2008年河北中考数学试题及答案 (全)

合集下载

初中数学九年级数学试题及答案

初中数学九年级数学试题及答案

九年级数学综合试题题目 一 二 三 四 五 六 总 分 分数一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是 事件。

3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ∆的外接圆,030C ∠=,2AB cm =, 则⊙O 的半径为 cm 。

5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。

7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点, 点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角 形是 三角形。

9、如图是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形. 10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数 根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为 。

二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是( )A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ).A 、32B 、21C 、31D 、4113、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ∆,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于( )A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好 经过圆心O ,则折痕AB 的长为( ) A.2cm B.3cm C.23cmD.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-⨯+-OABA B A '()C C 'B 'A B C18、如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。

河北省中考数学试卷及答案

河北省中考数学试卷及答案

河北省2017年中考数学试题(Word 版)第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4. ()=+⋅⋅⋅++⨯⋅⋅⋅⨯⨯434214847632333222个个n mA .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.若ABC∆的每条边长增加各自的10%得'''∆,则'BA B C∠的∠的度数与其对应角B 度数相比()A.增加了10%B.减少了10%C.增加了(110%)+D.没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥. 以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒ 11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-=B .004446++= C.34446++= D .14446-÷+= 13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.B.C.D.第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为 m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且28CO=,求p.21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现任意五个连续整数的平方和是5的倍数.验证(1)22222-++++的结果是5的几倍?(1)0123(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.23.如图,16AB=,O为AB中点,点C在线段OB上(不与点O,B重合),将OC 绕点O逆时针旋转270︒后得到扇形COD,AP,BQ分别切优弧»CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP BQ =;(2)当43BQ =时,求»QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD Y 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD Y 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据. 月份n (月) 1 2成本y (万元/件)1112 需求量x (件/月) 120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。

历届河北省中考数学试卷含详细解答(历年真题)

历届河北省中考数学试卷含详细解答(历年真题)

2018年河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2+360x﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5(3)因为4册和5册的人数和为27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

全国各地中考数学实数试题归总(含答案)

全国各地中考数学实数试题归总(含答案)

全国各地中考数学实数试题归总(含答案)以下是查字典数学网为您推荐的全国各地中考数学实数试题归总(含答案),希望本篇文章对您学习有所帮助。

全国各地中考数学实数试题归总(含答案)1. (2021江苏盐城,3,3分)4的平方根是A. 2B.16C.D. 16【解析】本题考查了平方根的概念.掌握有平方根的定义是关键.选项A是4的算术平方根;选项B是4的平方,选项C 是4的平方根,表示为:【答案】4的平方根是,故选C【点评】本题主要考查平方根的定义,解决本题的关键是正确区分一个非负数的算术平方根与平方根.8.2. 实数1. (2021江苏盐城,5,3分)下列四个实数中,是无理数的为A.0B. C.-2D.【解析】本题考查了无理数的概念,掌握无理数的三种构成形式是解答本题的关键.无限不循环小数称为无理数,无理数有三种构成形式:①开放开不尽的数;②与有关的数;③构造性无理数. 属于开放开不尽的数,是无理数;【答案】选项A,C是整数,而D是分数,它们都是有理数,应选B.【点评】本题主要考查了无理数的概念,要注意区分有理数和无理数2.(2021山东泰安,2,3分)下列运算正确正确的是( )A. B. C. D.【解析】因为,,,,所以B项为正确选项。

【答案】B【点评】本题主要考查了非负数的算术平方根,负指数幂,同底数幂的除法,幂的乘方,掌握这些相关运算的基本性质是解题的基础。

3.(2021山东德州中考,1,3,) 下列运算正确的是( )(A) (B) = (C) (D)【解析】根据算术平方根的定义,4的算术平方根为4,故A 正确;负数的偶次方为正数, =9,故B错误;根据公式(a0),,故C错误; ,故D错误.【答案】A.【点评】正数的算术平方根为正数,0的算术平方根为0,负数的偶次方为正数,奇次方为负数,任何不等于0的数的负指数幂等于这个数的正指数幂的倒数;任何不等于0的数的0次方都为1.4.(2021山东省聊城,10,3分)如右图所示的数轴上,点B 与点C关于点A对称,A、B两点对应的实数是和-1,则点C所对应的实数是( )A. 1+B. 2+C. 2 -1D. 2 +1解析:因为点B与点C关于点A对称,所以B、C到点A的距离相等.由于点C在x轴正半轴上,所以c对应的实数是 + +1=2 +1.5. ( 2021年浙江省宁波市,6,3)下列计算正确的是(A)a6a2=a3 (B)(a3)2=a5 (C)25 =5 (D) 3-8 =-2【解析】根据幂的运算性质可排除A和B,由算术平方根的定义可排除C,而D计算正确,故选D【答案】D【点评】本题考查幂的运算性质、算术平方根、立方根的性质掌握情况,是比较基础的题目.6. ( 2021年浙江省宁波市,7,3)已知实数x,y满足x-2+(y+1)2=0,则x-y等于(A)3 (B)-3 (C)1 (D) -1【解析】由算术平方根及平方数的非负性,两个非负数之和为零时,这两个非负数同时为零,易得x-2=0,y+1=0,解得x=2,y= -1.【答案】A【点评】本题是一个比较常见题型,考查非负数的一个性质: 两个非负数之和为零时,这两个非负数同时为零.7. (2021浙江丽水4分,11题)写出一个比-3大的无理数是_______.【解析】:只要比-3大的无理数均可.【答案】:答案不唯一,如- 、、等【点评】:无理数是无限不循环小数,其类型主要有三种:①开方开不尽的数,如;②含型,如③无限不循环小数,如-0.1010010001.8.(2021广州市,6, 3分)已知,则a+b=( )A. -8B. -6C. 6D.8【解析】根据非负数的性质,得到两个代数式的值均为0.从而列出二元一次方程组,求出a,b的值。

2008年中考数学试题按知识点分类汇编(二次函数和抛物线概念、描点法画二次函数图象、顶点和对称轴)

2008年中考数学试题按知识点分类汇编(二次函数和抛物线概念、描点法画二次函数图象、顶点和对称轴)

知识点7:二次函数和抛物线有关概念,描点法画出二次函数的图象,抛物线顶点和对称轴一、选择题1.(2008年浙江省衢州市)把抛物线向右平移2个单位得到的抛物线是( )A、 B、 C、 D、答案:D2.(08浙江温州)抛物线的对称轴是()A.直线B.直线C.直线D.直线答案:A3.(2008年沈阳市)二次函数的图象的顶点坐标是()A.B.C.D.答案:A4.(2008年陕西省)已知二次函数(其中),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与轴的交点至少有一个在轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.3答案:C5.(2008年吉林省长春市)抛物线的顶点坐标是【】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)答案:A6.(2008 湖北荆门)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x-3x+5,则( )(A) b=3,c=7.(B) b=6,c=3.(C) b=-9,c=-5.(D) b=-9,c=21.答案:A7.(2008 河北)如图,正方形的边长为10,四个全等的小正方形的对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂直.若小正方形的边长为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()答案:D8.(2008江西)函数化成的形式是()A.B.C.D.答案:A9.(2008佳木斯市)对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标答案:A10..(2008贵州贵阳)二次函数的最小值是()A.B.C.D.答案:B11..(2008资阳市)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 2答案:B12.(2008泰州市)二次函数的图像可以由二次函数的图像平移而得到,下列平移正确的是A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位答案:B13.(2008山西省)抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位答案:D14..将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.B.C.D.答案:A15.(2008湖北武汉)函数的自变量的取值范围().A.B.C.D..答案:C16.(2008湖北孝感)把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. B. C. D.答案:D17.(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。

历年全国中考数学试题及答案(完整详细版)

历年全国中考数学试题及答案(完整详细版)

班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。

2023年河北省中考数学试卷(含答案)155635

2023年河北省中考数学试卷(含答案)155635

2023年河北省中考数学试卷试卷考试总分:111 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 某商品进价为每件a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折的价格开展促销活动,这时该商品每件的售价为( )A.a 元B.0.8a 元C.1.04a 元D.0.92a 元2. 如图,在A ,B 两地之间要修一条笔直的公路,从A 地测得公路走向是北偏东48∘,A ,B 两地同时开工,若干天后公路准确接通,若公路AB 长8千米,另一条公路BC 长是6千米,且BC 的走向是北偏西42∘,则A 地到公路BC 的距离是( )A.6千米B.8千米C.10千米D.14千米3. 化简m 2+mnm−n ÷mnm−n 的结果是( )A.m+nn B.m 2m−n C.m−nn D.m 24. 四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(−1,2)(2,4)反面(−2,1)(−1,−3)(1,2)(−3,4)若从中随机抽取一张,其正反面上两点正好关于原点中心对称的概率是( )A.14a 30%8a0.8a1.04a0.92a A B A 48∘A B AB8BC 6BC 42∘A BC ()681014÷+mn m 2m−n mn m−n m+nn m 2m−n m−nn m 2(2,3)(1,3)(−1,2)(2,4)(−2,1)(−1,−3)(1,2)(−3,4)14B.12C.34D.15. 一个等腰三角形的两边长分别为3和7,则它的周长是( )A.17B.15C.13D.13或176. 计算(−2)11+(−2)10的值是( )A. −2 B. (−2)21 C.0D. −2107. 已知a =2+√3,b =2−√3,则代数式a 2b −ab 2的值为( )A.6B.4C.4√3D.2√38. 已知(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 已知正六边形的边长为6,则它的边心距( )A.3√3B.6C.3D.√31234137()1715131317(−2+(−2)11)10−2(−2)21−210a =2+3–√b =2−3–√b −a a 2b 26443–√23–√12633–√633–√10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有48.29%的学生表示每天大概会吃剩50g −100g 的饭菜,33.86%的学生每天大概会吃剩100g −150g 的饭菜,只有4.86%的学生大概吃剩0g −50g 的饭菜.若该校有一万人,平均每天每个人浪费50g 粮食,则该校学生一学期(按120天)浪费的粮食用科学记数法可表示为( )A.6.0×103kgB.6.0×107kgC.6.0×104kgD.6.0×105kg11. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A.√5B.√10C.3√22D.2 12. 如图是由若干个相同的小正方体搭成一个几何体的主视图和俯视图,则所需的小正方体的个数最多是( )A.6B.5C.4D.313. 如图,△AOB ≅ΔADC ,点B 和点C 是对应顶点,∠O =∠D =90∘,记∠OAD =α,∠ABO =β,当BC//OA 时,α与β之间的数量关系为( )48.29%50g−100g 33.86%100g−150g 4.86%0g−50g 50g 1206.0×kg1036.0×kg1076.0×kg1046.0×kg 105ABCD CEFG D CG BC =1CE =3H AF CH5–√10−−√32–√226543△AOB ≅ΔADC B C ∠O =∠D =90∘∠OAD =α∠ABO =βBC//OA αβA. α=βB. α=2βC. α+β=90∘D. α+β=180∘14. 边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( ) A.B.C.D.15. 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120∘,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )α=βα=2βα+β=90∘α+β=180∘4ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF tA.1sB.34sC.43sD.2s16. 如图,二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =−1.则下列选项中正确的是( )A.abc <0B.4ac −b 2>0C.c −a >0D.当x =−n 2−2(n 为实数)时,y ≥c 二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 若A (x 1,y 1),B (x 2,y 2)是双曲线y =−5x 上的两点,且x 1>x 2>0,则y 1________y 2.18. 已知a =b −2,则b −(3+a)=________.19. 如图,AC 是⊙O 的内接正六边形的一边,点B 在^AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n =________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。

从2007年的中考数学试题看2008年数学命题的方向

从2007年的中考数学试题看2008年数学命题的方向

从2007年的中考数学试题看2008年数学命题的方向 一年一度的中考脚步声越来越近,同学们你准备好了吗?为了帮助同学们在有限的温考,掌握三年来所学的知识,及时了解中考的动向,笔者认真学习了2007年全国部分省市的中考试题,从中获得一些2008年中考数学的命题方向,现解读如下,希望对同学们的复习能有点帮助.一、通过复习,应注意优化思想方法数学思想是数学的灵魂,数学方法使数学思想得以具体落实,二者相互依存,成为数学中考永恒的主题。

但是,如果因循守旧,仅用一些传统题型、固定模式进行考查,则往往会产生思维定势,忽视了数学思想方法的本质,所以必须对其优化,力争出新创奇,才能让学生真正体会到数学思想方法的重要性.例1(2007年成都市中考试题)如图1,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A (-2,1),B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.分析 由于点A 和B 既在一次函数图象上,又在反比例函数的图象上,所以可以先利用待定系数法求出m ,进而求出n ,这样再运用待定系数法构造关于k 和b 的二元一次方程组即可求解.至于要求△AOB 的面积,令直线与y 轴的交点为C ,也容易求出点C 有坐标,这样△AOB 的面积即由△AOC 和△BOC 组成.解(1)因为点A (-2,1)在反比例函数y =m x 的图象上,所以m =(-2)×1=-2. 所以反比例函数的表达式为y =-2x .因为点B (1,n )也在反比例函数y =-2x 的图象上,所以n =-2,即B (1,-2).把点A (-2,1),点B (1,-2)代入一次函数y =kx +b 中,得212.k b k b -+=⎧⎨+=-⎩, 解得11k b =-⎧⎨=-⎩,.一次函数的表达式为y =-x -1. (2)在y =-x -1中,当y =0时,得x =-1. 直线y =-x -1与x 轴的交点为C (-1,0). 因为线段OC 将△AOB 分成△AOC 和△BOC , 所以S △AOB =S △AOC +S △BOC =12×1×1+12×1×2=32. 说明 确定正比例函数的解析式,只要一个条件,而要求一次函数的解析式,则需要两个独立的条件.本题在求解时,以数形结合、方程和待定系数法的思想方法为主线,涉及到对问题的转化等思想方法.虽然也是主要运用了“以形定数”的思维方式,但是由于实际图1背景的介入,使得题目新颖别致,不同于一般的通过图像求关系式的题目.二、通过复习应注意突出信息问题的转化当今社会,信息容量迅速增多,表现形式丰富多彩,被人们称为“信息化时代”.在日常的生产生活、学习工作中,我们经常需要将各种形式的信息转化整合、分析处理.鉴于此,对信息转化的突出考查,具有强烈的时代感.例2(2007年河南省中考试题)如图2是根据2006年某省各类学校在校生人数情况制作的扇形统计图和不完整的条形统计图.已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万人)(2)补全条形统计图;(3)请你写出一条合理化建议.分析 要解答本题中的三个问题,可以直接从已知的两个统计图中寻找解题的信息,再通过统计的方法求解.解(1)2006年该省种类学校在校生总数为97.41÷4.87﹪≈2000(万人).(2)普通高中在校生人数约为2000×10.08﹪=201.6(万人),即可补全条形统计图,如图2中的阴影部分.(3)答案不唯一,回答合理即可.说明 本题以统计为背景,而运用统计思想解决问题一般要经过这样两个程序:(1)从实际问题中获取必要的信息——分析处理有关信息——建立数学模型——解决这个数学问题.(2)通过图表获取数据信息,收集、整理分析数据,再运用统计量的意义去分析,这是用统计的思想方法解决问题的基本方式.值得注意的是,求解信息问题的试题,应及时将图形、表格、数据、文字等多种信息形式综合为一体,需要同学们对各种不同信息“互译”转化,才能顺利解答.三、通过复习要强化数学的应用意识对数学知识应用性的考查,已经成为全国各地中考的普遍趋势,是强化“用数学”意识的必然结果。

2012年河北省中考数学试题(解析版)

2012年河北省中考数学试题(解析版)

2012年河北省中考数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)2.计算3()ab 的结果是( )A .3abB .3a bC .33a b D .3ab[答案] C[考点] 幂的相关运算:积的乘方[解析] 幂的运算法则中:()nn nab a b =,依此得333()ab a b = 解: 333()ab a b =,故选C 。

3.图1中几何体的主视图是( )[答案] A[考点] 简单几何体的三视图:正视图[解析] 正视图是从正面看所得到的图形,从正面看所得到的图形。

解:正视看所得到的图形是A ,故选A. 4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.4 [答案] C[考点] 不等式:一元一次不等式组的解,[解析] 一元一次不等式组解,是使得不等式组中每一个不等式都成立的x 的值。

解:验证:1x =时,230x ->不成立,淘汰A ; 0x =时,230x ->不成立,淘汰B ; 4x =时,40x -<不成立,淘汰D,故选C.5.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE >B .AD BC = C .12D AEC =∠∠ D .ADE CBE △∽△[答案] D[考点] 圆:圆周角定理、垂径定理、同弧上圆周角与圆心角的关系;相似三角形的判定。

[解析] 本题逐一排查费时,容易证明ADE CBE △∽△,直接证明即可。

解:在ADE CBE △和△中A C DB ∠=∠⎧⎪⎨⎪∠=∠⎩(圆内同弧所对的圆周角相等)ADE CBE ∴△∽△(两个角对应相等的两个三角形相似),故选D 。

6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上 [答案] B[考点] 概率:随机事件[解析] 掷一枚质地均匀的硬币是随机事件,因此A 、C 、D 都错误,故选D 。

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

1.5分式-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)

1.5分式-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)

第一部分 数与式1.5 分式【一】知识点清单 1、分式分式的定义;列代数式(分式);分式有意义的条件;分式无意义的条件;分式的值为零的条件;分式的值;分式的基本性质;约分;通分;最简分式;最简公分母 2、分式的运算分式的乘除法;分式的乘方;分式的加减法;分式的混合运算;分式的化简求值;负整数指数幂;科学记数法—表示较小的数;科学记数法—原数;分数指数幂(删)【二】分类试题汇编一、选择题1.(1997年-14题-3分)计算222x yx y y x+--的结果是( ) A .1B .﹣1C .2x+yD .x+y2.(2000年-2题-2分)0.00813用科学记数法表示为( ) A .8.13×10﹣3 B .81.3×10﹣4 C .8.13×10﹣4 D .81.3×10﹣3 3.(2001年-11题-2分)计算(2﹣1)2结果等于( )A .2B .4C .14D .124.(2002年-11题-2分)在下列计算中,正确的是( ) A .(ab 2)3=ab 6B .(3xy )3=9x 3y 3C .(﹣2a 2)2=﹣4a 4D .(﹣2)﹣2=145.(2002年-13题-2分)如果把分式xx y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变C .缩小3倍D .缩小6倍6.(2003年-4题-2分)化简2239m mm --的结果是( )A .3m m +B .3m m -+C .3m m -D .3m m -7.(2005年课标卷-3题-2分)生物学家发现一种病毒和长度约为0.000 043mm ,用科学记数法表示这个数的结果为( )A .4.3×10﹣4 B .4.3×10﹣5 C .4.3×10﹣6 D .43×10﹣58.(2010年-7题-2分)化简22a b a b a b---的结果是( ) A .a 2﹣b 2 B .a+b C .a ﹣b D .19.(2011年-1题-2分)计算30的结果是( ) A .3B .30C .1D .010.(2012年-10题-3分)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x + D .2(x+1)11.(2013年-6题-2分)下列运算中,正确的是( )A 3BC .(﹣2)0=0D .2﹣1=1212.(2014年-7题-3分)化简:211x xx x -=--( ) A .0B .1C .xD .1x x - 13.(2015年-4题-3分)下列运算正确的是( )A .11122-⎛⎫=- ⎪⎝⎭B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 514.(2016年-4题-3分)下列运算结果为x ﹣1的是( )A .11x-B .211x x x x -+C .111x x x +÷- D .2211x x x +++ 15.(2017年-2题-3分)把0.0813写成a×10n (1≤a <10,n 为整数)的形式,则a 为( )A .1B .﹣2C .0.813D .8.1316.(2017年-12题-2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是( )A .4+4B .4+40+40=6C .D .4﹣117.(2017年-13题-2分)若321x x --= +11x -,则 中的数是( ) A .﹣1 B .﹣2C .﹣3D .任意实数18.(2018年-10题-3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个C .4个D .5个19.(2018年-14题-2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁 C .乙和丙D .乙和丁二、填空题1.(1998年-17题-3分)计算()2222x y x y x y y x+⋅+=-- . 2.(2000年-16题-2分)已知:A 、B 两地相距3千米,甲、乙两人的速度分别是a 千米/时、b 千米/时,若甲从A 地、乙从B 地同时出发,相向而行,那么,到他们相遇时,所用的时间是 小时. 3.(2003年-12题-2分)一种细菌的半径是0.00004米,用科学记数法表示出来是 . 4.(2005年大纲卷-13题-2分)生物学家发现一种病毒的长度约为0.00054mm ,用科学记数法表示0.00054的结果为 .5.(2008年-12题-3分)当x= 时,分式21x -无意义. 6.(2013年-18题-3分)若x+y=1,且x≠0,则22xy y x yx x x ⎛⎫+++÷⎪⎝⎭的值为 . 7.(2014年-18题-3分)若实数m ,n 满足|m ﹣2|+(n ﹣2014)2=0,则m ﹣1+n 0= .8.(2014年-20题-3分)如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99; 再将线段OM 1,分成100等份,其分点由左向右依次为N 1,N 2,…,N 99;继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2.…,P 99. 则点P 37所表示的数用科学记数法表示为 . 9.(2015年-17题-3分)若|a|=20150,则a= .10.(2015年-18题-3分)若a=2b≠0,则222a b a ab--的值为 .三、解答题1.(2001年-21题-7分)先化简,再求值:2222x x x x -+-+-,其中x =2.(2002年-21题-8分)已知1x =,1y =.求x yy x+的值.3.(2003年-21题-8分)已知2x =2y =,求1111x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值.4.(2004年大纲卷-21题-8分)已知1x ,求211x x x +--的值.5.(2004年课标卷-16题-6分)当a =b=1时,求4222a a b a ab--的值.6.(2005年大纲卷-21题-8分)已知1x ,求11x x x x -⎛⎫÷- ⎪⎝⎭的值. 7.(2005年课标卷-16题-7分)已知12x =,求1111x x ⎛⎫⋅- ⎪-⎝⎭的值.8.(2006年大纲卷-21题-8分)已知x=2,112x y x y ⎛⎫+⋅ ⎪+⎝⎭的值.9.(2006年课标卷-16题-7分)已知32x =-,求()1111x x ⎛⎫++ ⎪+⎝⎭的值. 10.(2007年-19题-7分)已知a=3,b=﹣2,求22112ab a b a ab b⎛⎫+⎪++⎝⎭的值. 11.(2008年-19题-7分)已知x=﹣2,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.12.(2009年-19题-8分)已知a=2,b=﹣1,求22211a b a ab a-+÷-的值.【三】参考答案与解析一、选择题1.(1997年-14题-3分)计算222x yx y y x+--的结果是()A.1 B.﹣1 C.2x+y D.x+y 【分类目录】1.5分式【知识考点】分式的加减法.【思路分析】将分母化成同分母,然后再进行计算.【解答过程】解:2221 22222x y x y x yx y y x x y x y x y-+=-== -----,故选A.【总结归纳】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可,此题需注意第二个分母的变形,即y﹣2x=﹣(2x﹣y).2.(2000年-2题-2分)0.00813用科学记数法表示为()A.8.13×10﹣3B.81.3×10﹣4C.8.13×10﹣4D.81.3×10﹣3【分类目录】1.5分式【知识考点】科学记数法—表示较小的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答过程】解:0.008 13=8.13×10﹣3.故选A.【总结归纳】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2001年-11题-2分)计算(2﹣1)2结果等于()A.2 B.4 C.14D.12【分类目录】1.5分式【知识考点】负整数指数幂.【思路分析】根据负整数指数幂的定义和乘方进行解答.【解答过程】解:(2﹣1)2=211 24⎛⎫=⎪⎝⎭,故选C.【总结归纳】解答此题要熟知:数的负指数幂等于数的正指数幂的倒数.4.(2002年-11题-2分)在下列计算中,正确的是()A.(ab2)3=ab6B.(3xy)3=9x3y3C.(﹣2a2)2=﹣4a4D.(﹣2)﹣2=1 4【分类目录】1.5分式;1.3整式。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2008年河南中考数学试题(含答案)

2008年河南中考数学试题(含答案)

2008年河南中考数学试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共18分)1. -71的绝对值是( )A .-71B .71C .7D .-72. 为支援四川地震灾区,中央电视台于5月18日晚举行了《爱的奉献》赈灾晚会,晚会现场捐款达1 514 000 000元,1 514 000 000用科学法表示正确的是( ) A .1514×106 B .15.14×108 C .1.514×109 D .1.514×1010 3. 不等式-x -5≤0的解集在数轴上表示正确的是( )A .B .C .D .4. 如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是( )A .B .C .D .5. 如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形,若点A 的坐标是(1,3),则点M 和点N 的坐标分别为( ) A .M (1,-3),N (-1,-3) B .M (-1,-3),N (-1,3) C .M (-1,-3),N (1,-3) D .M (-1,3),N (1,-3)6. 如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A .邻边不等的矩形B .等腰梯形C .有一角是锐角的菱形D .正方形二、填空题(每小题3分,共27分)7. 比-3小2的数是8. 图象经过点(1,2)的正比例函数的表达式为 .9. 如图,直线L 1∥L 2,AB ∥CD ,∠1=340,那么∠2的度数是 .10. 学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投井篮框的球数由小到大排序后这6、7、8、9、9、9、9、10、10、10、12.这组数据的众数和中位数分别是__,___.11. 已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为__. 12. 如图所示,边长为1的小正文形构成的风格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 .13. 某商店一套夏装的进价为220元,按标价的80%销售可获利72元,则该服装的标价为 .14. 如图,小刚制作了一个高12cm ,底面直径为10cm 的圆锥,这个圆锥的侧面积是 cm 2.15. 如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC边上,且GH =21DC ,若AB =10,BC =12,则图中阴影部分的面积为 .三、解答题(本大题8个小题,共75分)16. (8分)先化简,再求值:11-+a a -122+-a a a ÷a1,其中a =1-2.17. (9分)图①、图②反映的是综合商场今年1-5月份的商品销售额统计情况,观察图①、图②,解答下面问题:(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370元,请你根据这一信息补全图①,并写出两条由如上两图获得的信息;(2)商场服装5月份的销售额是多少万元?(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了,你同意他的看法吗?为什么?18.(9分)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP 绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP,则BQ=CP”.小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.19.(9分)如图,有四张不透明的卡片,除正面写有不同的数字外,其它均相同.将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.20.(9分)如图所示,A、B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A 地到达B地.已知BC=11km,∠A=450,∠B=370,桥DC和AB平行,则现在从A地到B地可比原来少走多少路程?(结果精确到0.1km,参考数据:2≈1.41,sin370≈0.60,cos370≈0.80)21. (9分)如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标.22. (10分)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A ,B 两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本? (2)两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31,如果设他们买A 种笔记本n 本,买这两种笔记本共花费w 元.①请写出w (元)关于n (本)的函数关系式,并求出自变量n 的取值范围; ②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23. (12分)如图,直线y =434+-x 和x 轴、y 轴的交点分别为B ,C .点A 的坐标是(-2,0)(1)试说明△ABC 是等腰三角形; (2)动点M 从点A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度,当其中一个动点到达终点时,它们都停止运动,设点运动t 秒时,△MON 的面积为s . ①求s 与t 的函数关系式;②当点M 在线段OB 上运动时,是否存在s =4的情形?若存在,求出对应的t 值;若不存在,说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.2008年河南中考数学试题参考答案及评分标准题号1 2 3 45 6 答案B C B B C D 题号 7 8 9 10 11 1213 14 15 答案-5y =2x56°9,9-31234065π35三、解答题(本大题8个小题,共75分)16.原式=11+a a -221+a a a ×a ……………………………2分 =2211()a a a =211()a ………………………………6分当a =12时,原式=-2121()=-12……………… 8分 17.(1)图略:4月份销售总额为65万元。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2018年河北省中考数学试题及参考答案案

2018年河北省中考数学试题及参考答案案

2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018河北中考,1,3分,★☆☆)下列图形具有稳定性的是( )A.B.C.D.2.(2018河北中考,2,3分,★☆☆)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A.4B.6C.7D.103.(2018河北中考,3,3分,★☆☆)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A.l1B.l2C.l3D.l44.(2018河北中考,4,3分,★☆☆)将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(2018河北中考,5,3分,★☆☆)图中三视图对应的几何体是( )A.B.C.D.6.(2018河北中考,6,3分,★☆☆)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(2018河北中考,7,3分,★☆☆)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A.B.C.D.8.(2018河北中考,8,3分,★☆☆)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(2018河北中考,9,3分,★☆☆)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x 乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A.甲B.乙C.丙D.丁10.(2018河北中考,10,3分,★☆☆)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个11.(2018河北中考,11,2分,★★☆)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2018河北中考,12,2分,★★☆)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2018河北中考,13,2分,★★☆)若2n+2n+2n+2n=2,则n=( )A.﹣1B.﹣2C.0D.1 414.(2018河北中考,14,2分,★★☆)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2018河北中考,15,2分,★★★)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.(2018河北中考,16,2分,★★★)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(2018河北中考,17,3分,★☆☆)计算:123--= .18.(2018河北中考,18,3分,★☆☆)若a,b互为相反数,则a2﹣b2= .19.(2018河北中考,19,4分,★★☆)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902︒=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(2018河北中考,20,8分,★☆☆)嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(2018河北中考,21,9分,★☆☆)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(2018河北中考,22,9分,★★☆)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(2018河北中考,23,9分,★★☆)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(2018河北中考,24,10分,★★★) 如图,直角坐标系,xOy 中,一次函数y =-21x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AO C -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.25.(2018河北中考,25,10分,★★★)如图,点A 在数轴上对应的数为26,以原点O为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且tan ∠AOB =43,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连结OP .(1)若优弧AB 上一段AP 的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(2018河北中考,26,11分,★★★)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5;M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省初中毕业生升学文化课数学试卷试题答案全解全析1.答案:A解析:因为三角形具有稳定性,四边形和其他多边形具有不稳定性,故选A.考查内容:三角形的稳定性.命题意图:本题主要考查了学生对三角形具有稳定性和四边形具有不稳定性的识记,难度较低.2.答案:B解析:∵8.1555×1010=81 555 000 000,∴81 555 000 000中“0”的个数为6个.故选B.一题多解:10次幂相当于把8.1555的小数点向右移动10位,然后可以发现结果为6个0.考查内容:科学记数法.命题意图:本题考查了学生把用科学记数法表示的数还原成原数的能力,难度较低.3.答案:C解析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析可得,该图形的对称轴是直线l3,故选C.考查内容:轴对称图形对称轴的判断.命题意图:本题主要考查了学生对轴对称图形和其对称轴的理解,难度较低.4.答案:C解析:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选C.考查内容:完全平方公式.命题意图:本题考查了学生应用完全平方公式进行计算的能力,难度较低.5.答案:C解析:首先可画出各个图形的三视图,然后对照给出的三视图,观察图形可知选项C符合三视图的要求,故选C.考查内容:由三视图判断几何体.命题意图:本题主要考查了学生由三视图判断几何体的能力,难度较低.6.答案:D解析:Ⅰ是过直线外一点作这条直线的垂线;Ⅱ是作线段的垂直平分线;Ⅲ是过直线上一点作这条直线的垂线;Ⅳ是作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选D.考查内容:尺规作图—基本作图.命题意图:本题主要考查了学生对这四种基本尺规作图方法的掌握,难度较低.7.答案:A解析:设的质量为x,的质量为y,的质量为Z,假设A正确,则x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选A.考查内容:等式的性质.命题意图:本题是代数式和方程的结合,考查学生对代数式和方程的实际应用能力,难度较低.8.答案:B解析:∵PA=PB,∴△APB是等腰三角形.在等腰三角形中,顶角的平分线、底边上的中线、底边上的高线重合(即“三线合一”),故作其中的任何一线均可使结论得到证明.A项中作的是顶角平分线,C项中作的是底边的中线,D项中作的是底边的高线,B项中的作法使点C同时满足两个条件:①是AB的中点;②PC⊥AB,不一定能实现,故B项错误.故选B.考查内容:等腰三角形性质的应用.命题意图:本题主要考查学生对等腰三角形的性质(三线合一)的掌握情况,同时考查运用全等三角形的判定来加以证明的能力,难度不大.9.答案:D解析:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁.故选D . 考查内容:算术平均数;方差.命题意图:本题主要考查了学生对方差的意义的理解和应用掌握,难度较小. 10.答案:B解析:①﹣1的倒数是﹣1,原题错误,该同学判断正确; ②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误; ④20=1,原题正确,该同学判断正确;⑤2m 2÷(﹣m )=﹣2m ,原题正确,该同学判断正确.故选B . 考查内容:绝对值;倒数;整式的除法;零指数幂;众数.命题意图:本题主要考查学生对倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则的掌握和运用,难度较小. 11.答案:A解析:如图.∵AP ∥BC ,∴∠EBF =∠DAB =50°.∴∠FBG =∠EBG ﹣∠EBF =80°﹣50°=30°,此时的航行方向为北偏东30°,故选A .考查内容:方位角的知识.命题意图:本题主要考查学生对方位角的辨识和运用,难度适中. 12.答案:B解析:∵原正方形的周长为acm , ∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a +8(cm ),因此需要增加的长度为a +8﹣a =8cm .一题多解:将小正方形的各边分别延长,交大正方形的各边于一点,在各个顶点处形成边长为1的正方形,原正方形周长为a cm ,所以新正方形的周长为(a +8)cm ,所以需增加8cm . 考查内容:正方形的周长; 列代数式.命题意图:本题主要考查学生根据图形的数量关系列代数式的能力,难度适中. 13.答案:A解析:∵2n +2n +2n +2n =2,∴4×2n =2,∴2×2n =1,∴21+n =1,∴1+n =0,∴n =﹣1.故选A . 考查内容:同底数幂的乘法.命题意图:本题考查了学生对同底数幂的乘法的理解和运用,难度适中. 14.答案:D解析::∵221x x x --÷21x x -=221x x x --•21xx - =221x x x --•()21x x-- =()21x x x --•()21x x --=()2x x--=2x x-, ∴出现错误是在乙和丁,故选D . 考查内容:分式的乘除法.命题意图:本题主要考查学生运用分式的乘除法法则进行运算,难度适中. 15.答案:B解析::如图,连接AI 、BI .∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI , 同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4, 即图中阴影部分的周长为4,故选B .考查内容:三角形的内切圆与内心、平移的性质.命题意图:本题主要考查了学生对三角形内心的定义、平移的性质及角平分线的定义等知识的掌握和运用,难度较大. 16.答案:D解析:对于抛物线L :y =-x (x -3)+c (0≤x ≤3),当x =0时,y =c ;当x =3时,y =c .如图(1),当L 与l 相切时,则关于x 的一元二次方程-x (x -3)+c =x +2,即x 2-2x +2-c =0有两个相等的实数根,即△=(-2)2-4×(2-c )=0,解得c =1.如图(2),当直线l 恰好经过点(0,c )时,则c =0+2=2;如图(3),当直线l 恰经过点(3,c )时,则c =3+2=5,故当2<c ≤5时,L 与l 相交,且有唯一公共点.综上可知,满足条件的c 的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D .考查内容:一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.命题意图:本题主要考查了学生对二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点的灵活运用,难度较大. 17.答案:2 123--4=2. 考查内容:算术平方根的求法.命题意图:本题主要考查学生对算术平方根的理解和掌握,难度较小.18.答案:0解析:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.考查内容:相反数;运用公式法进行因式分解.命题意图:本题主要考查了学生运用公式法分解因式的能力以及对相反数的定义的理解和运用,难度较低.19.答案:1421解析:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:3601802x-=18090x-,以∠APB为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x-﹣2+360x﹣2+360x﹣2=18090x-+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时的图案定为会标,∴会标的外轮廓周长是=1809030-+72030﹣6=21.考查内容:正多边形和圆.命题意图:本题主要考查了学生阅读理解问题的能力和对正多边形的边数与内角、外角的关系理解和运用,难度较大.20.解析:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6.(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得,a=5.考查内容:整式的加减运算.命题意图:本题主要考查学生对整式的加减运算的掌握,难度较低.21.解析:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.考查内容:扇形统计图;条形统计图;中位数;概率公式.命题意图:本题主要考查了学生对统计与概率的掌握与运用,难度较低.22.解析:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.考查内容:图形的变化规律型问题.命题意图:本题主要考查了学生对图形的变化规律的探究能力,难度适中.23.解析:(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,,,A BAPM BPNPA PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生解决三角形和圆的综合题的能力,难度适中.24.解析:(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生对一次函数的综合应用的掌握,难度较大.25.解析:(1)如图1中,由26180nπ⋅⋅=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k 2﹣3k ﹣20.79=0, 解得k =6.3或﹣3.3(舍弃), ∴OQ =5k =31.5不合题意舍弃. 此时x 的值为﹣31.5.综上所述,满足条件的x 的值为﹣16.5或31.5或﹣31.5. 考查内容:几何综合.命题意图:本题主要考查学生对几何知识的综合应用能力,同时考查学生对分类讨论思想的应用,难度较大.26.解析:(1)由题意,点A (1,18)代入y =k x ,得18=1k,∴k =18. 设h =at 2,把t =1,h =5代入,得a =5,∴h =5t 2. (2)∵v =5,AB =1, ∴x =5t +1. ∵h =5t 2,OB =18, ∴y =﹣5t 2+18.由x =5t +1,则t =()115x -, ∴y =﹣2211289(1)185555x x x -+=-++.当y =13时,13=﹣21(1)185x -+,解得x =6或﹣4. ∵x ≥1, ∴x =6. 把x =6代入y =18x,得y =3, ∴运动员在与正下方滑道的竖直距离是13﹣3=10(米). (3)把y =1.8代入y =﹣5t 2+18,得t 2=8125, 解得t =1.8或﹣1.8(负值舍去), ∴x =10,∴甲坐标为(10,1.8)恰号落在滑道y =18x上, 此时,乙的坐标为(1+1.8v 乙,1.8).由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.考查内容:二次函数和反比例函数的综合.命题意图:本题主要考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题,难度较大.- 21 -。

2014年河北省中考数学试题(含答案)

2014年河北省中考数学试题(含答案)

河北省2024年中考数学试卷一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣2是2的()A.倒数B.相反数C.肯定值D.平方根2.(2分)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2B.3C.4D.53.(2分)计算:852﹣152=()A.70 B.700 C.4900 D.70004.(2分)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D.80°5.(2分)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,86.(2分)如图,直线l经过其次、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.7.(3分)化简:﹣=()A.0B.1C.x D.8.(3分)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2B.3C.4D.59.(3分)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米10.(3分)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0B.1C.D.11.(3分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的嬉戏中,小明随机出的是“剪刀”B.一副去掉大小王的一般扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区分,从中任取一球是黄球D.掷一个质地匀称的正六面体骰子,向上的面点数是412.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B...C. D.13.(3分)在探讨相像问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相像.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相像.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.(3分)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.15.(3分)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.616.(3分)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D.31二、填空题(共4小题,每小题3分,满分12分)17.(3分)计算:=.18.(3分)若实数m,n 满意|m﹣2|+(n﹣2024)2=0,则m﹣1+n0=.19.(3分)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=cm2.20.(3分)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;接着将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的状况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…其次步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步(1)嘉淇的解法从第步起先出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.(2)用配方法解方程:x2﹣2x﹣24=0.22.(10分)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运输1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(11分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.24.(11分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并干脆写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,干脆写出全部满意这样条件的抛物线条数.25.(11分)(2024•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.26.(13分)(2024•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两巡游车分别从出口A和景点C同时动身,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽视不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t (分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并干脆写出这一段时间内它与2号车相遇过的次数.发觉:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,打算乘车到出口A,设CK=x米.状况一:若他刚好错过2号车,便搭乘即将到来的1号车;状况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种状况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发觉,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,依据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?答案1考点:相反数.分析:依据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2考点:三角形中位线定理.分析:依据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3考点:因式分解-运用公式法.分析:干脆利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是驾驭平方差公式:a2﹣b2=(a+b)(a﹣b).4考点:三角形的外角性质分析:依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5考点:估算无理数的大小.分析:依据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:依据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后依据数轴表示不等式的方法进行推断.解答:解:∵直线y=(m﹣2)x+n经过其次、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过其次、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,娴熟驾驭运算法则是解本题的关键.8考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.9考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,依据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10考点:绽开图折叠成几何体分析:依据绽开图折叠成几何体,可得正方体,依据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了绽开图折叠成几何体,勾股定理是解题关键.11考点:利用频率估计概率;折线统计图.分析:依据统计图可知,试验结果在0.17旁边波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的嬉戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的一般扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区分,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地匀称的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的学问点为:频率=所求状况数与总状况数之比.同时此题在解答中要用到概率公式.12考点:作图—困难作图分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满意这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图学问,解题的关键是依据作图得出PA=PB.13考点:相像三角形的判定;相像多边形的性质分析:甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:依据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相像.解答:解:甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵依据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相像.∴乙说法正确.故选A.点评:此题考查了相像三角形以及相像多边形的判定.此题难度不大,留意驾驭数形结合思想的应用.14考点:反比例函数的图象专题:新定义.分析:依据题意可得y=2⊕x=,再依据反比例函数的性质可得函数图象所在象限和形态,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在其次象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是驾驭反比例函数的图象是双曲线.15考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S空白=a•a=a2,∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16考点:众数;中位数.分析:找中位数要把数据按从小到大的依次排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,留意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数肯定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而推断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数肯定是小于5的非负整数,且不相等,则五个数的和肯定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的实力.一些学生往往对这个概念驾驭不清晰,计算方法不明确而误选其它选项,留意找中位数的时候肯定要先排好依次,然后再依据奇数和偶数个来确定中位数,假如数据有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的平均数.17考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再依据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能依据二次根式的乘法法则,求出正确答案是本题的关键.18考点:负整数指数幂;非负数的性质:肯定值;非负数的性质:偶次方;零指数幂.分析:依据肯定值与平方的和为0,可得肯定值与平方同时为0,依据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2024)2=0,m﹣2=0,n﹣2024=0,m=2,n=2024.m﹣1+n0=2﹣1+20240=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19考点:扇形面积的计算.分析:依据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20考点:规律型:图形的改变类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的改变规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.21考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应当在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应当是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;其次步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,干脆开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运输1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获得正确信息是解题关键.23考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)依据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)依据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)依据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,娴熟驾驭全等三角形的判定与性质是解本题的关键.24考点:二次函数综合题专题:压轴题.分析:(1)依据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)依据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再依据抛物线上点的坐标特征进行推断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)全部满意条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要留意(3)抛物线有开口向上和开口向下两种状况.25考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)依据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,简单求出OG、BG的长,依据垂径定理就可求出折痕的长.(3)依据点A′的位置不同,分点A′在⊙O内和⊙O外两种状况进行探讨.点A′在⊙O 内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O 的外部时,从BA′与⊙O相切起先,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等学问,考查了用临界值法求α的取值范围,有肯定的综合性.第(3)题中α的范围可能考虑不够全面,须要留意.26考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次须要的时间就可以求出相遇次数;发觉:分别计算出状况一的用时和状况二的用时,在进行大小比较就可以求出结论决策:(1)依据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类探讨,若步行比乘1号车的用时少,就有,得出s<320.就可以分状况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C须要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次须要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发觉:由题意,得状况一须要时间为:=16﹣,状况二须要的时间为:=16+∵16﹣<16+∴状况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类探讨思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.。

近五年河北省中考数学试题及答案

近五年河北省中考数学试题及答案
解: ,理由如下:
若有光点P弹出,则c=2,
∴点C(2,0),
把点C(2,0)代入 得:

∴若有光点P弹出,m,n满足的数量关系为 ;
②由①得: ,
∴ ,
∵点 , ,AB所在直线的解析式为 ,
∴线段AB上的其它整点为 ,
∵有光点P弹出,并击中线段AB上的整点,
【答案】(1)甲(2)乙
【小问1详解】
解:甲三项成绩之和为:9+5+9=23;
乙三项成绩之和为:8+9+5=22;
录取规则是分高者录取,所以会录用甲.
【小问2详解】
“能力”所占比例为: ;
“学历”所占比例为: ;
“经验”所占比例为: ;
∴“能力”、“学历”、“经验”的比为3:2:1;
甲三项成绩加权平均为: ;
∴△ACG≌△CFD,
∴∠CAG=∠FCD,
∵∠ACE+∠FCD=90°,
∴∠ACE+∠CAG=90°,
∴∠CEA=90°,
∴AB与CD是垂直的,
故答案为:是;
(2)AB= 2 ,
∵AC∥BD,
∴△AEC∽△BED,
∴ ,即 ,
∴ ,
∴AE= BE= .
故答案为: .
19. 如图,棋盘旁有甲、乙两个围棋盒.
故选:A.
4. 下列正确的是()
A. B. C. D.
【答案】B
【详解】解:A. ,故错误;
B. ,故正确;
C. ,故错误;
D. ,故错误;
故选:B.
5. 如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为 , ,则正确的是()
A. B.

2023年河北省中考数学试卷(含答案解析)090250

2023年河北省中考数学试卷(含答案解析)090250

2023年河北省中考数学试卷试卷考试总分:111 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 的平方与的和,用式子表示,正确的是( )A.B.C.D. 2.下列图形中表示北偏东的射线是( ) A. B.C.a b a +b 2+ba 2+a 2b 2(a +b)260∘D.3. 计算 的结果是 ( )A.B.C.D.4. 如图,一条毛毛虫要从处去吃树叶,毛毛虫在交叉路口处选择任何树枝都是等可能的,它吃到树叶的概率是( )A.B.C.D.5. 等腰三角形的一边长等于,一边长等于,则它的周长是( )A.B.C.D.或6. 已知可以被以内哪两个整数整除( )⋅a 3()1a2aa 5a 6a 9A 12141316731013171314−124810A.,B.,C.,D.,7. 已知,则的值是( )A.B.C.D.8. 已知(如图),按图所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 若正六边形的边长为,则它的内切圆面积为( )A.B.C.D.10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有的学生表示每天大概会吃剩的饭菜,的学生每天大概会吃剩的饭菜,只有的学生大概吃剩的饭菜.若该校有一万人,平均每天每个人浪费粮食,则该校学生一学期(按天)浪费的粮食用科学记数法可表示为( )67787989m=−15–√+2m m 223451249π10π12π15π48.29%50g−100g 33.86%100g−150g 4.86%0g−50g 50g 120A.B.C.D.11. 如图,正方形和正方形中,点在上,,,是的中点,那么的长是( )A.B.C.D.12. 某几何体由若干个大小相同的小正方体搭成,其主视图和左视图如图所示,则搭成这个几何体的小正方体最少需( )A.个B.个C.个D.个6.0×kg1036.0×kg1076.0×kg1046.0×kg105ABCD CEFG D CG BC =1CE =3H AF CH 5–√10−−√32–√22567813. 等腰三角形的一个内角是,则这个三角形的底角的大小是( )A.或B.或C.或D.或14. 如图所示,边长都为的正方形和正三角形如图放置,与在一条直线上,点与点重合.现将沿方向以每秒个单位的速度匀速运动,当点与重合时停止,在这个运动过程中,正方形和重叠部分的面积与运动时间的函数图象大致是( ) A. B.C.D.50∘65∘50∘80∘40∘80∘65∘80∘50∘4ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S t15. 如图,在菱形中,,,点,同时由,两点出发,分别沿,方向向点匀速移动(到点为止),点的速度为,点的速度为,经过秒为等边三角形,则的值为( )A.B.C.D.16. 如图,二次函数的图象与轴交于点,与轴的交点在与之间(不包括这两点),对称轴为直线.下列结论:①;②;③若点,点是函数图象上的两点,则;④.其中正确结论有( A.个B.个C.个D.个二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 已知点,和都在反比例函数的图象上,则,,的大小关系为________.(用“”连接)18. 已知,则________.19. 若正方形的外接圆直径为,则其内切圆半径为________.ABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF t 1ss 34s 432sy =a +bx+c x 2x A(−1,0)y B (0,2)(0,3)x =2abc <09a +3b +c >0M(,)12y 1N(,)52y 2<y 1y 2−<a <−3525)1234A(−1,)y 1B(−2,)y 2C(3,)y 3y =(k <0)k x y 1y 2y 3<(+)(+−2)=4m 2n 2m 2n 2+=m 2n 2419. 若正方形的外接圆直径为,则其内切圆半径为________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。

(完整版)中考数学试题平均数、中位数、众数、方差

(完整版)中考数学试题平均数、中位数、众数、方差

知识点2:平均数,中位数,众数,方差一、选择题1.(2008年浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;2.(2008淅江金华)金华火腿闻名遐迩。

某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。

现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定3.(2008浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )A.6969元B.7735元C.8810元D.10255元4.(2008湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,255.(2008年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.(2008年四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案:A7.(2008年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )A.14.15 B.14.16 C.14.17 D.14.20答案:B8.(2008年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是()A.20万,15万B.10万,20万C.10万,15万D.20万,10万答案:C9.(2008北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A.50,20 B.50,30 C.50,50 D.135,50答案:C10.(2008湖北鄂州)数据的众数为,则这组数据的方差是()A.2 B.C.D.答案:B11.(2008年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(2008年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.98答案:B13.(2008山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60张B.80张C.90张D.110答案:B14.(2008湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是()A.B.8 C.D.40答案:B15.(2008 湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A. 23,25B. 23,23C. 25,23D. 25,25答案:D16.(2008 重庆)数据2,1,0,3,4的平均数是()A、0B、1C、2D、3答案:C17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案:C18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案:B19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于().A.38 B.39 C.40 D.42答案:B20.(2008浙江金华)金华火腿闻名遐迩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(08河北)8-的倒数是( d ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( b ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( b ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( a )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则到弦AB 所在直线的距离为2的点有( c )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( b ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2图1图2 图3C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( d )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( c )A .上B .下C .左D .右卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则<2=7012.(08河北)当x = 1 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= -5 .14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则<c=27.15.(08图4 x A . x B . x C . D . 图5-1 图5-2 图5-3 …1 2b ac 图7则这些学生成绩的众数为 9 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 20 g . 17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m =18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 76 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.=-1/320.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 500 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率. 1/521.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% 25各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标;D(1,0)(2)求直线2l 的解析表达式; Y=2/3X-6(3)求ADC △的面积; S ADC △=2/3(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. P(6,3)22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系. (1)台风中心生成点B 的坐标为 (100^3,-100^3) ,台风中心转折点C 的坐标为 (100^3,200-100^3) ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?11小时。

23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道图11C 6045长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m)d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = a+2 km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = ^a 2+24 km (用含a 的式子表示).探索归纳(1)①当4a =时,比较大小:d1 < d2(填“>”、“=”或“<”); ②当6a =时,比较大小:d1 > d2(填“>”、“=”或“<”);25.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; W1=3/20x 2+9-90(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值; N=15(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 乙地图13-1 图13-2图13-3参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 25 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;能, t=7 1/8(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图15二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 图13AD =,193322ADC S ∴=⨯⨯-=△.(4)(63)P ,.22.解:(1)B -,C -; (2)过点C 作CD OA ⊥于点D ,如图2,则CD =. 在Rt ACD △中,30ACD ∠=,CD =,3cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +;(2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,/kmC6045Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠=. 90QMA ∴∠=.BQ AP ∴⊥.(3)成立. 证明:①如图4,45EPF ∠=,45CPQ ∴∠=.又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. lAB FC Q 图3M12 34 EP lABQP EF图4N C由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =.EB图5B图6E B图7。

相关文档
最新文档