初一数学分类讨论思想例题分析及练习

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论思想

在数学中,如果一个命题的条件或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论。

在数学学习中,我们不仅要分阶段学习知识,还要适时的总结一下数学思想方法。初中常见的数学思想有:分类讨论思想、数形结合思想、转化思想、方程思想等。分类讨论思想是大家在中学阶段需要掌握的重要思想方法。特别就中考而言,经常出现带有这种思想的考题。几乎可以这么说:“分类讨论一旦出现,就是中高档次题”。今天,我们就带着大家把初一一年常见的分类讨论问题大致整理一下。

在分类讨论的问题中有三个重要的注意事项。

1. 什么样的题会出现分类讨论思想--往往是在题目中的基本步骤中出现了“条件不确定,无法进行下一步”(如几何中,画图的不确定;代数中,出现字母系数等)。

2. 分类讨论需要注意什么----关键是“不重、不漏”,特别要注意分类标准的统一性。

3. 分类讨论中最容易错的是什么--总是有双重易错点“讨论有重漏,讨论之后不检验是否合题意”。

【例1】解方程:|x-1|=2

分析:绝对值为2 的数有2个

解:x-1=2或x-1=-2, 则x=3或x=-1

说明应该说,绝对值问题是我们在上学期最初见过的“难题”。其实归根究底,一般考察绝对值的问题有三。

1. 化简(如当a<0

处理方法:根据绝对值符号内的式子的正负性

2. 类似于“解方程”(如本题)

处理方法:注意解往往不只一个,需关注绝对值为正数的数有两个。

3. 使用绝对值的几何意义解题(如已知|x-1|<2,求x的取值范围)

处理方法:画数轴,|x-1|<2表示数轴上到表示1的点的距离小于2的点。

【例2】试比较1+a与1-a的大小。

分析:常规的比较大小的方法有很多种,现阶段最常用的是作差法。两个数量的大小可以通过它们的差来判断:

①a>b即a-b>0 ②a=b即a-b=0 ③a

解:作差(1+a)-(1-a)=2a

分类讨论:

①当a>0时,2a>0,即(1+a)-(1-a)>0,即1+a>1-a

②当a=0时,2a=0,即(1+a)-(1-a)=0,即1+a=1-a

③当a<0时,2a<0,即(1+a)-(1-a)<0,即1+a<1-a

答:当a>0时,1+a>1-a ;当a=0时,1+a=1-a ;当a<0时,1+a<1-a 。

【例3】 已知线段AB 长度为6cm ,点C 在直线AB 上,且AC=2cm ,求BC 的长度。

分析:注意点C 的位置不能确定。在直线上,与一个定点的距离为定值的点有两个。

处理方法:画一个示意图,往往能帮助理解。

解:如示意图,有两种情况。

如图1,点C 在AB 之间时,BC=AB-AC=6cm-2cm=4cm

如图2,点C 在BA 的延长线上时,BC=AB+AC=6cm+2cm=8cm

【例4】一张桌子有四个角,砍掉一只角后,还剩几个角?

解:5个或4个或3个。

【例5】已知△ABC 周长为20cm ,AB=AC ,其中一边边长是另一边边长的2倍,BC 长多少?

解:设AB=AC=x

①当AB=2BC 时,BC=0.5x

据题意,列x+x+0.5x=20,解得x=8cm ,则BC=0.5x=4cm

②当BC=2AB 时,BC=2x

据题意,列x+x+2x=20,解得x=5cm ,则BC=2x=10cm

检验:当AB=2BC 时,三边长为8cm ,8cm ,4cm ,可组成三角形; 当BC=2AB 时,三边长为5cm ,5cm ,10cm ,不可组成三角形,舍。 答:BC 长为4cm 。

【例6】 富城书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折。如果小明一次性购书 付款162元,那么小明所购书的价格为多少。

解:付款162元,由于162>100,可确定享受了优惠。

因不确定是打九折还是打八折,所以分类。

①∵200×109=180>162,∴162元可能享受了九折优惠,162÷10

9=180(元); ②∵200×108=160<162,∴162元可能享受了八折优惠,162÷10

8=202.5(元) 答:小明所购书的价格为180元或202.5元。

【例7】 三人分糖,每人都得整数块,乙比丙多得13块,甲所得的糖果数是

乙的2倍,已知糖果总数是一个小于50的质数,且它的各位数字之和为11,试求甲、乙、丙各分得几块糖?

分析: 1. 两个限制条件:整数、质数

2.一个常见说法:乙比丙多得13块,甲所得的糖果数是乙的2倍

3.一个常见不等式列法:糖果总数是小于50

解:设丙获得了x 块粮果,则乙的糖果数为(x+13)块,甲的糖果数为2(x+13), 根据题意,可列不等式 2(x+13)+(x+13)+x<50

整理这个不等式,解得x<11/4=2.75

由于糖果块数必为正整数,所以x=1或2

①当x=1时,x+13=14,2(x+13)=28

总块数1+14+28=43,为质数,但4+3=7≠11,则x=1应舍去;

②当x=2时,x+13=15,2(x+13)=30

总块数2+15+30=47,为质数4+7=11,合题意。

答:甲分得糖果数为30块,乙分得15块,丙分得2块。

练习题

1.解方程:(1)|x+4|=3 (2)22)3(-=a

2.|a|+a 的值的情况讨论。

3. 如果a 、b 、c 是非零有理数,求c

c b b a a ++的值

4.比较a 2-a+4与a 2+3的大小

5.数轴上有A 、B 两点,若A 点对应的数是-2,且A 、B 两点的距离为3,则点B 对应的数为多少(画图表示)。

6.平面内有四点,经过两点可画多少条直线。

7.平面内有三条直线,它们可能有几个交点?

8. 已知∠A0B=120º,∠BOC=30º,则∠AOC 为多少。

9.在一条直线上顺次取A 、B 、C 三点,已知AB =5cm ,点O 是线段AC 的中点,且OB=1.5cm ,求线段BC 的长。

10. 已知△ABC 周长为18cm ,AB=AC ,其中一边边长比另一边边长大3cm ,BC 长多少?

相关文档
最新文档