循环流化床锅炉烟气脱硫项目技术方案
循环流化床烟气脱硫工艺
03
CATALOGUE
循环流化床烟气脱硫工艺的应用
在不同类型电厂的应用
大型煤电基地
循环流化床烟气脱硫工艺适用于大型煤电基地,能够满足 高硫煤的脱硫需求,降低烟气中SO2的排放量。
02
副产物的处理与回收是工艺中 不可或缺的一环,通常采用脱 水、干燥、煅烧等工序将其转 化为有价值的产物。
03Leabharlann 部分副产物可作为建筑材料、 化工原料等再利用,从而实现 资源循环利用。
控制系统
控制系统是循环流化床烟气脱硫工艺的 神经中枢,负责监测、控制整个工艺流 程。
控制系统通常包括传感器、执行器、控制器 等组成部分,能够实现自动化控制和优化操 作。
智能化控制技术
利用先进的传感器、控制 系统和人工智能技术,实 现工艺过程的智能监控和 优化控制。
未来市场前景与竞争格局
市场需求增长
随着环保要求的提高和燃煤发电的增加,循环流化床烟气脱硫工 艺的市场需求将持续增长。
技术竞争加剧
随着技术的进步,竞争将更加激烈,企业需要不断提升技术水平和 创新能力。
跨国合作与技术引进
通过跨国合作和技术引进,推动循环流化床烟气脱硫工艺的国际交 流与合作。
对环境的影响与可持续发展
减少污染物排放
01
循环流化床烟气脱硫工艺能够有效降低SO2等污染物的排放,
减轻对环境的压力。
资源回收与利用
02
通过脱硫副产物的资源化利用,实现资源的有效回收和循环利
用。
节能减排与低碳发展
03
循环流化床烟气脱硫工艺的发展有助于推动节能减排和低碳经
240t循环流化床锅炉烟气脱硝脱硫除尘超低排放改造
240t/h循环流化床锅炉烟气脱硝、脱硫、除尘超低排放改造技术方案目录公司简介 (3)1 概述 (3)1.1 项目名称 (3)1.2 工程概况 (3)1.3 主要设计原则 (3)2 燃煤CFB锅炉烟气污染物超低排放方案 (4)2.1 总体技术方案简介 (4)2.2脱硝系统提效方案 (4)2.3脱硫除尘系统提效 (6)2.4脱硫配套除尘改造技术 (7)2.5引风机核算 (8)3 主要设计依据 (10)4 工程详细内容 (12)5 投资及运行费用估算 (14)6 涂装、包装和运输 (15)7 设计和技术文件 (17)8 性能保证 (18)9 项目进度一览表 (20)10 联系方式 (21)公司简介1 概述1.1项目名称项目名称:××××××机组超低排放改造工程1.2工程概况本工程为××××的热电机组工程。
本期新建高温、高压循环流化床锅炉。
不考虑扩建。
同步建设脱硫和脱硝设施。
机组实施烟气污染物超低排放改造,对现有的除尘、脱硫、脱硝系统进行提效,使机组烟气的主要污染物(烟尘、二氧化硫、氮氧化物)排放浓度达到燃气锅炉机组的排放标准(GB13223-2011)。
1.3主要设计原则为了保证在满足机组安全、经济运行和污染物减排的条件,充分考虑老厂的运行管理现状,结合省环保厅要求,就电厂本期工程的主要设计原则达成了一致意见。
主要设计原则包括有:1)燃煤锅炉烟气污染物污染物超低排放改造可行性研究,主要包括处理100%烟气量的除尘、脱硫和脱硝装置进行改造,同时增设臭氧氧化污染物深度脱除系统,改造后烟囱出口烟尘排放浓度不大于10 mg/Nm3, SO2排放浓度不大于35 mg/Nm3;NOx排放浓度不大于50 mg/Nm3,达到天然气燃气轮机污染物排放标准。
2)装置设计寿命为30年。
系统可用率≥98%。
3)设备年利用小时数按7500小时考虑。
循环流化床锅炉烟气脱硫技术
ABB-NID1、ABB锅炉烟气脱硫技术ABB锅炉烟气脱硫技术简称NID,它是由旋转喷雾半干法脱硫技术基础上发展而来的。
NID的原理是:以一定细度的石灰粉(CaO)经消化增湿处理后与大倍率的循环灰混合直接喷入反应器,在反应器中与烟气二氧化硫反应生成固态的亚硫酸钙及少量硫酸钙,再经除尘器除尘,达到烟气脱硫目的。
其化学反应式如下:CaO+H2O=Ca(OH)2Ca(OH)2+SO2=CaSO3·1/2H2O+1/2H2ONID技术将反应产物,石灰和水在容器中混合在加入吸收塔。
这种工艺只有很有限的商业运行经验,并且仅运行在100MW及以下机组,属于发展中的,不完善的技术。
和CFB技术相比,其主要缺点如下:由于黏性产物的存在,混合容器中频繁的有灰沉积由于吸收塔内颗粒的表面积小,造成脱硫效率低由于吸收塔中较高的固体和气体流速,使气体固体流速差减小,而且固体和气体在吸收塔中的滞留时间短,导致在一定的脱硫效率时,钙硫比较高,总的脱硫效果差。
需要配布袋除尘器,使其有一个”后续反应”才能达到一个稍高的脱硫效率,配电除尘器则没有”后续反应”。
对于大型机组,由于烟气量较大,通常需要多个反应器,反应器的增多不便于负荷调节,调节时除尘器入口烟气压力偏差较大。
脱硫剂、工艺水以及循环灰同时进入增湿消化器,容易产生粘接现象,负荷调节比较滞后。
Wulff-RCFBWulFF的CFB技术来源于80年代后期转到Wulff 去的鲁奇公司的雇员。
而LEE 近年来开发的新技术,Wulff公司没有,因此其技术有许多弱点:电除尘器的水平进口,直接积灰和气流与灰的分布不均。
没有要求再循环系统,对锅炉负荷的变化差,并直接导致在满负荷时烟气压头损失大。
消石灰和再循环产物的加入点靠近喷水点,使脱硫产物的黏性增加。
喷嘴上部引入再循环灰将对流化动态有负面影响,导致流化床中灰分布不均,在低负荷时,流化速度降低,循环灰容易从流化床掉入进口烟道中,严重时,大量的循环灰可将喷嘴堵塞。
循环流化床烟气脱硫工艺设计 资料
1、前言循环流化床燃烧是指炉膛内高速气流与所携带的稠密悬浮颗粒充分接触,同时大量高温颗粒从烟气中分离后重新送回炉膛的燃烧过程。
循环流化床锅炉的脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,与石油焦中的硫份反应生成硫酸钙,达到脱硫的目的。
较低的炉床温度(850°C〜900°C),燃料适应性强,特别适合较高含硫燃料,脱硫率可达80%〜95%,使清洁燃烧成为可能。
2、循环流化床内燃烧过程石油焦颗粒在循环流化床的燃烧是流化床锅炉内所发生的最基本而又最为重要的过程。
当焦粒进入循环流化床后,一般会发生如下过程:①颗粒在高温床料内加热并干燥;②热解及挥发份燃烧;③颗粒膨胀及一级破碎;④焦粒燃烧伴随二级破碎和磨损。
符合一定粒径要求的焦粒在循环流化床锅炉内受流体动力作用,被存留在炉膛内重复循环的850C〜900C的高温床料强烈掺混和加热,然后发生燃烧。
受一次风的流化作用,炉内床料随之流化,并充斥于整个炉膛空间。
床料密度沿床高呈梯度分布,上部为稀相区,下部为密相区,中间为过渡区。
上部稀相区内的颗粒在炉膛出口,被烟气携带进入旋风分离器,较大颗粒的物料被分离下来,经回料腿及J阀重新回入炉膛继续循环燃烧,此谓外循环;细颗粒的物料随烟气离开旋风分离器,经尾部烟道换热吸受热量后,进入电除尘器除尘,然后排入烟囱,尘灰称为飞灰。
炉膛内中心区物料受一次风的流化携带,气固两相向上流动;密相区内的物料颗粒在气流作用下,沿炉膛四壁呈环形分布,并沿壁面向下流动,上升区与下降区之间存在着强烈的固体粒子横向迁移和波动卷吸,形成了循环率很高的内循环。
物料内、外循环系统增加了燃料颗粒在炉膛内的停留时间,使燃料可以反复燃烧,直至燃尽。
循环流化床锅炉内的物料参与了外循环和内循环两种循环运动,整个燃烧过程和脱硫过程就是在这两种形式的循环运动的动态过程中逐步完成的。
3、循环流化床内脱硫机理循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,石油焦和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。
烟气循环流化床(CFBFGD)干法脱硫工艺介绍.
2.5
%
CaCO3 etc
2.3
%
Ca(OH)2
0.4
%
CaCl2·2H2O
0.3
%
CaF2
0.1
%
飞灰和中性成分
85.9
%
自由水分
0.5
%
成分为估计值,并随飞灰,SO3和CaO中的中性成分的量的变化 而变化。
谢谢观赏!
撰写:郑彬,万驰
6.09
Vol%
备注 标准、湿 标准、干
4.3 烟气中有害成分量 (相对于含氧6%,标准,干基)
SO2 SO3 HCl HF 灰分
原烟气 净化烟气 单位 效率 (-%)
2251
225
90
0
mg/m3
99
50
2.5
mg/m3
95
20
1
mg/m3
95
30000
200
mg/m3
99.9
4.4消耗量
参数
三 循环流化床脱硫技术特点及其运用范围
1) 塔内没有任何运动部件,磨损小,设备使用寿 命长维护量小。
2) 脱硫效率高、运行费用低。 3) 加入吸收塔的消石灰和水是相对独立的,没有
喷浆系统及浆液喷嘴,便于控制消石灰用量及喷 水量,容易控制操作温度。 4) 负荷适应性好。由于采用了清洁烟气再循环技 术,以及脱硫灰渣循环等措施,可以满足不同的 锅炉负荷要求。锅炉负荷在10%~110%范围内变 化,脱硫系统可正常运行。
在文丘里出口扩管段设一套喷水装置,喷入的雾化 水一是增湿颗粒表面,二是使烟温降至高于烟气露点 20℃左右,创造了良好的脱硫反应温度,吸收剂在此 与SO2充分反应.
净化后的含尘烟气从吸收塔顶部侧向排出,然后进 入脱硫除尘器(可根据需要选用布袋除尘器或电除尘 器),再通过引风机排入烟囱。由于排烟温度高于露 点温度20℃左右,因此烟气不需要再加热,同时整个 系统无须任何的防腐。
煤矿锅炉烟气脱硝技术方案
***煤矿1×10t/h、2×20t/h锅炉脱硝除尘工程技术方案***保科技有限公司联系人:***电话:*******-5目录第一部分项目概况 (1)一、项目概况 (1)二、项目污染物分析 (1)三、锅炉工况参数 (1)第二部分烟气脱硝方案 (3)一、设计、制造及检验标准 (3)二、主要技术参数及性能保证 (4)2.1 SNCR设计主要条件参数 (4)2.2 性能保证 (4)2.3脱硝效率保证 (4)三、脱硝原理及特点 (4)3.1 SNCR烟气脱硝技术原理 (4)3.2 SNCR脱硝技术特点 (7)3.3 SNCR工艺设计要点 (8)四SNCR部分工程方案设计 (10)4.1以尿素为还原剂的SNCR工艺 (10)4.2以氨水为还原剂的SNCR工艺 (14)五、技术服务和培训 (17)5.1现场技术服务 (17)5.2培训 (18)第三部分烟气尘方案 (20)第四部分、工程报价 (27)一、以尿素为还原剂的SNCR系统报价 (27)二、以氨水为还原剂的SNCR系统报价 (28)三、烟气除尘系统报价 (28)第一部分项目概况一、项目概况项目名称:1×10t/h、2×20t/h锅炉脱硫脱硝系统工程项目性质:烟气脱硝项目项目地址:***煤矿项目承办单位:***保科技有限公司二、项目污染物分析主要污染物为燃煤尘、S0酸性气体及具有光化学污染的NOx。
2,会造粉尘粒径小、比重轻,属可吸入颗粒物,威胁居民生命健康;烟气中的SO2成酸雨污染排放大气造成环境污染;以一氧化氮和二氧化氮为主的氮氧化物是形成光化学烟雾和酸雨的一个重要原因,光化学烟雾具有特殊气味,刺激眼睛,伤害植物,并能使大气能见度降低,另外,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。
二氧化硫、氮氧化物以及可吸入颗粒物这三项是雾霾主要组成,前两者为气态污染物,最后一项颗粒物才是加重雾霾天气污染的罪魁祸首。
干式循环流化床烟气脱硫设备技术说明
干式循环流化床烟气脱硫设备技术说明我国的能源以燃煤为主,其中燃煤产生的烟气是造成我国生态环境破坏的最大污染源之一。
随着人们环保意识的不断增强,减少污染源、净化空气、保护人类生的存环境等问题正在被亿万人们所关注,寻求解决污染措施,亦成为当代科技研究的重要课题之一。
湿法烟气脱硫技术是控制SO2以及酸雨危害最有效的手段之一,按照工艺特点可分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。
干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。
1、电子射线辐射法烟气脱硫技术该法工艺由烟气冷却、加氨、电子束照射、粉体捕集四道工序组成。
在反应室前端根据烟气中SO2及NOX的浓度调整加入氨的量,然后混合气体在反应器中经电子束照射,在很短时间内被氧化成硫酸和硝酸分子,被与周围的氨反应生成微细的粉粒,粉粒经集尘装置收集后,洁净的气体排入大气。
2、炉内喷钙循环流化床反应器烟气脱硫技术该技术的基本原理是:在锅炉炉膛适当部位喷入石灰石,起到部分固硫作用,在尾部烟道电除尘器前装设循环流化床反应器,炉内未反应的CaO随着飞灰输送到循环流化床反应器内,从而提高了整个系统的脱硫率。
本工艺流程的脱硫效率可达95%以上,造价较低,运行费用相对不高,是一种较有前途的脱硫工艺。
3、炉内喷钙脱硫尾部增湿烟气脱硫技术炉内喷钙尾部增湿也作为一种常见的干法脱硫工艺而被广泛应用。
同时与烟气中的SO2反应生成CaSO3。
由于单纯炉内喷钙脱硫效率往往不高,脱硫剂利用率也较低,因此炉内喷钙还需与尾部增湿配合以提高脱硫效率。
4、干式循环流化床烟气脱硫技术干式循环流化床烟气脱硫技术是20世纪80年代后期发展起来的一种新的干法烟气脱硫技术,该技术具有投资少、占地小、结构简单、易于操作,兼有高效除尘和烟气净化功能,运行费用低等优点。
其工艺流程:从煤粉燃烧装置产生的实际烟气通过引风机进入反应器,再经过旋风除尘器,最后通过引风机从烟囱排出。
循环流化床法烧结烟气脱硫系统.
循环流化床法烧结烟气脱硫系统一、引言SO2主要来自能源的燃烧,燃料中的硫化铁和有机硫,在750℃温度下,90%受热分解氧化释放,同时将其中的硫分90%转化为SO2排入大气。
在我国,能源结构中煤占3/4。
我国煤产量的4/5用于直接燃烧。
根据环境年鉴资料,我国2000年SO2排放总量已达到1995万吨,为世界之冠。
SO2排放是构成我国酸雨污染的主要因素。
一般来说,在人为中排放的SO2总量中,火电厂约占一半,工业企业占1/3,其余属于交通运输工具移动源和广泛分散的商用民用炉灶。
未来10年将是我国经济持续高速发展时期,如不采取有效措施,SO2污染可能制约发展的速度。
SO2控制的办法很多,除了采用无污染或少污染的原燃料和清洁生产工艺外,还有高烟囱扩散稀释和烟气脱硫。
对于火电厂和烧结厂来说,在今后相当长的时期内,烟气脱硫仍然是首选的SO2减排技术。
目前,我国已在燃煤电厂实施烟气脱硫工程,以循环流化床为代表的半干法脱硫工艺和以石灰石/石膏法为代表的湿法脱硫工艺得到广泛应用。
国家环保局于2005年10月1日正式发布实施了《火电厂烟气脱硫工程技术规范—烟气循环流化床法》和《火电厂烟气脱硫工程技术规范—石灰石/石膏法》标准,该两种脱硫工艺技术得到国内业界一致认可。
二、烧结烟气脱硫技术和工艺推荐2.1 国内外烧结烟气脱硫现状2.1.1 国外烟气脱硫现状国外烧结烟气脱硫的总体状况和技术水平,以日本、美国和德国为代表。
由于日本环保法规严厉,烧结废气含硫较高的各类生产厂几乎都设有废气脱硫装置,因此其烧结烟气脱硫工艺的应用程度高于美国和德国。
日本烧结厂比较重视环境保护,自20世纪70年代以来,日本烧结厂对含硫高的废气采用了各种脱硫装置,有的还采用了废气脱氮装置,并采取了回收利用除尘系统收集的风尘以及噪音防治等措施。
日本烧结行业环保技术有很多在世界上属于一流,在废气脱硫方面,日本在20世纪70年代就已开发了各种烧结废气脱硫技术。
循环流化床烟气脱硫技术
循环流化床烟气脱硫技术1.引言我国是以燃煤为主的国家,据统计,1995年煤炭消耗量为12.8亿吨,且逐年递增,二氧化硫的排放量达2370万吨,超过美国2100万吨的排放量,成为世界二氧化硫排放第一大国。
目前全国62%以上的城市SO2浓度超过国家环境质量二级标准,占全国面积40%左右的地区受到SO2大量排放引起的酸雨污染,因此控制SO2的污染势在必行。
1996年我国颁布的《新大气法》针对我国酸雨和SO2污染日趋加重的情况,规定对已经产生和可能产生酸雨的地区和其他SO2污染严重地区划定酸雨控制区或者SO2控制区,控制区内新建的不能燃用低硫煤的火电厂和其他大中型企业必须配套建设脱硫和除尘装置,或者采用相应控制SO2的措施;已建成的不能燃用低硫煤的企业应采取控制SO2排放和除尘措施。
国家环保局要求在两控区内,要把治理措施作为当地规划的重点内容。
因此高效脱硫设备的研究开发任重道远。
2.国内外研究现状目前,国内外应用的SO2的控制途径有三种:燃烧前脱硫、燃烧中脱硫和燃烧后脱硫(即烟气脱硫)。
其中,烟气脱硫(FGD即FlueGasDesulfuration)是目前世界唯一大规模商业化应用的脱硫方式,是控制SO2污染和酸雨的主要技术手段。
全世界已有15个国家和地区应用了 FGD装置,其设备总装机容量相当于2-2.5 亿Kw,每年去除SO21000万吨。
据统计,1992年,全球安装了FGD装置646套,其中美国占55.3%,德国占26.4%,日本占8.6%,其余国家占9.7%。
由于上述三国大规模应用FGD装置,且成效显著,虽然近年三国电站的装机容量不断增加,但SO2 排放总量却逐年减少。
日本是世界上最早大规模应用FGD装置的国家。
截止1990年,该装置达1900多套,总装机容量达0.5—0.6亿Kw。
目前,日本的SO2已基本得到控制。
自70年代初开始,特别是1978年美国重新修改了环境法规,否决了高烟囱排放,使FGD技术发展迅速。
75t循环流化床燃煤锅炉烟气脱硫工艺设计方案
目录一、基础数据和技术要求1.1项目概况1.2设计条件二、设计依据及设计范围2.1、设计条件2.2、设计原则2.3、设计范围2.4、设计分界点2.5、达标要求三、脱硫工艺选择3.1、双碱法脱硫工艺3.2、脱硫剂用量3.3、脱硫除尘系统性能、质量保证措施3.4、工艺流程图3.5、脱硫工艺分系统介绍3.6、物料计算及分析四、 NTL-75型湿式旋流加鼓泡板脱硫塔4.1、NTL-75型湿式旋流加鼓泡板脱硫塔工作原理4.2、脱硫塔结构主要技术参数五、其它设备配置5.1、烟气系统5.2、制浆及再生系统5.3、脱硫浆循环系统5.4、废水处理系统六、电气控制配置七、主要设备清单八、运行费用分析九、售后服务承诺书附件:附件一:工艺方案图附件二:系统设备布置总平面图一、基础数据和技术要求1.1项目概况XXXXX6#75t/h循环流化床燃煤锅炉的燃煤含硫量为0.6~0.8%,燃煤消耗量15t/h,烟气量160000m3/h,外排烟气已配置三电场静电除尘器作除尘处理。
但锅炉外排烟气的二氧化硫没有设置处理,二氧化硫等有害气体对工厂大气及周边环境产生污染。
为此业主决定为6#锅炉配置湿式氨法烟气脱硫净化装置,保证锅炉外排烟气脱硫后能够达标排放。
我公司依据75t/h燃煤循环流化床锅炉的有关技术参数(建设单位提供),以及国家相关现行的环境保护设计规范、标准。
作6#75t/h 循环流化床锅炉外排烟气脱硫除尘系统工程工艺方案设计。
我公司拟提供的炉外脱硫除尘系统,是已获国家专利(专利号为:200620052367.9)的旋流除尘脱硫设备(装置)塔,该塔结构合理、技术先,进、是成熟可靠的产品,整个生产过程符合ISO/9000质量保证体系。
确保脱硫系统运行的安全、经济、可靠。
本工程工艺设计方案,适用于75t/h循环流化床锅炉的炉外脱硫系统,包括炉外脱硫系统、脱硫除尘设备塔主体及辅助设备的功能设计、结构、性能、控制、设备安装、调试等方面的技术要求,为交钥匙工程。
烟气半干法脱硫技术方案
烟气半干法脱硫技术方案1. 吸收塔1.1工艺流程图1-1 循环流化床半干法工艺流程示意图原烟气由循环流化床半干法净化装置底部进入循环悬浮流化床脱硫塔。
Ca(OH)2原料经过螺旋输送机送入脱硫塔,流态化的物料和烟气中的二氧化硫在脱硫塔中发生化学反应,脱除掉大部分的二氧化硫。
烟气通过脱硫塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;脱硫塔顶部结构进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度,使得床内的Ca/S 比高达50以上。
这样循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现污染物高脱除率提供了根本的保证。
喷嘴的安装位置设置在文丘里扩散段,喷入的雾化水以降低脱硫塔内的烟温,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。
吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3·1/2H2O,还与SO3等反应生成相应的副产物CaSO4·1/2H2O等。
烟气在上升过程中,颗粒一部分随烟气被带出脱硫塔,一部分因自重重新回流到循环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间。
烟气在文丘里以上的塔内流速为3.5~5.5m/s,烟气在塔内的气固接触时间大约为6~8秒左右,从而有效地保证了脱硫效率。
从化学反应工程的角度看,SO2与氢氧化钙的颗粒在循环流化床中的反应过程是一个外扩散控制的反应过程;SO2与氢氧化钙反应的速度主要取决于SO2在氢氧化钙颗粒表面的扩散阻力,或说是氢氧化钙表面气膜厚度。
当滑落速度或颗粒的雷诺数增加时,氢氧化钙颗粒表面的气膜厚度减小,SO2进入氢氧化钙的传质阻力减小,传质速率加快,从而加快SO2与氢氧化钙颗粒的反应。
循环流化床锅炉半干法超净脱硫技术方案
第2期
李小安,等:循环流化床锅炉半干法超净脱硫技术方案
• 39 •
图1改造后工艺
2 SO?实现低于35mห้องสมุดไป่ตู้/Nm3排放具
体控制措施
1) 精细控制循环流化床的床层波动,保证工艺 水的均匀扩散和蒸发。吸收塔内的流化床是脱硫反 应的主要场所,经喷水降温后的烟气与吸收剂在激 烈湍动的流化床内进行高效的脱硫等一系列反应, 采用物料循环阀,保证床层厚度,提高反应效率。同 时采用4灰斗4线程自平衡控制模式,灰斗料位和 物料床层之间的协同控制,从而保证床层压降的精 确控制,保证脱硫等一系列反应的顺利进行。
4) FGD用水系统。FGD装置工艺水水源来自 电厂服务水系统,本期工程对系统管线进行优化。
5) 压缩空气系统。炉外脱硫装置压缩空气 系统由全厂压缩空气系统提供。
收稿日期:2018-11 -29 作者简介:李小安(1968 -)男,2004年毕业于太原理工大学热能动力工程专业,工程师,从事火电厂检修管理工作。
1炉后S02处理工艺方案
1)烟气系统。脱硫除尘岛烟道系统包括空 预器出口与吸收塔的连接烟道、清洁烟气再循环 烟道。烟道的设计压力为一6000Pa - +6000Pa, 设计温度为200T。烟气系统设置清洁烟气再循 环风挡,当锅炉负荷低于75%时,打开清洁烟气 再循环风挡,利用循环烟道前后的压降,将清洁烟 气循环回吸收塔进口烟道,保证吸收塔内稳定的
2×130t锅炉烟气石灰石石膏法脱硫方案.
2*130t/h循环流化床锅炉烟气石灰石石膏法脱硫工程技术方案*******环保工程有限公司2016年3月目录1、前言 (2)第一章概述 (3)1.1工程概况 (3)1.2范围及要求 (3)1.3设计依据和标准 (4)1.4设计治理目的目标 (6)第二章工况分析 (7)2.1厂址地理位置 (7)2.2交通运输 (8)2.3气象条件: (9)2.4机组主要设备及设计参数 (9)2.5燃料(煤种) (9)2.6项目烟气原始排放浓度 (10)第三章治理方案 (10)3.1总体设计思路 (10)3.2工艺流程 (11)3.3脱硫主要系统 (16)第四章主要设备、设施的技术参数 (16)4.1脱硫塔 (16)4.2 石灰石浆液制备和供应系统 (18)4.3烟气系统 (19)4.4浆液循环系统 (20)4.5脱硫石膏排出系统: (20)4.6石膏脱水系统: (20)4.7浆液排放系统 (22)4.8反冲洗系统: (22)4.9供配电系统 (22)4.10控制系统 (23)4.11脱硫塔系统保温防腐 (23)第五章施工组织构架 (25)第六章拟建组织机构和人员编制 (26)6.1 组织机构 (26)6.1.1管理机构 (26)6.1.2管理职能 (26)6.2 工作制度和劳动定员 (27)6.2.1工作制度 (27)6.2.2 劳动定员 (27)6.3 人员培训 (27)第七章试运行测试、竣工验收组织 (28)7.1试运行测试 (28)7.1.1试运行条件 (28)7.1.2调试准备 (28)7.1.3电气及控制系统的调试 (28)7.1.4.动力(机械)设备的调试 (28)7.1.5试运行 (28)7.2竣工验收组织 (29)第八章运行费用估算 (30)8.1 计算标准 (30)8.2运行成本 (30)8.2.1人工费 (31)8.2.2系统运行费用 (31)第九章主要设备和配置及投资估算 (31)第一章概述1.1工程概况工程名称:***公司2*130t/h循环流化床锅炉烟气脱硫工程工程地址:*********建设单位:**********有限公司。
大气循环流化床锅炉烟气处理课程设计
大气循环流化床锅炉烟气处理课程设计引言烟气处理是大气污染治理的重要环节之一。
随着工业化进程的加快和能源利用的增加,大量的烟气排放对环境和人类健康造成了严重的威胁。
因此,研究和开发高效的烟气处理技术势在必行。
本课程设计将重点介绍大气循环流化床锅炉烟气处理技术的原理、应用和优缺点,以及相关领域的最新进展。
一、大气循环流化床锅炉烟气处理技术概述1.1 大气循环流化床锅炉的基本原理和结构大气循环流化床锅炉是一种采用高浓度固体循环流化床燃烧技术的锅炉。
它通过将固体颗粒与气体混合并形成床层,使煤燃烧更加充分,烟气中的污染物得到有效控制。
1.2 烟气处理的基本原理和目标烟气处理的基本原理是通过物理、化学或生物方法去除烟气中的颗粒物、二氧化硫、氮氧化物等污染物,降低其对环境的危害。
其主要目标是达到国家和地方大气污染物排放标准。
二、大气循环流化床锅炉烟气处理技术的应用2.1 大气循环流化床锅炉烟气处理技术在燃煤电厂中的应用燃煤电厂是大气污染的主要来源之一,大气循环流化床锅炉烟气处理技术在燃煤电厂中的应用可以显著降低烟气排放中的颗粒物、二氧化硫等污染物的浓度,减少对环境的污染。
2.2 大气循环流化床锅炉烟气处理技术在工业燃烧中的应用工业燃烧过程中排放的烟气中含有大量的有害物质,大气循环流化床锅炉烟气处理技术可以有效去除烟气中的污染物,保护环境和人类健康。
三、大气循环流化床锅炉烟气处理技术的优缺点3.1 优点大气循环流化床锅炉烟气处理技术具有烟气处理效率高、设备运行稳定、处理成本低等优点,可以有效降低烟气排放对环境的影响。
3.2 缺点大气循环流化床锅炉烟气处理技术在处理高浓度烟气时存在颗粒物腐蚀、设备耐久性差等问题,需要进一步改进和完善。
四、大气循环流化床锅炉烟气处理技术的最新进展4.1 烟气脱硫技术的改进烟气脱硫是大气循环流化床锅炉烟气处理的关键环节之一,近年来,针对烟气脱硫技术进行了一系列的改进和创新,提高了脱硫效率和设备稳定性。
烟气循环流化床脱硫设计规程
烟气循环流化床脱硫设计规程烟气循环流化床脱硫是一种常用的烟气净化技术,广泛应用于燃煤电厂、石化厂等工业领域。
其设计规程对于确保脱硫效果、提高设备运行效率具有重要意义。
本文将从床层材料、气体分布、吸收剂选择、循环系统等方面介绍烟气循环流化床脱硫设计规程。
床层材料的选择是烟气循环流化床脱硫设计的关键。
床层材料应具有良好的耐腐蚀性和耐高温性能,同时也要考虑其成本和可获得性。
常用的床层材料有陶瓷、陶粒、耐火砖等。
根据具体的工艺要求和经济性考虑,选择合适的床层材料非常重要。
气体分布是烟气循环流化床脱硫设计中需要重点考虑的问题。
合理的气体分布可以确保床层内的气体流动均匀,从而提高脱硫效果。
为了实现良好的气体分布,可以采用分布板、喷嘴等装置来引导气体流动,并通过调节气体流速和气体分布装置的布置来达到最佳效果。
吸收剂的选择也是烟气循环流化床脱硫设计中的重要环节。
吸收剂的选择应考虑其与烟气中的硫化物反应速率、吸收效率以及再生能力等因素。
常用的吸收剂有石灰石、石膏等。
根据不同的工艺要求,可以选择合适的吸收剂来实现高效脱硫。
循环系统的设计对于烟气循环流化床脱硫设备的运行稳定性和脱硫效果也起着重要作用。
循环系统包括循环泵、循环管路和循环罐等设备,其设计应考虑循环液的流动阻力、泵的扬程和循环液的流速等因素。
合理设计循环系统可以保证吸收剂的循环稳定,从而提高脱硫效果。
烟气循环流化床脱硫设计规程涉及床层材料、气体分布、吸收剂选择和循环系统等方面。
合理的设计规程可以确保脱硫设备的高效运行,达到环保要求。
在实际设计中,需要根据具体的工艺要求和经济性考虑,选择合适的设计参数和设备配置,以实现最佳的脱硫效果。
烟气脱硫简单设计计算
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
循环流化床锅炉烟气脱硫脱硝技术
化
板
电 动 震 打
38
• 石灰石输送系统故障 • 旋转给料机漏料
旋转给料机漏粉,更换盘根
39
• 石灰石输送系统故障 • 旋转给料机卡涩
未投运的叶片
投运3个月后的叶片
40
• 石灰石输送系统故障 • 料位开关故障
料位开关 参与逻辑控制
料位低 开始进料
料位高 停止进料
41
• 石灰石输送系统故障 • 料位开关故障
石灰石-石膏法脱硫特点
优点: 1) 技术成熟 2) 吸收剂价廉易得 3) 脱硫效率高 4) 对煤种变化的适应性强 5) 副产品可综合利用 缺点: 1) 系统复杂 2) 占地面积大 3) 一次投资较大
典型的石灰石(石灰)-石膏湿法脱硫工艺
国内主流吸收塔技术
喷淋空塔
液柱塔
托盘塔
鼓泡反应器
26
主流脱硫工艺特点及选择条件
项目
湿法
氧化镁法 循环流化床干法
技术成熟程度 适用煤种 应用单机规模
成熟
成熟
成熟
不受含硫量限 制
不受含硫量限 制
Sar≤2%
没有限制
没有限制
≤300MW
能达到的脱硫率 95%以上
95%以上
60%
吸收剂来源
资源较多
附近有资源 资源较多
三、循环流化床炉内脱硫系统
1. 主要组成系统:
1) 石灰石储存系统 2) 输送系统 3) 流化风机
吸收剂 —— 石灰 副产物 —— 亚硫酸钙/硫酸钙
喷雾干燥法工艺流程图
喷雾干燥法化学反应机理
烟气
溶液
SO2+H2O→2H++SO32SO2 Ca2++2 H2O← 2H+ +Ca(OH) 2
循环流化床锅炉烟气脱硫项目技术方案
循环流化床锅炉烟气脱硫项目技术文件一、项目简介1.1.工程概述贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。
本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。
本技术方案在给定设计条件下, SO2排放浓度≤300mg/m³的标准进行整体设计。
技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。
1.2.国内脱硫技术现状我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。
进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。
目前国内主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环流化床锅炉烟气脱硫项目技术文件一、项目简介1.1.工程概述贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。
本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。
本技术方案在给定设计条件下, SO2排放浓度≤300mg/m³的标准进行整体设计。
技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。
1.2.国脱硫技术现状我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。
进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。
目前国主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。
在吸收塔,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。
脱硫后的烟气依次经过除雾器除去雾滴,加热器加热升温后,由引风机经烟囱排放,脱硫渣石膏可以综合利用。
(2)海水烟气脱硫工艺海水烟气脱硫工艺是利用海水的碱度达到脱除烟气中的二氧化硫的一种脱硫方法。
烟气经除尘器除尘后,由增压风机送入气一气换热器中的热侧降温,然后送入吸收塔。
在脱硫吸收塔,与来自循环冷却系统的大量海水接触,烟气中的二氧化硫被吸收反应脱除。
脱除二氧化硫后的烟气经换热器升温,由烟道排放。
洗涤后的海水经处理后排放。
(3)炉喷钙加尾部增湿活化工艺(LIFAC法)炉喷钙加尾部增湿活化工艺(简称LIFAC工艺)是在炉喷钙脱硫工艺的基础上在链条锅炉尾部增设了增湿段,以提高脱硫效率。
该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850-1150度温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。
由于反应在气固两相之间进行,收到传质过程的影响,反应速度较慢,吸收剂利用率较低。
在尾部增湿活化反应人,增湿水以雾状喷入,与未反应的氧化钙接触生成Ca(OH)2进而与烟气中的二氧化硫反应,进而再次脱除二氧化硫。
当Ca/S为2.5及以上时,系统脱硫率可达到65%-80%。
烟气脱硫后,由于增湿水的加入烟气温度下降(只有55-66度),一般控制出口烟气温度高于露点10-15度,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
由于脱硫过程对吸收剂的利用率低,脱硫副产物是以下稳定的亚硫酸钙为主的脱硫灰,副产物的综合利用受到一定的影响。
(4)电子束烟气脱硫工艺是一种物理方法和化学方法相结合的高新技术。
本工艺的流程是由排烟预除尘、烟气冷却、氨的冲入、电子束照射和副产品捕集工序组成。
链条锅炉所排出的烟气,经过集尘器的粗滤处理之后进入冷却塔,在冷却塔喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70度)。
烟气的露点通常经为50℃,被喷射呈雾状的冷却水在冷却塔完全得到蒸发,因此,不产生任何废水。
通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨气、压缩空气和软水混合喷入,加入氨的量取决于SOX和NOX浓度,经过电子束照射后,SOX和NOX在自由基的作用下生成中间物硫酸和硝酸。
然后硫酸和硝酸与共存的氨进行中和反应,生成粉状颗粒硫酸铵和硝酸铵的混合体。
反应所生成的硫酸铵和硝酸铵混合微粒被副成品集尘器所分离和捕集,经过净化的烟气升压后向大气排放。
(5)循环流化床链条锅炉脱硫工艺(链条锅炉CFB)循环流化床链条锅炉脱硫工艺是近年来迅速发展起来的一种新型燃煤燃烧脱硫技术。
其原理是燃料和作为吸收剂的石灰石粉送入燃烧室中部送入,气流使燃料颗粒、石灰石粉和灰一起在循环流化床强烈扰动并充满燃烧室,石灰石粉在燃烧室裂解成氧化钙,氧化钙和二氧化硫结合成亚酸酸钙,链条锅炉燃烧室温度控制在850度左右,以实现反应最佳。
(6)双碱法烟气脱硫工艺双碱法是先用可溶性的碱性清液作为吸收剂吸收SO2,然后再用石灰乳或石灰对吸收液进行再生,由于在吸收和吸收液处理中,使用了两种不同类型的碱液,故称为双碱法。
在双碱法中应用最多的方法是以烧碱(NaOH)、纯碱(NacO3)或亚硫酸钠(Na2sO3)吸收SO2,然后,吸收液用石灰再生。
再生后的钠碱溶液返回洗涤系统用作吸收液,再生后生成的亚硫酸钙或硫酸钙沉淀,经处理后抛弃或回收。
钠钙双碱法是较为常见的脱硫方法之一。
1.3.脱硫方案确定(1)现有烟气脱硫技术分析及本工程技术方案选取任何一种烟气脱硫技术都是包括脱硫工艺和脱硫设备两部分组成的。
所谓的脱硫工艺就是指采用的何种脱硫方法,它包括所用的脱硫原料,脱硫过程参数如何控制以及最终所形成的脱硫副产物等。
而脱硫设备则是指为烟气与脱硫液提供相互接触传质的设备。
(2)几种烟气脱硫工艺方法简评目前最有效的二氧化硫控制方法仍为对链条锅炉燃烧后的烟气进行脱硫处理,其中湿法烟气脱硫因其具有技术成熟、脱硫效率等特点,因此在世界上得到广泛应用,目前全球已安装的烟气脱硫设备中有80%以上都属于湿法烟气脱硫技术。
湿法烟气脱硫方法也分很多种,其中以利用石灰石或石灰的钙基湿法较为常用。
石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。
当采用石灰作为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。
在吸收塔,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。
脱硫后的烟气依次经过除雾器除去雾滴,加热器加热热升温后,由引风机经烟囱排放,脱硫渣石膏可以综合利用。
氨法烟气脱硫技术方法也广受重视,该法所得到的脱硫副产硫酸铵可作肥料出售,具有较好的经济效益。
然而,氨法脱硫技术通常存在的问题有由于氨的腐蚀性较强,对设备及管道腐蚀严重。
另外,为了保证脱硫率,脱硫溶液中的氨水浓度需要维持再较高水平,这样在气液接触过程中,容易导致大量的氨气挥发进入烟气中,造成氨的逃逸损失。
同时,逃逸到烟气中的氨还很容易与烟气中残留的二氧化硫作用,在烟气中形成难以捕集的铵盐气溶胶粒子,导致严重的二次污染。
这些问题极限制了氨法脱硫技术的实际推广。
镁法脱硫技术也是很有前途的一种湿法脱硫技术。
该技术自1975年被开发以来在日本、美国等发达国家逐步得到推广,并逐渐成为钙基脱硫的取代工艺之一。
镁法脱硫技术具有脱硫效率高、不易结垢、设备紧凑、脱硫液对设备腐蚀性低等优点。
因而,该方法近年来得到广泛重视。
然而,目前该方法所存在的问题有:脱硫剂的高温再生方法较复杂过程耗能量过高。
若将副产物作为硫酸镁回收,则存在副产物销路问题,且脱硫过程需要不断补充新的镁基原料,使脱硫成本增加。
为厂克服上述问题,我们分别开发出了钠-钙双碱法和镁-氨双碱法两种脱硫工艺。
前者是为了解决石灰或石灰石作为脱硫剂时的吸收效率不高及结垢等问题,所得到的脱硫产物仍为石膏;后者则较好地克服了单独用氨的脱硫过程中氨的损失、腐蚀及二次污染问题,且最终可以回收硫酸铵,实现硫的资源化利用。
脱硫方案的初步确定并结合贵公司链条锅炉运行的实际情况,我们选择钠-钙双碱法喷淋塔相的脱硫技术方案。
二、设计依据2.1.设计相关资料《国家大气污染物排放标准》(GB13271-2001)《链条锅炉大气污染物排放标准》(GWPB3-1999)《火电厂大气污染物排放标准》(GB13223-2001)《城市区域环境噪声标准》(GB3096-93)《建筑抗震设计规》(GB 50011—2001)《砌体结构设计规》(2002年局部修订GB 50003—2001)《建筑地面设计规》(GB 50037-1996)《工业建筑防腐蚀设计规》(GB 50046-1995)《石油化工生产建筑设计规》(SH 3017-1999)《建筑设计防火规》(2001年版GBJ 16-1987)《建筑地基基础设计规》(GB 50007—2002)《建筑结构荷载规》(GB 50009—2001)《混凝土结构设计规》(GB 50010—2002)《钢结构设计规》(GBJ 50017—2003)《建筑地基处理技术规》(JGJ 79—2002)《化工管架、管墩设计规定》(HG/T 20670—2000)2.2.设计原则(1)选择成熟可靠的除尘脱硫工艺;(2)尽量降低除尘脱硫系统工程投资;(3)在满足除尘脱硫系统过程各项指标的前提下,尽力为企业节能降耗;(4)除尘脱硫系统维护、管理方便。
(5)除尘脱硫工艺安全可靠,科技含量高,系统简单,工期短,投资和运行费用低;2.3.设备参数烟气工况参数我公司对贵公司提供的烟气基本数据进行了认真地研究分析,为其编制了以下烟气除尘脱硫技改项目的初步方案,使用XTD瓷多管除尘器+PPW脉冲布袋除尘器+GCT型双碱法脱硫的工艺,并对净化后的烟气保证达到的技术指标如下:三、工艺介绍3.1.脱硫塔工作原理烟气由引风机鼓入脱硫塔,烟气由脱硫塔中下部均匀上升(流速在2.5-3.2m/s),依次穿过三级喷淋装置形成的高密度喷淋洗涤反应区和吸收反应区,脱硫液通过螺旋喷嘴生成极细的雾滴为烟气与脱硫液的充分混合提供了巨大的接触面积,使得气液两相进行充分的传质和传热的物理化学反应,在雾滴降落过程中吸收SO2并捕润尘粒,从而达到SO2的高效脱除,湿润的尘粒向下流入脱硫塔底部,从溢流孔排出进入沉淀池。
脱硫塔置有一级脱水除雾装置,经过脱硫后的烟气继续上升,经过折板除雾装置,通过雾气、小液滴在折板处的多次撞击形成较大液滴,大液滴与烟气分离后下落,脱水后的烟气通过筒体上部锥体部分引出,完成整个除尘脱硫程序。
含尘废液通过筒体底部溢流孔排入沉淀池,(溢流孔有水封设计防止漏气,并设有清理孔便于进行筒体底部清理)经沉淀(除灰)并加碱(再生)后循环使用。