最小值(最小化问题);(3) 存在至少一个基解,使得所有非基变量的值都为零。
5. 解释灵敏度分析在运筹学中的作用。
答案:灵敏度分析用于评估当线性规划问题中的参数发生变化时,对最优解的影响。
它可以帮助决策者了解哪些参数的变化对结果影响最大,从而在实际应用中做出更灵活的决策。
6. 什么是运输问题,它与一般线性规划问题有何不同?答案:运输问题是线性规划的一个特例,它涉及将一种或多种商品从一个地点运输到另一个地点,以满足不同地点的需求,同时最小化运输成本。
与一般线性规划问题不同,运输问题通常具有特定的结构,可以通过特定的算法(如西北角法或最小元素法)来求解。
7. 描述网络流问题的基本特征。
答案:网络流问题涉及在网络中流动的资源或商品,目标是最大化或最小化流的总价值或成本。
网络由节点和边组成,节点代表资源的供应点或需求点,边代表资源流动的路径。
运筹学试题及答案2篇
运筹学试题及答案运筹学试题及答案第一篇:线性规划1. 什么是线性规划?答:线性规划是一种数学优化方法,用于在一组约束条件下最大化或最小化线性目标函数的数学模型。
2. 线性规划的基本要素是什么?答:线性规划的基本要素包括决策变量、约束条件和目标函数。
3. 请解释决策变量、约束条件和目标函数分别是什么。
答:决策变量是需要确定的变量,代表问题的解决方案。
约束条件是对决策变量的限制条件,可以是等式或不等式。
目标函数是需要优化的目标,通常是最大化或最小化的线性函数。
4. 线性规划有哪些常见的应用场景?答:线性规划常见的应用场景包括资源分配、生产计划、运输问题等。
5. 线性规划的解法是什么?答:线性规划的解法包括图解法、单纯形法、内点法等。
6. 请解释单纯形法的原理。
答:单纯形法通过迭代计算来逐步寻找线性规划问题的最优解。
它从一个可行解出发,通过改变决策变量的值来逐步接近最优解,直到找到最优解或确定问题无解。
7. 什么是最优基?答:最优基是指在单纯形法中,使得目标函数值最小或最大的基。
8. 请解释线性规划中的可行解、无界解和无解分别是什么。
答:可行解是满足所有约束条件的解。
无界解是指目标函数无法达到最优值,可以无限增大或减小。
无解是指约束条件之间存在矛盾,无法找到满足所有约束条件的解。
9. 线性规划中的灵敏度分析是什么?答:灵敏度分析是用来评估目标函数和约束条件的系数变化对最优解的影响程度的方法。
10. 线性规划有哪些限制条件?答:线性规划的限制条件包括非负约束、等式约束、不等式约束。
第二篇:整数规划1. 什么是整数规划?答:整数规划是在线性规划的基础上,限制决策变量为整数的数学模型。
2. 与线性规划相比,整数规划有什么不同之处?答:整数规划在线性规划的基础上要求决策变量为整数,而线性规划没有这个限制。
3. 整数规划有哪些常见的应用场景?答:整数规划常见的应用场景包括生产调度、运输优化、投资组合等。
4. 整数规划的解法是什么?答:整数规划的解法包括分支定界法、割平面法、启发式算法等。
运筹学精彩试题及问题详解(共两套)
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
运筹学试题及答案(共两套)
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分)11.若线性规划无最优解则其可行域无界X基本解为空×12.凡基本解一定是可行解X同19 ×13.线性规划的最优解一定是基本最优解X可能为负×14.可行解集非空时,则在极点上至少有一点达到最优值X可能无穷×15.互为对偶问题,或者同时都有最优解,或者同时都无最优解√16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变X17.要求不超过目标值的目标函数是18.求最小值问题的目标函数值是各分枝函数值的下界19.基本解对应的基是可行基X当非负时为基本可行解,对应的基叫可行基20.对偶问题有可行解,则原问题也有可行解X21.原问题具有无界解,则对偶问题不可行22.m+n-1个变量构成基变量组的充要条件是它们不包含闭回路23.目标约束含有偏差变量24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到X25.匈牙利法是对指派问题求最小值的一种求解方法三、填空题(每小题1分,共10分)26.有5个产地5个销地的平衡运输问题,则它的基变量有( 9 )个 27.已知最优基,C B =(3,6),则对偶问题的最优解是( )28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件( 对偶问题可行 ) 29.非基变量的系数c j 变化后,最优表中( )发生变化30.设运输问题求最大值,则当所有检验数( )时得到最优解。
31.线性规划的最优解是(0,6),它的第1、2个约束中松驰变量(S 1,S 2)= ( )32.在资源优化的线性规划问题中,某资源有剩余,则该资源影子价格等于( )33.将目标函数转化为求极小值是( )34.来源行551134663x x x +-=的高莫雷方程是( )35.运输问题的检验数λij 的经济含义是( ) 四、求解下列各题(共50分) 36.已知线性规划(15分)123123123max 3452102351,2,3jZ x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围 37.求下列指派问题(min )的最优解(10分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=656979109182015125865C38.求解下列目标规划(15分)13421321211122213324412min ()40603020,,,0(1,,4)i i z p d d P d P d x x d d x x d d x d d x d d x x d d i ++---+-+-+-+-+=+++⎧++-=⎪++-=⎪⎪+-=⎨⎪+-=⎪⎪≥=⎩39.求解下列运输问题(min )(10分)601008011090401029131814458⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C五、应用题(15分)40.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。
需求量320 244838现要求制定调运计划,且依次满足:(1)B3的供应量不低于需要量;(2)其余销地的供应量不低于85%;(3)A3给B3的供应量不低于200;(4)A2尽可能少给B1;(5)销地B2、B3的供应量尽可能保持平衡。
(6)使总运费最小。
试建立该问题的目标规划数学模型。
运筹学(B卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划最优解不唯一是指()A.可行解集合无界B.存在某个检验数λk>0且C.可行解集合是空集D.最优表中存在非基变量的检验数非零2.则()A.无可行解B.有唯一最优解C.有无界解D.有多重解3.原问题有5个变量3个约束,其对偶问题()A.有3个变量5个约束B.有5个变量3个约束C.有5个变量5个约束D.有3个变量3个约束4.有3个产地4个销地的平衡运输问题模型具有特征() A.有7个变量B.有12个约束C.有6约束D.有6个基变量5.线性规划可行域的顶点一定是()A.基本可行解B.非基本解C.非可行解D.最优解6.X是线性规划的基本可行解则有()A.X中的基变量非零,非基变量为零B.X不一定满足约束条件C.X中的基变量非负,非基变量为零D.X是最优解7.互为对偶的两个问题存在关系()A .原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题也有可行解C .原问题有最优解解,对偶问题可能没有最优解D .原问题无界解,对偶问题无可行解8.线性规划的约束条件为则基本解为()A.(0, 2, 3, 2) B.(3, 0, -1, 0)C.(0, 0, 6, 5)D.(2, 0, 1, 2)9.要求不低于目标值,其目标函数是()A.B.C.D.10.μ是关于可行流f 的一条增广链,则在μ上有( )A .对任意B .对任意C .对任意D . .对任意,),(≥∈-ij f j i 有μ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分) 11.线性规划的最优解是基本解× 12.可行解是基本解×13.运输问题不一定存在最优解× 14.一对正负偏差变量至少一个等于零× 15.人工变量出基后还可能再进基×16.将指派问题效率表中的每一元素同时减去一个数后最优解不变 17.求极大值的目标值是各分枝的上界18.若原问题具有m 个约束,则它的对偶问题具有m 个变量 19.原问题求最大值,第i 个约束是“≥”约束,则第i 个对偶变量y i ≤0 20.要求不低于目标值的目标函数是min Z d -= 21.原问题无最优解,则对偶问题无可行解×22.正偏差变量大于等于零,负偏差变量小于等于零×23.要求不超过目标值的目标函数是min Z d += 24.可行流的流量等于发点流出的合流 25.割集中弧的容量之和称为割量。
三、填空题(每小题1分,共10分)26.将目标函数123min 1058Z x x x =-+转化为求极大值是( )27.在约束为的线性规划中,设110201A⎡⎤=⎢⎥⎣⎦,它的全部基是()28.运输问题中m+n-1个变量构成基变量的充要条件是()29.对偶变量的最优解就是()价格30.来源行212234333x x x-+=的高莫雷方程是()31.约束条件的常数项b r变化后,最优表中()发生变化32.运输问题的检验数λij与对偶变量u i、v j之间存在关系()33.线性规划,,84,62,m ax21212121≥≤+≤++-=xxxxxxxxZ的最优解是(0,6),它的对偶问题的最优解是()34.已知线性规划求极大值,用对偶单纯形法求解时,初始表中应满足条件()35.Dijkstra算法中的点标号b(j)的含义是()四、解答下列各题(共50分)36.用对偶单纯形法求解下列线性规划(15分)37.求解下列目标规划(15分)38.求解下列指派问题(min)(10分)39.求下图v1到v8的最短路及最短路长(10分)五、应用题(15分)40.某厂组装三种产品,有关数据如下表所示。
产品单件组装工时日销量(件)产值(元/件)日装配能力A B C 1.11.31.5706080406080300要求确定两种产品的日生产计划,并满足:(1)工厂希望装配线尽量不超负荷生产;(2)每日剩余产品尽可能少;(3)日产值尽可能达到6000元。
试建立该问题的目标规划数学模型。
运筹学(A 卷)试题参考答案一、单选题(每小题1分,共10分)1.B2.C3. A4.D5.B6.C7.B8.B9.A 10.A 二、判断题(每小题1分,共15分)11. × 12. × 13. × 14.× 15.√ 16.× 17.√ 18. √ 19.× 20. × 21. √ 22. √ 23. √ 24. × 25. √ 三、填空题(每小题1分,共10分)26.(9) 27.(3,0) 28.(对偶问题可行) 29.(λj ) 30.(小于等于0) 31. (0,2) 32. (0)33.12(min 5)Z x x '=-+34.134134552(554)663s x x s x x --=---=-或35.x ij 增加一个单位总运费增加λij 四、计算题(共50分) 36.解:(1)化标准型 2分12312341235max 3452102351,2,,5jZ x x x x x x x x x x x x j =++⎧+-+=⎪-++=⎨⎪≥=⎩0,(2)单纯形法5分C B X B x1x2x3x4x5b4 x2 1 1 0 0.6 0.2 75 x3 1 0 1 0.2 0.4 4 C(j)-Z(j) -6 0 0 -3.4 -2.8 48 (3)最优解X=(0,7,4);Z=48(2分)(4)对偶问题的最优解Y=(3.4,2.8)(2分)(5)Δc1≤6,Δc2≥-17/2,Δc3≥-6,则1235(,9),,13c c c∈-∞≥-≥-(4分)37.解:,(5分)(5分)38.(15分)作图如下:满意解X=(30,20)39.(10分)最优值Z=1690,最优表如下:五、应用题(15分)40.设x ij为A i到B j的运量,数学模型为11223435465776813233311112131221222323314243444335531233min ()()4802742085854323200..85B z Pd P d d d P d P d P d d P d x x x d d x x x d d x B B B A x x d d x x x d d x d d s t -----+-++-+-+-+-+-+=+++++++++++-=+++-=+++-=+++-=+-=保证供应需求的%需求的%需求的%对3212216112131122232773481130222000 (1,2,3; 1,2,3,4);,0(1,2,...,8);ij ij i j iji iB A B B B x d x x x x x x d d c x d x i j d d i +-++==-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨-=⎪++---+-=⎪⎪⎪-=⎪⎪≥==⎪⎪≥=⎩∑∑对与的平衡运费最小运筹学(B 卷)试题参考答案一、单选题(每小题1分,共10分)1.D2.A3. A4.D5.A6.C7.D8.B9.B 10.C 二、判断题(每小题1分,共15分)11. × 12.× 13. × 14. × 15 . × 16.× 17.√ 18. √ 19.√ 20. √ 21. × 22. × 23. √ 24. √ 25. √ 三、空题(每小题1分,共10分)26.123max 1058Z x x x '=-+-27.28.不包含任何闭回路 29.影子30.1341341122333s x x s x x --=---=-或31.最优解32.ij ij i jc u v λ=--33.(1,0) 34.检验数小于等于零 35.发点v i 到点v j 的最短路长 四、解答题(共50分) 36..(15分) 模型(3分)C j3 4 5 0 0bC B X Bx 1 x 2 x 3 x 4 x 50 x 4-1 -2 -3 1 0-8x 5[-2] -2 -1 0 1-10λj3 4 5 0 00 x 40 [-1] -5/2 1 -1/2-3x 11 1 1/2 0 -1/25λj 0 1 7/20 3/24x 20 1 5/2 -1 1/233x 11 0 -2 1 -12λj 0 0 11 1最优解X =(2,3);Z =18 (2分) 37.(15分)(画图10分)满意解X 是AB 线段上任意点。