循环流化床锅炉脱硫计算
130t循环流化床锅炉设计计算表
饱和蒸汽焓
21
饱和水焓
22
给水温度
23
给水焓
24
最大连续蒸发量
25
锅炉排污水流量
26
锅炉机组有效利用热量
27
脱硫工况时当量燃料消耗量
28
脱硫工况时计算燃料消耗量
29
脱硫工况时燃料消耗量
30
计算石灰石消耗量
31
石灰石消耗量
32
计算燃料当量消耗量
3.3 炉膛膜式水冷壁传热系数计算
trk θpy tlk
pg pgs ηpw Dpw
3
石灰石水分
4
石灰石灰分
2、燃烧脱硫计算
2.1 无脱硫工况时的燃烧计算
序号
名称
1
理论空气量
2
三原子气体体积
3
理论氮气体积
4
理论水蒸气体积
5 2.3 脱硫计算 序号
飞灰份额 名称
1
SO2原始排放浓度
2
SO2最高允许排放浓度
3
计算脱硫效率
4
燃煤自脱硫能力系数
5
石灰石脱硫能力系数
6
钙硫摩尔比
7
石灰石中CaCO3含量
ACaO ACaSO4
ADar ad aDd af aDf ηf an a μDSO2 ηSO2
η
符号 DMCR pgr t''gr Dp Dd tgs
7
热空气温度
8
排烟温度
9பைடு நூலகம்
冷空气温度
10
锅筒蒸汽压力
11
给水压力
12
锅炉排污率
13
锅炉排污流量
14
燃烧方式
循环流化床锅炉烟气脱硫技术
ABB-NID1、ABB锅炉烟气脱硫技术ABB锅炉烟气脱硫技术简称NID,它是由旋转喷雾半干法脱硫技术基础上发展而来的。
NID的原理是:以一定细度的石灰粉(CaO)经消化增湿处理后与大倍率的循环灰混合直接喷入反应器,在反应器中与烟气二氧化硫反应生成固态的亚硫酸钙及少量硫酸钙,再经除尘器除尘,达到烟气脱硫目的。
其化学反应式如下:CaO+H2O=Ca(OH)2Ca(OH)2+SO2=CaSO3·1/2H2O+1/2H2ONID技术将反应产物,石灰和水在容器中混合在加入吸收塔。
这种工艺只有很有限的商业运行经验,并且仅运行在100MW及以下机组,属于发展中的,不完善的技术。
和CFB技术相比,其主要缺点如下:由于黏性产物的存在,混合容器中频繁的有灰沉积由于吸收塔内颗粒的表面积小,造成脱硫效率低由于吸收塔中较高的固体和气体流速,使气体固体流速差减小,而且固体和气体在吸收塔中的滞留时间短,导致在一定的脱硫效率时,钙硫比较高,总的脱硫效果差。
需要配布袋除尘器,使其有一个”后续反应”才能达到一个稍高的脱硫效率,配电除尘器则没有”后续反应”。
对于大型机组,由于烟气量较大,通常需要多个反应器,反应器的增多不便于负荷调节,调节时除尘器入口烟气压力偏差较大。
脱硫剂、工艺水以及循环灰同时进入增湿消化器,容易产生粘接现象,负荷调节比较滞后。
Wulff-RCFBWulFF的CFB技术来源于80年代后期转到Wulff 去的鲁奇公司的雇员。
而LEE 近年来开发的新技术,Wulff公司没有,因此其技术有许多弱点:电除尘器的水平进口,直接积灰和气流与灰的分布不均。
没有要求再循环系统,对锅炉负荷的变化差,并直接导致在满负荷时烟气压头损失大。
消石灰和再循环产物的加入点靠近喷水点,使脱硫产物的黏性增加。
喷嘴上部引入再循环灰将对流化动态有负面影响,导致流化床中灰分布不均,在低负荷时,流化速度降低,循环灰容易从流化床掉入进口烟道中,严重时,大量的循环灰可将喷嘴堵塞。
循环流化床半干法烟气脱硫设计计算
A Vg,FGDin,r
m2 m3/h
L1*L2 (273.15+T1)*Vg,FGDin/273.1 5
24 1394757
5
现有除尘器入口管道烟速
wESP
m/s Vg,FGDin,r/(3600*A)
16.14302
6 烟道设计流速
w
m/s <15m/s
14.5
3 3.1 序号 1 2 3 4
脱硫系统 脱硫塔设计参数
80 0 99.98 0 0 0.05 0 75 60 20 0 5 5 0 1.3
16 脱硫系统入口烟气压力
P
kPa 给定
98.3
2 烟气系统
序号
名称
符号 单位 计算公式
数值
1 现有除6
2 现有除尘器入口烟道边长2 L2
m 根据现场
4
3 4
现有除尘器入口烟道截面 积现有除尘器入口实际烟气 量
ηSO2 ηd0 ηsep ηd2 Δαd0 Δαd1 Δαd2 T2 TH2O Tslime nl0 nl nl1 nl2 Ca/S
% 给定 % 取用 % 给定 % 给定
选自除尘器参数资料 选自除尘器参数资料 选自除尘器参数资料 ℃ 给定 ℃ 给定 ℃ 给定 % 给定 % 给定 % 给定 % 给定 mol/mol 给定
脱硫系统 脱硫塔与
1 脱硫系统总性能参数
序号
名称
符号 单位 计算公式
数值
1 系统总脱硫率 2 预除尘效率 3 一级除尘器分离效率 4 二级除尘效率 5 预除尘器漏风系数 6 一级除尘器漏风系数 7 二级除尘器漏风系数 8 脱硫塔出口烟温 9 脱硫塔喷水温度 10 消石灰粉温度 11 预除尘器热损失系数 12 脱硫塔热损失系数 13 一级除尘器热损失系数 14 二级除尘器热损失系数 15 脱硫系统钙硫摩尔比
循环流化床半干法烟气脱硫设计计算
%
6 收到基灰分
Aar
%
7 收到基水分
War
%
8 收到基低位发热量
Qnet.ar
kJ/kg
3 燃烧产物容积及焓计算
3.1 理论空气量及理论烟气量容积计算
给定 给定 给定
给定 给定 给定 给定 给定 给定 给定 给定
计算公式
21.91
95 145 1.5 1.5 1.5 1.5 1.55
预除尘器入口 不考虑脱硫塔漏风
循环流化床半干法烟气脱硫系统烟气量及成份特性计算
1 锅炉参数
序号 名称 1 实际燃煤量
符号
单位 计算公式
B
T/h 给定
2 固体不完全燃烧损失份额
q4
给定
数值 22.87
4.19
备注
3 计算燃料消耗量
Bcal
T/h
4 锅炉飞灰份额
αf,a
5 脱硫系统入口烟温
T0
℃
6 脱硫系统入口过量空气系数 α0′
7 脱硫塔入口过量空气系数
7 未反应的CaO质量
符号
ns n ns,g M CaO
M Ca (OH )2
GCaO GCaO,l
单位
kmol/h
计算公式 根据《锅炉原理》应为0.7~0.9
kmol/h
kg/kmol
kg/kmol T/h
T/h
8 未反应的Ca(OH)2质量
9
CaSO3
⋅
1 2
H 2 O分子量
Nm3/h
21 二级除尘器出口烟气容积
Vg,d2out
Nm3/h
红色区域为组分的份额 绿色区域为需要输入的初始参数
362.4
循环流化床半干法脱硫装置计算书
一、喷水量的计算(热平衡法)参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃C Ca(OH)2=0.246Kcal/Kg ·℃1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水M 烟气=ρ烟气·V 烟=510453.286112.0⨯⨯510112.2⨯=(Kg/hr )Q 烟气=C P ·M ·t 5510489.7814410112.225808.0⨯=⨯⨯⨯=(Kcal/hr)M 灰253105694.4810453.2108.19⨯=⨯⨯⨯=-(Kg/hr )Q 灰=C 灰•M 灰•t =52103775.1144105694.4819696.0⨯=⨯⨯⨯(Kcal /hr) Q Ca(OH)2=C Ca(OH)2•M •20=20246.02)(⨯⨯OH Ca M当 Ca/S=1.3, SO 2浓度为3500mg/m 3时Kg M OH Ca 244.151810743.185.06410453.21035003532)(=⨯⨯⨯⨯⨯⨯⨯=-- ∴Q Ca(OH)2=76.746920244.1518246.0=⨯⨯(Kcal/hr)Q 水=cmt=χχ20201=⨯⨯(Kcal/hr) 其中χ为喷水量2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr)Q 烟气=cmt=551079.417810112.225368.0⨯=⨯⨯⨯(Kcal/hr);Q 灰2=264.7576810785694.482.02=⨯⨯⨯(Kcal/hr)Q 蒸汽=630.5χ(Kcal/Kg )热损失以3%计: Q 散=(Q 烟气+Q 灰)03.0⨯03.0)103775.110489.78(55⨯⨯+⨯=3.系统热平衡计算: Q in =Q out ,即:03.0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.7855555⨯⨯+⨯+++⨯+=++⨯+⨯χχ∴χ=5.72(t/hr)二、脱硫主塔结构尺寸的计算1.出口计算主要计算脱硫塔出口高度,出口顶部颗粒速度为零。
毕业设计-130th循环流化床燃烧锅炉设计及炉内初步计算
本科毕业设计(论文)题目130T/H循环流化床燃烧锅炉设计及炉内初步计算院(系部)机械与动力工程专业名称热能与动力工程年级班级热能10-1班学生姓名指导教师年月日摘要随着人们对能源需求量的日益扩大以及对环境质量要求的不断提高,作为近年来国际上发展起来的新一代高效、低污染的清洁燃烧锅炉,循环流化床锅炉得到了迅速地推广,是一项具有重要实际意义的研究课题。
本次设计题目为130T/H循环流化床燃烧锅炉。
本设计进行了循环流化床锅炉燃烧脱硫计算、锅炉热平衡及燃料和石灰石消耗量、炉膛模式水冷壁传热系数计算、炉膛汽冷屏传热系数计算、炉膛结构计算、炉膛热力计算以及旋风分离器烟气阻力计算、炉膛风室压力计算、回料器设计计算、对流受热面设计计算(高温过热器,低温过热器,省煤器,空气预热器的热力计算)、锅炉热平衡计算误差校核。
关键词:循环流化床;锅炉;过热器;脱硫AbstractWith people of the growing demand for energy and environmental quality requirements, as a steady improvement in recent years the international community develop new generation of highly efficient, low pollution in the boiler, the vessels of a boiler has been rapidly spread,is a major significance of the research topics.This design topic is 130T/H steam separation circulation fluid bed burning boiler. The design of the case of the burning vessels, the balance of heat and fuel and limestone mode of the cold water, the heat transfer of the calculating, the heat transfer of the calculating, structural calculations, the cyclone heat and the drag the smoke the chamber pressure to calculate and design calculations, convection design calculations (high fever, at a heat exchanger, save coal, the warm air of heat and hot) the calculations. the nuclear balance.Keywords: circulating fluidized; bed boiler; superheater; desulfurization目录前言 (1)1 燃料和脱硫剂 (2)1.1燃料 (2)1.2脱硫剂 (3)2 锅炉性能预计 (5)2.1SO排放浓度 (6)22.2碳的燃尽度 (7)2.3灰平衡与灰循环倍率 (7)3 脱硫工况时物质平衡与热平衡 (8)3.1燃烧和脱硫的化学反应式 (8)3.2当量灰分 (12)3.3灰比换算 (13)3.4当量理论空气量 (17)3.5燃烧和脱硫产生的烟气量 (17)3.6脱硫对热效率的影响 (20)4 燃烧产物热平衡方程式 (24)4.1灰循环倍率 (24)4.2炉膛有效放热量 (24)4.3烟气的焓增 (25)4.4分离器热平衡 (25)4.5炉膛及EHE的传热系数 (26)5 循环流化床锅炉机组热力计算 (28)5.1热平衡及燃料和脱硫剂消耗计算 (28)5.2炉膛热力计算 (30)总结 (48)致谢 (49)参考文献 (50)河南理工大学本科毕业设计前言我国是世界上最大的产煤国家。
循环流化床锅炉低氮改造技术介绍
循环流化床锅炉低氮改造方案1目录1.NOx生成机理及影响因素2.脱硝改造方案33.杭锅烟气清洁排放技术2CFB 锅炉NOx 来源——燃烧温度影响Nox 生成机理及影响因素¾燃烧最高温度Tmax <1500K(1267℃ ),燃料型NOx为主¾燃烧最高温度Tmax >1900K(1627℃ ),燃料型NOx所占比例减少¾燃烧最高温度Tmax >2200K(1927℃ ),热力型NOx为主CFB锅炉炉膛温度在850~950℃,热力型NOx占总排放10%以下,以燃料型NOx为主。
NOx浓度理论计算公式——泽利多维奇公式C NOx =K(C N2C O2)1/2exp(-21500/RT T ) g/m 3;3NOx 生成与燃烧温度关系——摘自《CFB 锅炉NOx 的生成机理与计算》CFB锅炉NOx来源——物料粒径影响Nox生成机理及影响因素¾细颗粒可加强炉膛传热,使得炉膛内燃烧热量分配更趋合理,保证炉膛温度场均匀,避免密相区出现局部超温。
¾物料越细,燃烧速率提高,O2加速消耗,利于CO生成,炭粒表面还原气氛增强,抑制NOx生成。
制成¾细颗粒反应表面积增大,焦炭对NOx还原能力增强。
¾细颗粒着火提前,相应延长NOx分解还原时间。
物料粒径对NOx生成的影响——摘自《不同煤种高温燃烧时NOx和SO2生成影响因素的实验》4Nox生成机理及影响因素CFB锅炉NOx来源——过量空气系数影响过量空气系数增加,NOx生成增加¾贫氧燃烧条件下,燃烧中间产物易向N2转化,同时未燃尽C与还原气体抑制NOx生成¾富氧燃烧条件下,燃烧中间产物易向NOx转化转化。
煤过量空气系数与NO浓度关系——《不同种类煤粉燃烧NOx排放特性试验研究》5¾减小次风率使密相区为还原性气氛抑制NO 生成密相区流化风速CFB 锅炉NOx 来源——一、二次风率影响Nox 生成机理及影响因素减小一次风率,使密相区为还原性气氛,抑制NOx生成;密相区流化风速减小,气体及煤颗粒停留时间增加,抑制NOx生成.提高二次风率,增强二次风穿透能力,加强稀相区的气固混合降低飞¾提高二次风率,增强二次风穿透能力,加强稀相区的气固混合, 降低飞灰含碳量。
220t h 循环流化床锅炉说明书
220t/h循环流化床锅炉说明书目录一、锅炉基本特性 (3)1、主要工作参数 (3)2、设计燃料 (3)3、安装和运行条件 (4)4、锅炉基本尺寸 (4)二、锅炉结构简述 (5)1. 炉膛水冷壁 (5)2. 高效蜗壳式汽冷旋风分离器 (7)3. 锅筒及锅筒内部设备 (7)4. 燃烧设备 (8)5. 过热器系统及其调温装置 (11)6. 省煤器 (11)7. 空气预热器 (12)8. 锅炉范围内管道 (12)9. 吹灰装置 (12)10. 密封装置 (12)11. 炉墙 (13)12. 构架 (13)13.膨胀系统 (14)14.锅炉水压试验 (14)15.锅炉过程监控 (14)三、性能说明 (16)一、锅炉基本特性1、主要工作参数额定蒸发量 220 t/h额定蒸汽温度 540 ℃额定蒸汽压力(表压) 9.8 MPa给水温度 215 ℃锅炉排烟温度 ~140 ℃排污率≤2 %空气预热器进风温度 20 ℃锅炉计算热效率 90.5 %锅炉保证热效率 90%燃料消耗量 41.7 t/h 石灰石消耗量 585 kg/h 一次热风温度 200 ℃二次热风温度210 ℃一、二次风量比 55:45循环倍率 25~30脱硫效率(钙硫摩尔比为2.5时)≥ 70 % 2、设计燃料(1)煤种及煤质煤的入炉粒度要求:粒度范围0~10mm,50%切割粒径d50=2mm,详见附图。
(2)点火及助燃用油锅炉点火用油:甲醇和甲醇油(3)石灰石特性颗粒度0-1mm.d50=0.25mm.3、安装和运行条件地震烈度里氏6度,按7度设防。
锅炉给水满足GB/T12145《火力发电机组及蒸汽动力设备水汽质量》标准。
4、锅炉基本尺寸炉膛宽度(两侧水冷壁中心线间距离) 8770mm炉膛深度(前后水冷壁中心线间距离) 6610mm炉膛顶棚管标高 37600mm锅筒中心线标高 41000mm锅炉最高点标高 45000mm运转层标高 8000mm操作层标高 5400mm锅炉宽度(两侧柱间中心距离) 23000mm锅炉深度(柱Z1与柱Z4之间距离) 27600mm二、锅炉结构简述锅炉为高温高压,单锅筒横置式,单炉膛,自然循环,全悬吊结构,全钢架π型布置。
330MW循环流化床锅炉热力计算表格程序
表1 表1 分离器占16% 包墙占16% 低过占16% 屏过、高过各占26% 表1 表1 低再、屏再各占50% 表1
计算 计算 计算 计算 计算 表28 计算 表29 表1 计算 表30 计算 表31 表1
0.23632 3.33688 5.62448 0.51755 是 是 否
结果
red —
Ared,ar %
Mred,ar %
Sred,ar %
—
—
—
—
—
—
符号 单位
P'sm MPa
Pgt
MPa
P''cyc MPa
P''bq MPa
P''dg MPa
P''pg MPa
P''gg MPa
P'dz MPa
P''dz MPa
P''pz MPa
Dsm
kg/s
Dpw
kg/s
Dcyc kg/s
bCaCO3(1-β fj/100)XCaCO3/100
0.07368 0.0463
0.00274
XzzbCaCO3
0.52349
Aar+ACaSO4+ACaO+Awfj +Azz
14.7662
bCaCO3Bj
7.38888
计算公式或数据来源 结 果
给定
7.38888
表1
94.39
给定
51.4758
kg/kg
kg/kg烟 气
8.510510383 8.51051 8.51051 0.009577767 0.00958 0.00958
75t循环流化床燃煤锅炉烟气脱硫工艺设计方案
目录一、基础数据和技术要求1.1项目概况1.2设计条件二、设计依据及设计范围2.1、设计条件2.2、设计原则2.3、设计范围2.4、设计分界点2.5、达标要求三、脱硫工艺选择3.1、双碱法脱硫工艺3.2、脱硫剂用量3.3、脱硫除尘系统性能、质量保证措施3.4、工艺流程图3.5、脱硫工艺分系统介绍3.6、物料计算及分析四、 NTL-75型湿式旋流加鼓泡板脱硫塔4.1、NTL-75型湿式旋流加鼓泡板脱硫塔工作原理4.2、脱硫塔结构主要技术参数五、其它设备配置5.1、烟气系统5.2、制浆及再生系统5.3、脱硫浆循环系统5.4、废水处理系统六、电气控制配置七、主要设备清单八、运行费用分析九、售后服务承诺书附件:附件一:工艺方案图附件二:系统设备布置总平面图一、基础数据和技术要求1.1项目概况XXXXX6#75t/h循环流化床燃煤锅炉的燃煤含硫量为0.6~0.8%,燃煤消耗量15t/h,烟气量160000m3/h,外排烟气已配置三电场静电除尘器作除尘处理。
但锅炉外排烟气的二氧化硫没有设置处理,二氧化硫等有害气体对工厂大气及周边环境产生污染。
为此业主决定为6#锅炉配置湿式氨法烟气脱硫净化装置,保证锅炉外排烟气脱硫后能够达标排放。
我公司依据75t/h燃煤循环流化床锅炉的有关技术参数(建设单位提供),以及国家相关现行的环境保护设计规范、标准。
作6#75t/h 循环流化床锅炉外排烟气脱硫除尘系统工程工艺方案设计。
我公司拟提供的炉外脱硫除尘系统,是已获国家专利(专利号为:200620052367.9)的旋流除尘脱硫设备(装置)塔,该塔结构合理、技术先,进、是成熟可靠的产品,整个生产过程符合ISO/9000质量保证体系。
确保脱硫系统运行的安全、经济、可靠。
本工程工艺设计方案,适用于75t/h循环流化床锅炉的炉外脱硫系统,包括炉外脱硫系统、脱硫除尘设备塔主体及辅助设备的功能设计、结构、性能、控制、设备安装、调试等方面的技术要求,为交钥匙工程。
浅析循环流化床锅炉脱硫
摘 要 : 用 循 环 硫 化 燃 烧 理 论 所 设 计 出来 的 节 能 高 效 且 环 保 的 技 术 就 是 数 量 成 比例 也 是 随 着 钙 量 的 增 加 也 在 不 断 的 增 加 。 当钙 硫 比 超 过 运 循 环流 化 床 锅 炉 脱 硫 技 术 ,该 技 术 不 仅 能 有 效 降 低 污 染 物 的 产 出和 排 污 系 25时 , 断投 入钙 量 也 无 法 起 到 提 高 脱 硫 效 率 的效 果 , 样 既 造 成 . 不 这 数 , 能 有 效 地 节 约 生 产 成 本 , 经 济 效 益 和 环 境 效 益 上 , 实 现 双 赢 效 果 。 脱 硫 剂 的浪 费 , 使 得 灰 渣 的物 理 热 损 失 大 为增 加 。 还 在 能 也 本 文就 循 环 流 化 床 锅 炉 脱 硫 展 开 了探 讨 。 关键词 : 环流化床锅炉 循 脱硫 原理 影 响 因素
24 床 料 粒 度 脱 硫 效 率 还 会 受 到 脱 硫 剂 和 燃 料 的 粒 度 , . 以及 二 者 之 间 粒径 的 分 布 的 影 响 。 为 了使 S 扩 散 到 脱 硫 剂 的核 心 处 , O, 并 煤 炭 一 直 是 我 国的 主 要 能 源 之 一 , 全 国 总 能 源 消 费 中 , 炭 消 在 煤 增 大参 与 反 应 面 积 , 于 脱 硫 , 以采 用 较 小 粒 径 的 石灰 石 。 而 , 利 可 然 也 耗 就 占 了将 近 7 % , 0 而用 煤 大 户 之 一就 为 火 力 发 电。 在 燃 烧 煤 的过 不 能用 粒 度 过 小 的 石 灰 石 , 是 所 使 用 的 石灰 石 太 易磨 损 , 就 会 加 或 这 程 中 , 有 大 量 的 S 、 尘 、 O 等 有 害
添加脱硫剂的循环流化床锅炉热效率的计算
添加脱硫剂的循环流化床锅炉热效率的计算H.1 添加脱硫剂入炉灰分计算 H.1.1 钙硫摩尔比计算钙硫摩尔比按公式(H.1)计算:3,glb ,CaCO B 32.066100.086S Bar shs t ar K =………………………………………(H.1)式中:glbK —钙硫摩尔比;3,CaCO ar—脱硫剂中碳酸钙的质量分数,%;B —入炉燃料的质量流量,kg/h ;B shs —脱硫剂质量流量,kg/h ;S ar —燃料收到基硫,%。
H.1.2 脱硫效率脱硫效率按公式(H.2)计算:0222SO SO SO 100tl V V V η-=⨯ ………………………………………(H.2)式中:tl η—脱硫效率,%;2SO V —锅炉排烟中二氧化硫气体理论计算排放值,mg/m 3;2SO V —锅炉排烟中二氧化硫气体实测值折算为py α=1.75时干烟气中的质量含量,mg/m 3。
024SO ,1.75S 641032.066ar gy V V =⨯ ………………………………………(H.3),1.75gy V —根据GB13271规定,gyV 为过量空气系数在1.75时的干烟气量,m 3/kg 。
H.1.3 添加脱硫剂后入炉灰分计算添加脱硫剂后,入炉燃料灰分包括:入炉燃料带入的灰分、脱硫生成的硫酸钙、未参加脱硫反应的氧化钙、未发生分解反应的碳酸钙、脱硫剂杂质。
相应每千克入炉燃料灰分按公式(H.4)计算:4CaSO CaO js ar wfj zz A A A A A A =++++……………………………………(H.4)式中:jsA —添加脱硫剂后,相应每千克入炉燃料灰分的质量,kg/kg ;ar A —燃料收到基灰分,%;4CaSO A —相应每千克入炉燃料,脱硫后生成的硫酸钙的质量,kg/kg ;wfjA —相应每千克入炉燃料,脱硫剂未分解的碳酸钙的质量,kg/kg ;CaO A —相应每千克入炉燃料,脱硫剂煅烧反应后未发生硫酸盐化反应的氧化钙质量,kg/kg 。
循环流化床半干法烟气脱硫设计计算
2 脱硫塔入口烟气焓值
I g,in
kJ/kg kJ/kg
查焓温表,注意温度范围
(1 − nl0 /100 )Ig,d0
3 脱硫塔入口烟气温度
T1
℃ 查焓温表,注意温度范围
4 脱硫塔出口烟气焓值 5 脱硫塔烟气放热量
I g,out
kJ/kg 查焓温表,注意温度范围
Qg
kJ/h
( ) Bcal I g,in − I g,out
7 未反应的CaO质量
8 未反应的Ca(OH)2质量
9
CaSO3
⋅
1 2
H
2O分子量
10
生成CaSO3
⋅
1 2
H
2
O质量
11 生石灰用量
12 生石灰含杂质量
13 消石灰用量
14 脱硫生成物总质量
2 露点温度计算
2.1 脱硫塔入口露点温度
序号
名称
1 脱硫塔入口蒸汽分压
2 脱硫塔入口水露点温度
符号
ns n ns,g M CaO
CH 2O Nm3/kg
75 150.5 304.5 462.7
I = V C H2O
0 H2O H2O
kJ/kg
37.46
75.17
152.08
231.09
kJ/kg
589.23 1176.14 2386.35 3632.14
Ck Nm3/kg
65 132.4 266.4 402.7
I
0 k
= V 0Ck
M Ca(OH )2
GCaO GCaO,l
GCa(OH )2 ,l M CaSO3 GCaSO3
Glime Glime,ip
循环流化床CFB半干法脱硫工艺计算程序
循环流化床干法脱硫业主:Circulating Fluidized Bed DryScrubber项目:工艺计算technical calculation输入参数gas volume 烟气量300,000Nm^3/h工况烟气量烟气量放量10.0%烟气含 SO2 量烟气温度140℃要求出口含 SO2 量温度放量10℃要求脱硫效率CDS入口粉尘浓度 0.25g/Nm^3CaO的利用率为要求粉尘排放浓度15mg/Nm^3脱硫需要的Ca/S比为一年运行小时数7000小时取CaO的纯度为烟气喷水冷却后温度70℃消石灰含水标况烟气量计算结果计算温度150℃计算烟气量后除尘器入口含尘浓度#REF!g/Nm^3工况烟气量除尘效率#REF!则SO2排放浓度为飞灰生成量#REF!Kg/h check每小时需脱去的SO2量为石灰消化用水量 130Kg/h烟气喷水冷却水量 14,447Kg/h一年运行天数喷嘴进水管水量 21,670Kg/h脱硫需要的CaO为系统耗水量 14,577Kg/h脱硫需要的Ca(OH)2为一天消化石灰用水为 3.1t/day一天所需CaO为一年消化石灰用水为 913t/year一年所需CaO为一天需要的脱硫用水为 347t/day一天需要的Ca(OH)2为一年需要的脱硫用水为 101,128t/year一年需要的Ca(OH)2为设计:校对:日期:日期:业主:项目:主要设备选型计算脱硫塔台数1台文丘里喉口速度漏风系数 2.0%文丘里个数出口法兰标高 3.5m塔内气速底部灰斗角度60 °脱硫塔进口烟气流速出灰口宽(方形)300mm出口烟道进口烟气量141.45am^3/s出口烟气量CDS塔几何尺寸单塔截面积31.5m^2文丘里段塔截面CDS塔直径 A 6.40m文丘里段塔直径 E 出口法兰高 B2 5.6m单塔喉口总面积计算出口法兰宽 B1 5.7m喉口直径 I天圆地方高 C 3.3m文丘里喉高 J3CDS塔直段高 D16.7m文丘里之间边距入口法兰宽 F 3.7m一级缩管直径 H1入口法兰高 G 2.7m二级缩管直径 H2底部灰斗高 2.94m一级缩管高 J1文丘里出口变径 L 3.7m二级缩管高 J2塔反应段高度29.3m文丘里出口喇叭高 J4反应时间 6.51s文丘里总高 K CDS塔总高38.40mCDS塔离地高41.9m单塔重#REF!t设计:校对:日期:日期:业主:项目:消石灰仓 Ca(OH)2数量1台数量储期1天储量消石灰容重0.6t/m^3脱硫灰容重直径3m直径取锥角63度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积20.4m^3所需容积锥体积7.7m^3锥体积直段高度 2.9m直段高度整个仓高 5.4m整个仓高仓重#REF!t仓重中间石灰仓数量0台数量储期0.5h储量消石灰容重0.5t/m^3直径直径1m所需容积所需容积0.6m^3高度高度0.7m水箱重仓重#REF!t生石灰仓数量1台系统数量储期3天数量生石灰容重 1.2t/m^3储量直径3m脱硫灰容重所需容积24.1m^3直径直段高度 3.4m取锥角仓重#REF!t出口法兰宽容积利用率所需容积锥体积直段高度整个仓高仓重中转灰仓数量0台系统数量储量0.15h数量脱硫灰容重0.6t/m^3储量循环灰量#REF!t/h脱硫灰容重直径2m直径取锥角60度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积#REF!m^3所需容积锥体积 2.1m^3锥体积直段高度#REF!m直段高度整个仓高#REF!m整个仓高仓重t仓重日期:2022/2/24锅炉:130Tam^3/h标况烟气 -Nm^3/h800mg/Nm^3石灰石细度:90%小于44μm(325目)30.0mg/Nm^3湿法中SO3以气溶胶的形式存在,跟随性较好,将绕过喷淋层液滴直接进入烟囱,排放到大气中,在半法脱硫中中,SO3表面不会以气溶脱的形式存在,SO3可以很好的与脱硫剂反应,生成96.3%65.0%Ca(OH)2+ SO2=CaS O3.1/2H2 O+1/2H2 O1.48CaSO3.1/ 2H2O+3/2 H2O+1/2 O2=CaSO 4.2H2O80.0%量要求:石灰粉细度宜在2mm以下;加适量水后4min内温度可升高到60度(或是3min温升45度),纯度:CaO含量>=85%.1.0%300000Nm^3/h499,231am^3/h138.68am^3/s循环倍率3630.0mg/Nm^3循环灰量#REF!Kg/hOK 沉降室效率0%248Kg/h 沉降室灰量#REF!Kg/h 沉降室灰量#REF!T/h291.7天脱硫灰容重0.6T/m^3402Kg/h 沉降室灰量#REF!m^3/h511Kg/h中转灰仓灰量#REF!T/h9.6t/day循环灰量#REF!T/h 2,813t/year排出量#REF!T/h12.3t/day3,576t/year布袋效率100%布袋收灰量#REF!T/h灰斗个数#REF!每灰斗灰量#REF!T/h日期:2022/2/24锅炉:60m/s 7个4.5m/s 14.00m/s 正方形m出口烟道正方形119.82am^3/s长方形m10.20m^2进CDS烟道截面3.23700mm 2.36m^2650mm975.0mm文丘里之间边距60.0mm75.0mm 文丘里与壁之间边距52.5mm1158mm 827.0mm 165.5mm 331.0mm 1441.0mm 2913.0mm文丘里计算日期:2022/2/24锅炉:1台9h0.6t/m^32m61度400mm80.0%#REF!m^32.2m^3#REF!m#REF!m#REF!t1台4h4.6m86.7m^35.2m#REF!t1套#5,#6炉共设两座直径为10m 的灰库,每座灰库有效贮灰容积为1860m^3,可供两炉存灰48h 。
循环流化床锅炉添加石灰石脱硫后排放与灰平衡计算解读
文章编号 :1004-7204(2000 01-0033-07工(, 上海 200237摘要 :循环流化床锅炉添加石灰石脱硫是其特出优点之一 , 它具有脱硫效率高 , 脱硫成本低 , 操作简单、无水污染等特点。
本文通过实例分析总结了循环流化床锅炉添加石灰石脱硫后排放与灰平衡计算方法。
关键词 :循环流化床锅炉 ; 石灰石脱硫 ; S O 2排放 ; 石灰石投入量 ; 灰平衡 ; 锅炉出口烟气含尘量 ; NOx 排放中图分类号 :X 506文献标识码 :A0前言循环流化床锅炉之所以在近年来能得到很大的发展 , 除了其燃料适应性广、负荷调节性能好、燃烧效率高 (接近或达到煤粉炉效率外 , 一个重要的原因是它具有优良的环保性能。
一方面 , 由于低温燃烧和分级送风 , 有效抑制了 NOx 的生成 ; 另一方面 , 通过炉内添加石灰石脱硫减少了 S Ox 的排放。
与煤粉燃烧锅炉的炉内喷钙脱硫相比 ,循环流化床锅炉炉内加钙 (石灰石脱硫的脱硫效率更高、运行费用更低、更具有商业应用价值。
煤粉燃烧锅炉的炉内喷钙脱硫在 Ca/S 比为 2. 0~3. 5时 , 脱硫效率仅 50%左右 ,而循环流化床锅炉炉内加钙脱硫在 Ca/S 比为 1. 8~2. 5时 , 脱硫效率一般可达 90%。
与常规锅炉的尾部烟气脱硫 (FG D 相比 , 循环流化床锅炉炉内加钙脱硫具有设备投资省、占地面积小、能耗低、操作简单、无水污染等优点。
尾部烟气脱硫虽然也是一种实用化、工业化的脱硫方式 , 并在发达国家得以较为普遍地使用 , 但其设备投资巨大 , 至少在目前 , 它还不太适合我国的国情。
循环流化床锅炉具有优良的环保性能已为大家所熟知 , 但是 , 对循环流化床锅炉的工程设计人员来说 , 仅有定性的认识是不够的 , 还需进行定量分析。
定量分析不仅包括 S O 2排放、石灰石投入量的定量计算 , 而且还涉及到锅炉自身的问题 , 其中最重要的一个问题是加入石灰石后灰平衡的计算。
循环流化床锅炉脱硫计算
序号 名称 符号 公式及来源数值 单位 1 SO 2原始排放浓度 02SO μ(1.998Sar ×104)/y Vmg/m 32 SO 2允许排放浓度 2SO μ“GB13271锅炉大气污染物排放标准”表2 900mg/m 33 计算脱硫效率 j SO ,2η(1-2SO μ/02SO μ)×100%mg/m 34燃煤子脱硫能力系数 A 测量值80.8—5 石灰石脱硫能力系数 K 测量值 0.7907 —6 钙硫摩尔比 M--100ln[(j SO ,2η)/A]/K— 7石灰石中CaCO 3含量 3CaCO η见表97.32%8入炉石灰石量d B3.122m Sar /3CaCO ηkg/kg 9 CaCO 3未利用率 3CaCO ε测量值15%10煅烧成CaO 时吸热量 A Q(1-3CaCO ε)×5561.8m Sar /100kj/kg11 脱硫时放热量 T Q15597.7(j SO ,2η/100)× (Sar /100)kj/kg 12 可支配热量 D ar Q (net Qar ,+T Q -A Q )/(1+d B )kj/kg 13燃烧所需理论空气量 0V见表m 3/kg14脱硫所需理论空气量 0d V1.667(j SO ,2η/100)× (Sar /100)m 3/kg15燃烧和脱硫当量理论空气量 0DV(0V +0d V)/(1+d B )m 3/kg16燃烧产生理论氮气体积02N V见表 m 3/kg17脱硫所需空气中氮气体积 02dN V0.790d Vm 3/kg18 当量理论氮气体积 02DN V(0.8Nar /100)/(1+d B )+0.790D Vm 3/kg 19 燃烧产生RO 2体积 2RO V见表 m 3/kg 20煅烧石灰石生成CO 2体积d CO V20.699m(Sar /100)m 3/kg21 脱硫使SO 2减少量 D SO V20.699(j SO ,2η/100)× (Sar /100)m 3/kg 22燃烧和脱硫时产生RO 2当量体积 D RO V2(2RO V +dCO V2-D SO V2)/(1+d B )m 3/kg23燃烧产生理论水蒸气体积 02OH V见表 m 3/kg24当量理论水蒸气体积2ODH V [0.0124(Mar +d B M d )+0.111Har ]/(1+d B )+0.00161DVm 3/kg25 入炉燃料灰量 G Far A /100kg/kg 26入炉石灰石直接生成飞灰量f CaCOA 33.122(3CaCO ε/100)m(Sar /3CaCO η)kg/kg27入炉石灰石灰分含量d A (100-3CaCO ε)/100d B (1-3CaCO η/100- M d /100)kg/kg28未反应CaO 的量CaO A1.749{[(1003CaCO ε-)/100]m(Sar / 100)-(j SO ,2η/100)( Sar /100)}kg/kg29脱硫产物CaSO 4的量 4CaSO A 4.246(j SO ,2η/100)( Sar /100)}kg/kg30当量灰分D arA (G F +fCaCO A 3+d A +CaO A+4CaSO A )/(1+d B )%31 未脱硫时底灰份额 d a取定0.3 — 32脱硫工况时底灰份额D da [d a (Aar /100)+d A +CaO A +4CaSO A ]/[(1+d B )(DarA /100)]—33 未脱硫时飞灰份额 f a 1-d a0.7 —34脱硫时飞灰份额D f a[f a (Aar /100)+fCaCO A 3]/ [1+d B )(D ar A /100)]—35 分离效率 f η设计值 99.2 % 36 灰循环倍率 n aD f a f η/(1-f η) — 37 分离器前飞灰份额 aD f a +n a— 38脱硫后的SO 2排放浓度 DSO 2μ( 1.998Sar×104)×[1-( j SO ,2η/100)]/[(1+d B )D y V ]mg/m 339脱硫效率2SO η(1-DSO 2μ/02SO μ)×100%40 误差e│(2SO η-j SO ,2η)/2SO η│=e <0.15%合格。
烟气脱硫简单设计计算
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
循环流化床锅炉烟气脱硫项目技术方案
循环流化床锅炉烟气脱硫项目技术文件一、项目简介1.1.工程概述贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。
本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。
本技术方案在给定设计条件下, SO2排放浓度≤300mg/m³的标准进行整体设计。
技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。
1.2.国内脱硫技术现状我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。
进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。
目前国内主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mg/Nm 1180 3kg/h 217
计算 计算
烟气脱硫计 石灰石粉理论消耗量 kg/h 340
计算
算
石灰石粉实际消耗量 kg/h 494
计算
CaSO4生成量
kg/h 462
计算
炉内脱硫70%
给定
FGD入口SO2含量
mg/Nm 3539
FGD装置SO2反应量 3kg/h 742
计算 计算
石灰石粉理论消耗量 kg/h 1160
计算
石灰石粉实际消耗量 kg/h 1688
计算
CaSO4生成量
kg/h 1577
计算
备注:本表数据来自遵义公司锅炉数据,有些数据可能考虑不周不完全正确,只作交流参考。ytg
计算
空预器、除尘器漏风系数
0.05
给定
氧化风机风量
Nm3/h
FGD出口SO2排放浓度 mg/Nm
3200
氧化风机技术协议,两台 运行风量
给定
200
给定
实际钙硫比
3
1.31 验证数据
给定
FGD入口烟气量
Nm3/h 222502
计算
FGD入口粉尘浓度 g/Nm3 22
计算
炉内脱硫90%
给定
FGD入口SO2含量 FGD装置SO2反应量
CaCO3+SO2+1/2O2=CaSO4+CO 2(合并反应式)
计算
计算
石灰石粉实际需要量 kg/h 8202
计算
灰渣生成量
kg/h 20234
排灰与下渣比例按6:4 计算
其中:锅炉出口飞灰量 kg/h 12309
计算
除尘器输灰量 kg/h 12304
计算
冷渣机排渣量 kg/h 7924
计算
锅炉出口粉尘浓度 g/Nm3 58.1
循环流化床锅炉炉内脱硫及烟气脱硫计算
类别
名称
单位 数据
说明
煤用量
kg/h
33366 锅炉热力数据表
给定
煤硫含量Sar
%
4.14 锅炉热力数据表
给定
煤灰分Aar
%
36.09 锅炉热力数据表
给定
实际钙硫比
2 锅炉热力数据表
给定
CaCO3含量Leabharlann %90给定
飞灰可燃物
%
10
给定
炉渣可燃物
%
5
给定
炉内脱硫率
%
90 锅炉热力数据表
给定
除尘器效率
%
99.96 除尘器技术协议
给定
锅炉出口烟气量 炉内计算 锅炉出口SO2浓度
Nm3/h 211907 mg/Nm3 1239
计算
忽略SO3,炉内脱硫率90% 计算
炉内SO2生成量
kg/h 2625
S+O2=SO2
计算
石灰石粉理论消耗量 kg/h 3691
CaSO4生成量
kg/h 5019