地铁主变电所简介

合集下载

城市轨道交通供电系统的变电站类型及作用概要

城市轨道交通供电系统的变电站类型及作用概要

城市轨道交通供电系统的变电站类型及作用二、主变电站(一)主变电站的作用主变电站(简称主变)是城市轨道交通供电系统接受电源的场所,也称受电点。

它是系统内电压等级最高的变电站,它将城市电网提供的110KV交流电压,降压至35KV;然后配送到城市轨道交通沿线的各个牵引变电站和中心降压变电站。

一座主变电站承担着一条轨交线路一半左右用户的供电,一旦主变因故失电,将直接影响一、二类负荷的供电。

所以要求主变的供电必须可靠,为此,每座主变电站都设有两路以上的进线电源。

图4-3 主变电站内的主变压器三、牵引变电站(一)牵引电力制式牵引供电的制式有直流制和交流制两种。

我国电气化铁路的牵引供电,一般采用单相工频(50赫)25千伏交流供电电压。

城市轨道交通的运行环境与电气铁路不同,后者铁路站间距离长,接触网的周围空间环境宽大,因而绝缘安全距离大,可选用较高的触网电压;而城市轨道交通的站间距离短,接触网的周围环境狭窄,绝缘安全距离小,触网电压不能选得很高。

但考虑到触网线路的电压损耗,触网电压又不能太低,所以城市轨道交通采用直流1500V供电较为妥当。

且触网结构也较简单,因此城市轨道交通几乎都采用直流供电制式。

我国城市公共交通系统中,直流600V仅用于无轨电车的供电;北京、广州、武汉、天津等城市的地铁部分采用750V直流供电,上海、深圳等城市的轨道交通线路都采用1500V 直流供电。

为确保电动列车的可靠供电,通常是隔一座车站设立一个座牵引变电站,如图4- 所示。

前面在介绍城市轨道交通供电系统结构时已经提到,相邻牵引站之间彼此联系,发生局部供电故障时,牵引变电站能进行跨区域的供电,确保了电动列车供电的可靠性。

车站1 车站2 车站3 车站4 车站5牵引站1牵引站2牵引站3图4- 6 牵引站分布示意图(二)牵引变电站作用牵引变电站是为电动列车提供直流牵引电源,而进行降压、整流的场所。

牵引站将主变电站输出的35KV交流电降压、整流后,变换成750V或1500V的直流电源输送到接触网上供电动列车使用。

城市轨道交通牵引变电所概述

城市轨道交通牵引变电所概述
地铁、轻轨直流牵引变电所常与向车站、区间供电的降压 变电站合并建设,形成牵引降压混合变电所,其主电路结构和 电气设备与一般直流牵引变电所相比有所不同。在有再生能源 需要向交流网返送的情况下,直流牵引变电所需要设置可控硅 逆变机组(包括交流侧的自耦变压器),由于其设备相应增加 ,因此运行技术要求复杂。
牵引变电所内部相关高压电气设备多,电压高,电流大,防火要求高。
3. 维护周期长
牵引变电所用的变压器、整流器、中低压开关设备需要进行人工维护,一般白天 进行设备维护,维护周期相对较长,因此尽量选用设备范围内免维护、免维修的设 备。
4. 有效利用再生电能
应使列车制动时产生的电能回馈给牵引网,补给牵引网电能,提高电能利用率。
5. 成套设备
成套设备是指按一定的线路方案将有关一次、二次设备组合而成的设备,如高压开关柜, 低压配电屏,高、低压电容器柜和成套变电站等。
谢谢观看!
1. 变换设备
变换设备是指用以变换电能电压或电流的设备,如电力变压器、整流器、电压互 感器、电流互感器等。
2. 控制设备
控制设备是指用以控制电路通断的设备,如各种高、低压开关设备。
3. 保护设备
保护设备是指用以保护电路过电流或过电压的设备,如高、的无功功率,以提高系统功率因数的设备,如高、低压电 容器和静止无功补偿装置等。
4. 有效利用再生电能
牵引变电所主要设备的技术条件如表2-1所示。 表2-1牵引变电所主要设备的技术条件
3牵引变电所的工作原理
图2-1直流牵引变电所的接线原理
直流牵引变电所从主变电站或城市电网双电源受电,经整 流机组变压器降压、分相后,按一定整流接线方式由大功率硅 整流器把三相交流电变换为与直流牵引网相应电压等级的直流 电,向电动车组提供直流电能。直流牵引变电所的接线原理如 图2-1所示。

地铁号线变电所及环网电缆送电方案

地铁号线变电所及环网电缆送电方案

地铁号线变电所及环网电缆送电方案随着城市化进程的加快,地铁建设成为了城市交通建设的重要组成部分。

尤其是在大城市中,地铁交通的承载能力越来越高。

然而,在地铁建设过程中,为保证其正常运营,除了基础设施以外,还需要合理的供电方案。

而地铁号线变电所及环网电缆送电方案就是地铁供电的核心部分。

本文将对这部分进行探讨。

一、地铁号线变电所地铁号线变电所(Substation)是地铁供电系统的重要组成部分,其主要作用是将输电变电站的高压电流转换成地铁轨道供电所需要的低压电流。

地铁号线变电所是地铁车站相对独立的建筑,通常位于地面、地下或车站附近的空间中。

在地铁工程建设中,地铁号线变电所的布置至关重要。

不同的号线规模、交通量以及城市的使用情况都会影响变电站的类型和数量。

例如,较小的轻轨系统通常只需要单一的变电站,而大型的城市磁悬浮列车系统则需要多个变电站。

当前,国内一些大型地铁系统还采用了“分布式电源”技术,即在车站或轨道沿线安装多个小型的变电所,以提高供电的可靠性和稳定性。

二、环网电缆送电方案地铁工程中还需要一种可靠的电力供应方案,以满足地铁运营中的需求。

环网电缆送电方案是这种方案之一,它是一种通过架空、地沟或地下输电线路将电力传输到变电所的方式。

环网电缆送电方案不仅以高效的方式满足了地铁的供电要求,而且在供电的稳定性、安全性和可靠性上也取得了很高的效果。

在环网电缆送电方案中,线路通常由多条电缆组成,以便在单个线路受到故障时,其余线路能够提供备用电力。

环网电缆送电方案可以保障地铁系统的正常运行,并为未来的扩展提供充分的空间和保障。

三、地铁供电需求地铁系统通常具有较高的供电需求,这对供电系统的安全性和可靠性代表了高要求。

按照国内地铁系统的情况,其供电需求主要有两个方面:一是满足车辆和信号系统的动力需求,包括将高压电流转换成车站和车辆所需的低压电流;二是满足照明、通风、安全监控等非动力需求。

为了保障地铁供电的稳定性和可靠性,国内一些地铁建设项目采用了多项技术和设备,如无摩擦轮、可逆变器、流电防护、远距离在线监测等。

城市轨道交通供电系统—变电所

城市轨道交通供电系统—变电所

2.牵引变电所
城市轨道交通供电系统的主要用电对象是电动车组,即牵引供电。 为确保牵引供电的质量,牵引变电所的设置(数量、位置)和容量
应该按远期列车编组,运行密度按牵引供电计算后确定。
2.牵引变电所
2.1 牵引变电所的功能
牵引变电所的功能是从主变电所获得电能,经过降压和整流,变成 城市轨道交通电动列车牵引所需要的1500 V或750 V直流电,给电 动列车供电。
目录
CONTENTS
01 变电所的分类
02
03 牵引变电所
04
学习目标
了解:城市轨道交通系统变电所的种类; 了解:城市轨道交通系统变电所的各部分功能。
变电所
变电所就是供电系统中对电能的电压和电流进行变换、集中和分 配的场所。
城市轨道交通供电系统中的变电所根据功能的不同,可以分为3 类:
(1)主变电所; (2)牵引变电所; (3)降压变电所。
2.牵引变电所
2.2 牵引变电所的位置和数量
牵引变电所的容量和相互之间的距离是由牵引供电技术决定的,一 般设置在沿线若干车站及车辆段附近,变电所的间隔一般为2~4 km。
2.牵引变电所
2.3 牵引变电பைடு நூலகம்的的主接线图
每座牵引变电所按其所需容量设置 两组整流器并列运行,向接触网供 电,主接线图见右图。
1.主变电所
对于集中式外部电源方案,应建设城市轨道交通主变电所。 1. 1 主变电所的功能 主变电所的功能是连接城市电网高压电压(110 kV 或220 kV),
经降压后以中高压(35 kV 或 10 kV)向牵引变电所、降压变电所 供电。
1.主变电所
主变电所
主变电所
1.主变电所
2.2 主变电所的位置和数量

地铁供电系统简介

地铁供电系统简介
1. 母线上的单相短路故障不能及时切除 2. 故障逐障
• 解决方法
• 母线故障应及时切除
• 变电所直流供系电统系的保统护—配—置直流系统
大电流脱扣 逆流保护
大电流脱扣 DI/DT+ΔI
定时限 热过负荷 自动重合闸 双边联跳
– 主保护:差动保护 – 后备保护:过流保护
供电系统——中压网络
• 近年城市轨道交通供电系统“大串环”供电, • 最长的供电分区带有6~10个变电所。
供电系统——中压网络
• 正常情况下主保护(差动保护)具有选择性 • 后备保护(过电流保护)采用时间配合 • 解决保护的选择性。 • 时间整定值的级差固定
框架保护1 框架保护2
• 再生能量的供吸电收系统——直流系统
双向变流器 试验中
• 框架保护与供钢电轨系电位统限—制—装直置流的系原统理
FCRW
OCS RAIL
V A
框架泄漏保护装置
S
OVPD R
FCRW 架空地线
OCS 接触线
RAIL 钢轨
S
排流柜
OVPD 钢轨电位限制装置
R
泄漏电阻
V 电压元件
A 电流元件
城市轨道交通供电系统简介
• 供电分区内变电所的增加导致后备保护失去选择 性。
供电系统——变电所
• 典型牵引降压混合变电所
差动
过流
延时速断
定时限过流
母联自投
反时限过流
失灵保护(跳进线)
变压器本体温 度保护
母联自投
供电系统——母线保护
• 35kVGIS发生过由于电压互感器故障而导致的母 线故障
• 环网上过流保护的时间延时很长
城市轨道交通供电系统简介

地铁供电科普文章

地铁供电科普文章

地铁供电科普文章地铁作为一种重要的城市交通工具,为了能够正常运行,需要有稳定可靠的供电系统。

地铁供电系统是地铁运营中的重要组成部分,它为地铁列车提供所需的电力。

本文将对地铁供电系统进行科普介绍,帮助读者更好地了解地铁供电的工作原理和相关设备。

一、直流供电系统地铁供电系统一般采用直流供电,其主要原因是直流供电具有稳定性好、传输损耗小等优点。

直流供电系统由供电变电所、接触网、牵引变流器等组成。

1. 供电变电所:地铁供电系统的起点是供电变电所,它将电网中的交流电转换为地铁所需的直流电。

供电变电所还负责控制和保护地铁供电系统的正常运行。

2. 接触网:接触网是地铁供电系统中的一个关键部件,它位于地铁轨道上方,由一根根金属导线组成。

接触网上方悬挂着地铁列车的集电弓,当列车行驶时,集电弓与接触网接触,从而实现电能的传输。

3. 牵引变流器:牵引变流器是地铁供电系统中的关键设备,它将接触网提供的直流电转换为适合地铁列车使用的电能。

牵引变流器可以根据列车的需要进行电流和电压的调整,确保地铁列车能够平稳运行。

二、地铁供电系统的特点地铁供电系统具有以下特点:1. 稳定可靠:地铁供电系统需要保证供电的稳定性和可靠性,以确保地铁列车的正常运行。

供电系统中的各个设备都经过严格的设计和测试,以应对各种复杂的工作环境。

2. 安全性高:地铁供电系统需要满足严格的安全标准,以确保乘客和工作人员的安全。

供电系统中设备的绝缘性能和防火性能都要达到一定的要求,以防止意外事故的发生。

3. 节能环保:地铁供电系统需要尽可能地减少能源的消耗,以降低对环境的影响。

供电系统中的设备需要具备良好的能效,以减少能源的浪费。

4. 维护成本低:地铁供电系统的设备需要具备良好的可维护性,以降低运营成本。

供电系统中的设备需要方便维修和更换,以减少维护所需的时间和成本。

三、地铁供电系统的发展趋势随着科技的不断进步,地铁供电系统也在不断发展和改进。

未来地铁供电系统的发展趋势主要体现在以下几个方面:1. 新能源的应用:随着新能源技术的不断发展,未来地铁供电系统可能会采用更多的新能源,如太阳能、风能等,以减少对传统能源的依赖。

地铁供电系统

地铁供电系统

地铁供电系统供电系统为地铁的列车和各种用电设备提供电能,是保证地铁正常运行的重要组成部分,通常由供电电源、主变电所(集中供电方式时)、中压供电网络、牵引供电系统、动力照明配电系统、牵引网系统、电力监控(SCADA)系统、杂散电流腐蚀防护及接地系统和供电车间等组成。

(1)主变电所:集中供电方式下,负责向地铁沿线的各种用电设备提供电源。

每座主变电所从城市电网引入两路独立可靠的110kV电源,经主变压器降压后通过中压供电网络向地铁沿线的牵引变电所和降压变电所供电。

东延线工程利用地铁1号线续建工程的白石洲主变电所、地铁1号线的文化中心主变电所、城市广场主变电所一起供电。

(2)中压供电网络:负责将主变电所的中压馈电回路以分区环网方式向地铁沿线的牵引变电所和降压变电所提供两路可靠的电源。

(3)牵引变电所:负责将中压交流电降压整流为1500V直流电,并向沿线的牵引网提供电源。

全线正线设牵引变电所6座,停车场设1座。

(4)降压变电所:负责将中压交流电降压为0.4kV交流电,并通过低压开关柜和电缆馈出,向地铁各种用电设备提供电源。

东延线工程每个车站设1座降压所和1座跟随式降压所,全线共设16座降压变电所和15座跟随所,其中7座降压所与同站的牵引所合建为牵引降压混合变电所。

(5)牵引网系统:负责将牵引变电所提供的直流1500V牵引电源通过受流器供给地铁列车,并利用走行轨回流。

牵引网系统覆盖整个东延线正线以及停车场需要电化的股道,授流方式采用刚性悬挂,由支持结构及接触悬挂等部分组成。

本工程电化里程约48条公里。

(6)动力照明配电系统:负责将降压变电所馈出的0.4kV交流电源配给地铁沿线车站、区间、停车场等处所的动力及照明设备。

(7)电力监控(SCADA)系统:负责实施对地铁供电系统的主要电气设备的实时遥测、遥信、遥控和遥调,从而实现供电系统的远程集中调度管理,提高供电系统的自动化水平。

东延线工程按电力监控系统集成入综合监控系统中设计。

城市轨道交通供电知识介绍

城市轨道交通供电知识介绍
适用于讲座,演讲,授课,培训等场景
城市轨道交通供电知识介绍
城市轨道交通供电
第二章 城市轨道交通供电系统
城市轨道交通供电系统构成
城市轨道交通供电系统
高压供电系统(主变电所)
内部供电系统
牵引供电系统
动力照明供电系统
城市轨道交通作为城市电网的一个用户,一般都直接从城市电网取得电能,无需单独建设电厂,城市电网对城市轨道交通进行供电,供电方式有集中供电、分散供电和混合供电。
动力照明 采用380/220V三相五线制系统 TN-S系统 配电。基本上采用放射式供电,个别负荷可采用树干式供电。 一类负荷要求双电源、双电缆,供电末端自动切换,来电自复;二类负荷为双电源、单电缆;三类负荷为单电源、单电缆。
电力监控系统 SCADA
……
……
……
控制中心 主机
通信网络
远程控制 终端
城市轨道交通内部供电系统
牵引供电系统
动力照明供电系统
城市轨道交通内部供电系统
城市轨道交通牵引供电系统构成示意图
高压供电系统
城市电网
牵引供电系统
牵引变电所
回流线
馈线
接触网
轨道
主变电所
三相交流
直流
牵引变电所 设两套牵引整流机组,其容量按远期运量设计。牵引整流机组的过负荷能力按IEC-146标准,城市轨道交通牵引属Ⅵ类负荷,其过负荷能力应满足:100%In 连续运行;150%In 2h;300%In 1min。为抑制牵引供电系统产生的谐波电流注入电网,牵引机组至少应采用12脉波整流。
主变电所
城市电网
中压网络
牵引或降压变电所
高压供电系统
集中式供电 在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所。主变电所进线电压一般为110kV,经降压后变成35kV或10kV,供牵引变电所与降压变电所。主变电所应有两路独立的进线电源。集中式供电,有利于城市轨道交通供电形成独立体系,便于管理和运营。上海、广州、南京、香港、德黑兰地铁等。

轨道交通主变电所设备讲解

轨道交通主变电所设备讲解

第5页,共24页。
深圳市地铁三号线投资有限公司
二、110KV一、二次设备系统组成
草埔站和银海站一次主接线部分采用 线路变压器组接线,主变110KV中性 点经隔离开关接地 。
一次系统设备:
故障接地开关(FES),维修接地开关 (ES),隔离开关(DS),GIS断路 器(CB),电流互感器(CT),电 压互感器(PT)。
后备保护,西门子的电流纵差动保护为
主保护。
第16页,共24页。
深圳市地铁三号线投资有限公司
ZX2铠装式气体绝缘中压开关柜 1250A单母线柜
1 压力释放通道 2 主母线
3 控制室 4 三工位开关操动机构 5 REF542PlusHMI单元
6 传墙套管
7 电容分压装置测试接口 8 密度传感器电压传感器 9 真空断路器电流传感器 10 断路器操动机构 11 电缆插座 12 插接式电缆头 13 智能型控制/保护单元REF542Plus主机
第4页,共24页。
深圳市地铁三号线投资有限公司
主变电所主要设备表及典型设备图
设备名称
110kV GIS
110kV 油变压器 110kV 气体变压器 主所综合自动化 主所 35kV GIS SF6 监测系统 接地兼动力变压器 0.4kV 低压开关柜 交直流屏
生产厂家 现代重工电气有限公 司 江苏华鹏变压器厂 保定保菱变压器厂 深圳华力特 厦门 ABB 江苏江阴佳灵科技 河南许继 深圳市华通电气 广东电气控制
断口265kV
第7页,共24页。
深圳市地铁三号线投资有限公司
银海站外型图
基本技术参数
额定电流:
主母线回路:2000A 额定热稳定电流:40kA(4s)(r.m.s) 额定动稳定电流:100kA(peak) 额定耐受电压: 雷电冲击电压(峰值): 相间、相对地 550kV

地铁主变电所简介

地铁主变电所简介

地铁主变电所简介集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-地铁主变电所简介1、概述地铁主变电所将城市电网的高压110KV(或220KV)电能降压后以35KV或10KV的电压等级分别供给牵引变电所和降压变电所。

为保证供电的可靠性,地铁线路通常设置两座或两座以上主变电所。

主变电所由两路独立的电源进线供电,内部设置2台相同的主变压器。

根据牵引负荷和动力负荷的不同情况,主变压器可采用三相三绕组的有载调压变压器或双绕组的变压器。

采用有载调压变压器在电源进线电压波动时二次侧电压维持在正常值范围内。

主变电所为地铁线路的总变电所,承担整条地铁线路的电力负荷的用电。

(1)可根据负荷计算确定在地铁线路上设置的主变电所数量。

(2)每座主变电所设置2台主变压器,由城市电网地区变电站引入两路独立的110KV专用线路供电,两回路同时运行,互为备用,以保证供电的可靠性和供电质量。

进线电源容量应满足远期时其供电区域内正常运行及故障运行情况下的供电要求。

(3)低压35KV侧采用单母线分段接线,两段母线间设母联断路器,正常运行时母联断路器打开。

(4)正常运行时每座主变电所的两路110KV电源和2台主变压器分列运行。

通过35KV馈出电缆分别向各自供电区域的负荷和动力照明负荷供电。

2、主变电所的主要设备(一)主变压器高压侧电压为110KV,低压侧电压为35KV(或10KV)。

主变压器容量应能满足正常运行时,每台变压器容量承担其所供区域内的全部牵引负荷和动力照明的供电。

当发生故障时,应满足如下条件:(1)当一台主变压器发生故障时,另一台主变压器应能满足该供电区域高峰小时牵引负荷和动力及照明一、二级负荷的供电。

(2)当一座变电所因故解列时,剩余主变电所应能承担全线的动力和照明一、二级负荷及牵引负荷。

主变压器容量的选择应考虑近期实际负荷和远期发展的需求。

单台容量大约在20MVA~40MVA范围,主要考虑相邻变电所故障解列时应满足向该段牵引负荷越区供电的要求。

城市轨道交通供电系统—供电系统概述

城市轨道交通供电系统—供电系统概述

2.供电系统的构成
外部高压供电系统是城市电网对城市轨道交通系统内部的主变电 所供电的系统,有三种供电方式:
(1)集中式 (2)分散式 (3)混合式
2.供电系统的构成
2.1外部高压供电系统
2.1.1分散式供电 在城市轨道交通线路沿线直接从城市电网引入多路电源,电源电压等
级一般为10 kV,供给各牵引变电所。 分散式供电应保证每座牵引变电所和降压变电所皆能获得双路电源。
),输送至牵引变电所和降压变电所。
主变电所具有
的AC 110 kV电源。
2.供电系统的构成
2.1外部高压供电系统
2.1.1 混合式供电 前两种供电方式的结合,以集中式供电为主,个别地段引入城市电
网电源作为集中式供电的补充。
2.供电系统的构成
2.2 牵引供电系统
牵引供电系统供给电动列车运行的电能。 电能
2.供电系统的构成
2.3 动力照明供电系统
(2)配电所(室):仅起到电能分配作用,将来自降压变电所的380 V或220 V交流电 分别供给动力设备或照明设备;各配电所(室)对本车站及两侧区间动力和照明等设备 配电。
2.供电系统的构成
2.3 动力照明供电系统
(3)配电线路:配电所(室)与用电设备之间的连接线路。
(1)列车运行;
(2)运营辅助服务(为运营服务的辅助设施包括照明、通风、空 调、排水、通信、信号、防灾报警、自动扶梯等)。
两方面的供电。
1.供电系统的供电过程
1.供电系统的供电过程
城市电网电源 主变电所
牵引变电所
降压变电所
牵引供电系统
动力照明供电系统
地铁列车牵引供电 地铁机电设备、照明设备供电
.降压及动力配电

地铁设备中心供电部介绍

地铁设备中心供电部介绍

变电专业—设备关系图
接触网
3、1500V开关柜
整流器
整流器
一号整流变
二号整流变
1、高压开关柜
35KV一段 35KV母联 35KV二段
一号动力变
二号动力变
400V一段
400V母联 2、低压开关柜
400V二段
变电专业—高压开关柜
高压开关柜:为两路来自主所的35KV独立电源供电,除了为下站环网供电外,还为 本站动力变压器和整流变压器供电。
常运行,同时提升供电系统调度、管理及维修的自动化程度,提高供电
质量,保证系统安全、可靠地运行。 适用于地铁、轻轨、城铁等城市轨道交通的电力综合监控系统:1、 由控制中心主站系统(OCC)2、主变电所、设置在沿线的各个牵引降 压混合变电所和降压变电所内的变电所综合自动化系统等子站系统(被 控站),二者通过通信通道构成电力监控系统。
电力监控—组成
电力监控系统的组成
轨道交通电力监控系统包括:监控计算机(组屏安装)、CSC-800M
通信控制器(组屏安装)、CSC-850智能测控单元(组屏安装)、 CSC-860系列智能接口转换装置(就地或组屏安装)、CyberControl 监控软件等。 电力监控系统硬件结构上分为三层:1、中央监控中心(OCC)主
变电专业—动力变、低压开关柜
低压开关柜: 动力变压器电 源来自高压开 关柜(电压等 级为35KV) ,经动力变压 器降压后,变 成400V交流 电压,为:机 电设备(如: 环控、电扶梯 、安全门等) 、通号设备、 票务中心设备 等设备供电。
变电专业—整流器、直流开关柜
整流变压器电源来自高压开关柜的两路电源,从AC35KV降压到AC1180V,输入到 整理器中进行整流,变成DC1500V,经直流开关柜送到接触网,给电力机车供电。

城市轨道交通供电系统—变电站的类型

城市轨道交通供电系统—变电站的类型
03
牵 牵引变电所将城市轨道交通主变电所或城市电网区 引 域变电所送来的10KV电能经过降压和整流变成车
变 辆牵引所要求的直流电能。


牵引变电所的容量和设置的距离是根据牵引供电计 算的结果,并经过经济技术分析比较后所决定的。
变电所的间隔一般为2~3Km, 牵引变电所按其所 需的总容量设置2组整流机组并列运行。沿线任一 牵引变电所故障,则由两侧相邻的牵引变电所承担 02 其供电任务。
牵引降压混合变电站是指同时具备牵引变电站及降压变电 站功能的变电站。
01
电 电源牵引降压混合变电站是指同时具 源 牵 备电源开闭站、牵引变电站和降压变 引 电站功能的变电站。 降 压 混 合 变 电 站
02
03
电源站
1.电源站两路进线直接从城市电网引进10kV或35kV的电源,分别经开关送电 到本站10kV或35kV的母线上,然后通过10kV或35kV馈出开关供给本区域的 牵引变电站、降压变电站作为进线电源。 2.由于此类变电站内没有主变压器,进线电压与馈出线电压相同,因此也称为电 源开闭站。
01
牵引降压混合变电站
变电站类型及功能
教学目标
掌握变电站的几种类型 掌握针对不同的设备需要使用哪种变
电站
Байду номын сангаас
教学重点
三种变电器的电位差
目录
01
主变电站
04
电源站
02
牵引 变电站
05
牵引降压 混合变电

03
降压 变电站
06
电源牵引 降压混合 变电站
主变电站
1.主变电站就是从城市电网中的高 压(如电压等级为110KV)经变压 器变换为10KV或35KV电压。 2.主变电站的作用就是为牵引变电 站和降压变电站提供电能,之后分 别供给牵引变电站和降压变电站。

城市轨道交通供电PPT (变电所)

城市轨道交通供电PPT (变电所)

牵引供电系统
《地铁设计规范》(GB50157-2013)规定:当正线的中间牵引变电所退出运行时,应由相邻的两座牵引变电所依靠其两 套牵引整流机组的过负荷能力实现大双边供电。
低压供电系统
(1)组成
动 降压变电所 力 照 明 系 统 低压配电系统
(2)作用 为地铁除电动车辆以外的所有动力照明负荷供电。
变电所:25座
供电系统采用集中供电方式,环网电压等级为AC35kV,经牵引变电所、整 流后为列车提供1500V牵引直流电源,经降压变电所降压后为全线动力照明提 供400V交流电源,每个牵引所设置一套双向吸收再生能馈吸收装置,全线设 置供电运行安全管理系统。
主要施工内容:基础预埋件安装、接地干线安装、支架安装、设备安装、 电缆敷设及接续、调试。
降压变电所 牵引变电所
04 主接线图
降压变电所主接线
降压变电所主接线
牵引变电所主接线
降压变电所主接线
单体试验
05 交接试验
所内联调
35kV开关柜
配电变压器
整流变压器
低压开关柜
交直流屏
整流器、负极柜
直流开关柜、轨电位
接地干线
基础预埋件
桥支架安装
设备运输安装
电缆敷设及接续
需其他专业配合的工作
土建 装修 装修
预留孔洞尺寸及位置满足要求 提供1m标高线 地面最终完成面低于槽钢顶面5mm
接地干线安装
施工准备 画线
S卡子安装 扁钢定位打孔 扁钢安装、焊接 接地桩安装
刷黄绿漆
主要控制要点
安装误差 距地面200mm,距墙30mm 安装误差 扁钢搭接宽度2倍,三面满焊 安装误差 穿墙位置加玻璃钢管保护 安装误差 涂刷宽100mm的黄绿条纹

城市轨道交通供电系统的组成

城市轨道交通供电系统的组成

城市轨道交通供电系统的组成
城市轨道交通供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照明供电系统、电力监控系统。

其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。

城市轨道交通供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、降压变电所及牵引降压混合变电所。

主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供给牵引变电所和降压变电所的一种地铁变电所,是专为城市轨道交通系统提供能源的枢纽。

降压变电所:从主变电所(电源开闭所)获得电能并降压变成低压交流电,为车站、隧道动力照明负荷提供电源。

牵引变电所:从主变电所(电源开闭所)获得电能,经过降压和整流变成电动列车牵引所需要的直流电。

F1、F2-城市电网发电厂;
B1、B2、B3-城市电网区域变电所;B4、B5一地铁牵引变电所;
B6-地铁降压变电所。

[全]城轨交通供电系统

[全]城轨交通供电系统

城轨交通供电系统城市轨道供电系统是轨道交通的重要组成部分,没有城市轨道供电系统的可靠安全供电,就不可能有城市轨道交通的正常运行。

城市轨道交通供电系统有主变电所、牵引变电所、降压变所、馈电线、接触轨、走行轨、回流线、迷流防护系统等部分组成。

其中,主变电所把从城市电网110kV电源引入的三相高压交流电降压配送给轨道交通沿线的牵引变电所和降压变电所。

牵引变电所是将交流电经降压整流后换成适合于电动列车使用的直流电(750V)。

直流馈电线是将牵引变电所的直流电输送到接触轨上。

接触轨是沿电动列车行驶轨迹架设的特殊供电设备,电动列车通过其受电器(集电器)与接触网的直接接触而获得电能。

走行轨是作为牵引供电回路的一部分,回流线是将轨道回流引向牵引变电所。

迷流防护系统是将经轨道流入大地的杂散电流通过迷流网收集起来,通过排流柜及其电缆将迷流送回整流器的负端,保护地下或地面建筑物的结构钢筋不被腐蚀。

1.特点及要求(1)供电的可靠性和安全性城市轨道交通供电不同于一般工业企业供电和民用供电,它主要是为运送乘客的列车提供持续的电能,这些电动列车往往处于交通线路沿线的不同线段、不同运行状态之中,有高架地面、地下;有上坡、下坡;还有牵引(包括启动状态)、滑行、制动(包括电气再生制动)等。

列车的运行工况比较复杂,对供电的质量和可靠性要求高。

因此,城市轨道交通需要一个稳定而又经济合理沿线路敷设的城市轨道交通供电电网。

此外,城市轨道交通供电系统还要对为乘客运营服务的辅助设施进行供电。

这些设施包括照明,自动扶梯,通信,信号,通风,给排水,防灾报警,自动售、检票机等等。

城市轨道交通供电是城市电网中的重要用户。

大量的人群滞留在车站和列车上的时间长短不一,交通[供电中心3] 供电的中断不仅会造成交通运输的全线瘫痪,而且可能导致生命和财产的重大损损失[供电中心4] 。

因此,交通[供电中心5] 供电系统必须具备高度的可靠性和安全性。

(2)供电负荷多样性系统中供各级供电网络的变配电设备本身负荷,这类设备的负荷主要包括:变压器损耗、线路损耗、各种电流、电压互感器的线圈损耗等等。

无锡地铁三号线供电状态简介及应急情况下的供电方式调整

无锡地铁三号线供电状态简介及应急情况下的供电方式调整

无锡地铁三号线供电状态简介及应急情况下的供电方式调整摘要:本文对无锡地铁三号线正常供电方式及不正常供电方式,及部分应急状态下的一些调度操作进行分析,以确保整个地铁供电系统安全运行和连续供电。

关键词:无锡地铁三号线;应急;供电方式无锡地铁三号线设有2座110kV主变电所,分别为盛岸主变电站和新区主变电所。

主所设两台主变压器, 110kV电气主接线为线路开关变压器组接线,35kV电气主接线为单母线分段接线,且中性点采用经小电阻接地方式。

正常运行方式为主变电站的两路110kV电源和两台主变压器分列运行, 35kV母联分段断路器打开,两段母线分列运行;故障情况下运行方式为当一台主变压器退出运行或一回110kV电源线路退出运行时,通过合上35kV分段断路器,另一台主变压器应能承担本变电站正常供电范围内的牵引负荷和动力照明等一、二级负荷,当一个主变电站退出运行时,相邻的主变电站应能承担该变电站一、二级负荷的供电。

正常情况下牵引运行方式为牵引降压混合变电所35KV侧为单母线分段,两段母线间设母线分段开关断路器,两台整流机组接在35KV侧的同一段母线上,两台整流机组并列运行,两牵引所间的接触轨采用双边供电方式。

故障时运行方式:当一套整流机组人工退出运行时,可只运行另一套整流机组,此时,电调应严格监视该整流机组的过负荷情况。

当运行过程中,另一套整流机组又出现异常时,电调应把该整流机组也退出运行。

若该所为正线中间牵混所,则相邻的两牵混所间接触轨将通过该变电所直流母排自动转换为大双边越区供电;若硕放机场站、苏庙站牵混所退出运行时,由相邻牵混所单边供电盛岸主变电所故障可分为进线失电,主变故障,母排故障等等,如下进行列举1盛岸主所一路进线失压时的影响范围:1)通知值班主任、行调、维调、环调:盛岸主所71Y(72Y)进线失压,母联310,330未自投,3S05~3S010、3X05~3X010、3CR03、3CR04单边供电。

城市轨道交通的外部供电系统—主变电所

城市轨道交通的外部供电系统—主变电所
图2-11 主变电所中的自动监控设备
三、主变电所向牵引变电所供电的接线方式
供电系统的安全性、可靠性是城市轨道交通正常运行的重 要保证。为此,牵引变电所均由两个独立的电源供电,考虑到 地铁线路分布范围广,通常需要在沿线设置多个牵引变电所。 向牵引变电所供电的接线方式有多种方式,现归纳成以下几种 典型形式:
等提供不间断直流电源。 线路正常时,直流电源设备为它的服务对象提供稳
定的直流电源,并对蓄电池进行充电。故障时由蓄电池 提供1~2小时的直流供电。
图2-10 主变电所中的直流电源设备
4.自动监控设备 自动监控设备用于对变电所电气设备的监测和控制,并能
对其进行远程控制和数据采集。根据供电系统的运行状况,自动 切换电气设备和设施故障自动切除,为城轨供电系统的安全、高 效运行提供保障。
1)当一台主变压器发生故障时,另一台主变压器应能满足 该供电区域高峰小时牵引负荷和动力及照明一、二级负荷的供 电。
2)当一座变电所因故解列时,剩余主变电所应能承担全线 的动力和照明一、二级负荷及牵引负荷。
为了减少城网电压波动和负荷变化对城轨中压系统的电压质
量影响,主变压器多采用有载调压型电力变压器。有载调压开 关具有就地、远方操作功能,安装在高压侧。由于油浸式变压 器价格低,应用成熟,国内城轨供电系统主变电所中大多采用 三相、自冷油浸式、有载调压变压器,主变压器一般采用Y,d接 线,主要有110/35kV、110/33kV和110/10kV三种形式。
1.环形供电接线方式
图2-12 环形供电示意图
图2-13 双边供电示意图
图中a-牵引变电所 b-主变电所 c-一路三相输电线 d-轨道
2.双边供电接线 3.单边供电接线 4.辐射形供电接线
图2-14 单边供电示意图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁主变电所简介
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
地铁主变电所简介1、概述
地铁主变电所将城市电网的高压110KV(或220KV)电能降压后以35KV
或10KV的电压等级分别供给牵引变电所和降压变电所。

为保证供电的可靠性,地铁线路通常设置两座或两座以上主变电所。

主变电所由两路独立的电源进线供电,内部设置2台相同的主变压器。

根据牵引负荷和动力负荷的不同情况,主变压器可采用三相三绕组的有载调压变压器或双绕组的变压器。

采用有载调压变压器在电源进线电压波动时二次侧电压维持在正常值范围内。

主变电所为地铁线路的总变电所,承担整条地铁线路的电力负荷的用电。

(1)可根据负荷计算确定在地铁线路上设置的主变电所数量。

(2)每座主变电所设置2台主变压器,由城市电网地区变电站引入两路独立的110KV专用线路供电,两回路同时运行,互为备用,以保证供电的可靠性和供电质量。

进线电源容量应满足远期时其供电区域内正常运行及故障运行情况下的供电要求。

(3)低压35KV侧采用单母线分段接线,两段母线间设母联断路器,正常运行时母联断路器打开。

(4)正常运行时每座主变电所的两路110KV电源和2台主变压器分列运行。

通过35KV馈出电缆分别向各自供电区域的负荷和动力照明负荷供电。

2、主变电所的主要设备
(一)主变压器
高压侧电压为110KV,低压侧电压为35KV(或10KV)。

主变压器容量应能满足正常运行时,每台变压器容量承担其所供区域内的全部牵引负荷和动力照明的供电。

当发生故障时,应满足如下条件:(1)当一台主变压器发生故障时,另一台主变压器应能满足该供电区域高峰小时牵引负荷和动力及照明一、二级负荷的供电。

(2)当一座变电所因故解列时,剩余主变电所应能承担全线的动力和照明一、二级负荷及牵引负荷。

主变压器容量的选择应考虑近期实际负荷和远期发展的需求。

单台容量大约在20MVA~40MVA范围,主要考虑相邻变电所故障解列时应满足向该段牵引负荷越区供电的要求。

(二)110KVGIS组合电器
主变电所采用110KV全封闭六氟化硫组合电器设备,SF6气体绝缘的金属封闭开关设备,简称GIS(GasInsuLatedmetaL-encLosedSwitchgear)。

GIS
是由各种开关电器:断路器GCB、隔离开关DS、接地开关ES、母线、现地汇控柜LCP以及电流互感器CT、电压互感器VT和避雷器LA等组成的电力设备,具有结构紧凑、抗污染能力强、运行安全、外型美观、设备占用空间小等特点。

主要技术规格如下:
(1)额定电压:110KV
(2)最高工作电压:126KV
(3)额定绝缘水平:
额定雷电冲击耐受电压(峰值):相对地650KV
断口650+100KV(隔离开关)
断口650KV(断路器)
额定1分钟工频耐受电压(有效值):耐受电压275KV
断口315KV(隔离开关)
断口275KV(断路器)
(4)SF6气体零表压时耐受电压(相对地):1.3*126√3KV(5min)(5)局部放电量(1.1倍相电压下)
气隔绝缘子:小于3PC
整体GIS:小于10PC
(6)额定电流:2000A
(7)额定热稳定电流及持续时间:40KA/3S
(8)额定动稳定电流:100KA
(9)额定频率:50HZ
(10)相数:3
(11)断路器操动机构和辅助回路的额定电压:直流220V
(三)主变电所二次设备
(1)主变压器保护
SR745数字式变压器管理继电器,用于变压器保护、控制、接口、测量和监测。

可实现以下功能:
l?主变内部故障时的纵差保护,保护动作跳主变两侧;
l?SR745低压侧过流元件和MIV电压继电器配合,组成低压侧复合过流,依次跳本侧及主变两侧;
l?按负荷起动风扇回路;
l?联跳电容器回路;
l?用于2#主变时,作主变及线路的纵差保护,动作跳主变两侧。

MIF数字式馈线管理继电器(装于110KV侧),用于主变压器保
护、接口、测量和监测。

可实现以下功能:
l?同MIV电压继电器共同组成110KV复合电压过流保护,第一时限跳本侧,第二时限跳两侧;
l?同MIV电压继电器共同组成110KV零序过流方向保护,第一时限跳本侧,第二时限跳两侧;
l?监视零序,保护动作经0.3~0.5S跳主变两侧;
l?过负荷保护,发信号及闭锁有载调压开关。

MIV电压继电器,共2台:
l?一台装于110KV侧,实现:同MIF共同组成复合电压过流保护,第一时限跳本侧,第二时限跳两侧;同MIF共同组成零序过流方向保护,第一时限跳本侧,第二时限跳两侧;零序过压保护保护动作经0.3~0.5S 跳主变两侧。

l?另一台装于35KV侧,实现:
利用SR745的过流保护功能共同组成复合电压过流保护,依次跳本侧及主变两侧。

(2)线路保护
配置L90线路差动继电器,实现线路保护要求。

L90光纤纵差保护用于跳闸输出的A型继电器动作时间小于4ms,用于信号输出的快速C型继电器动作时间小于0.6ms。

L90与电力监控系统的接口采用数字通讯方式,实现控制、监视、测量和保护动作信号的数据交换。

L90光纤纵差保护的3个通讯口,可以独立或同时运行。

L90具备完善的在线自检功能,在正常运行时一直进行自检,但不影响任何保护功能,如检出异常则发出告警信号并闭锁保护。

(四)环网电缆(110KV电缆,35KV电缆,1500V直流电缆)
环网电力电缆选用低烟、低卤、低毒、阻燃电缆;敷设于重要场所的电缆则选用无烟、无卤、无毒、阻燃电缆。

(1)敷设条件:布置于隧道(或地面)及变电所内电缆支架上或敷设于地面电缆沟槽的电缆支架上,可敷设于可能短时积水的电缆沟内。

(2)材料要求:
l?电缆应具有低烟、低卤、阻燃等特性,部分电缆还应同时考虑防水、防紫外线要求。

l?电缆的防水、防潮性能应满足:电缆样品在水中浸泡72小时后,去除绝缘层外面的复合层后,用肉眼观察,绝缘层外表面应是干燥的。

l?电缆燃烧时的阻燃性能、低烟或无烟、无毒性能应满足相关规定的技术要求。

l?电缆具有防白蚁性能,按照GB/T2952.38《电线电缆白蚁试验方法》中击倒法的规定进行测试,测试结果要求为:KT50应不大于250分钟。

l?电缆的绝缘电阻应满足GB12706-1991的规定。

交联聚乙烯绝缘在最高额定温度下,绝缘电阻常数Ki应不小于3.67MΩ·km。

(3)电缆敷设要求
地铁电缆种类多、数量大、敷设空间条件恶劣。

电缆敷设是否达到要求,不仅影响供电系统的可靠性,而且还影响故障发生率和事故范围。

l?上下行环网电缆分别敷设在线路两侧,电缆支架上的电缆按电压等级由高到低分层敷设以减少相互间的干扰,特别是电力电缆与弱电电缆应保持>0.5米的间距要求。

l?变电所电气设备多、相互间连线密集,因此应在设备室下设置电缆夹层以便于电缆敷设。

电缆夹层设置进人孔,其位置和数量应满足电缆敷设和后期运营维护的要求。

l?在车辆段、停车场内,电缆采用在电缆沟内敷设方式,由于车辆段、停车场的管线多,设置电缆沟要注意与其他管线的协调。

l?在电缆敷设施工完成后,应严格封堵预留管、孔、洞,减少小动物进入设备房造成事故的可能及控制火灾漫沿范围。

供电系统的安全性、可靠性是地铁正常运行的重要保证。

为此,牵引变电所均由两个独立的电源供电,考虑到地铁线路分布范围广,通常需要在沿线设置多个牵引变电所。

相关文档
最新文档