八大排序算法

合集下载

深入浅出-C语言8种经典排序算法

深入浅出-C语言8种经典排序算法

C语言——8种经典排序算法1.排序算法的稳定性分析:若待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;若经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。

(1)冒泡排序冒泡排序就是把小的元素往前调或者把大的元素往后调。

比较是相邻的两个元素比较,交换也发生在这两个元素之间。

所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。

比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。

(3)插入排序插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。

当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。

比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

(4)快速排序快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index 是中枢元素的数组下标,一般取为数组第0个元素。

算法_八大排序算法总结

算法_八大排序算法总结

算法_⼋⼤排序算法总结最近笔试⾯试中经常考到排序算法,及其对应的时间复杂度和空间复杂度分析,现做如下总结。

⼀,冒泡排序思想:对于0~n-1,依次⽐较相邻两个数,前者⽐后者⼤就交换,⼀轮后A[n-1]是最⼤数,在对0~n-2执⾏以上步骤,则A[n-2]是第⼆⼤的数,循环执⾏上⾯的步骤即可,形象的可以理解为⼤的数⼀个个冒到后⾯去,所以叫冒泡排序。

⽰意图:⾸先6和3⽐较,6⽐3⼤,交换6和5⽐较,交换6和7⽐较,不⽤交换依次执⾏以上步骤,第⼀轮后,序列变为接着,在0到n-2上执⾏以上步骤⼀轮过后,则变为依次执⾏以上步骤,最后序列为时间复杂度: O(n^2)空间复杂度:O(1)代码:1class BubbleSort {2public:3int* bubbleSort(int* A, int n)4 {5int temp;6// write code here7for(int i = 0; i < n; i++)8 {9for(int j = 0; j < n - i - 1; j++)10 {11if(A[j] > A[j+1])12 {13 temp = A[j];14 A[j] = A[j + 1];15 A[j + 1] = temp;16 }17 }1819 }20return A;21 }22 };⼆,选择排序思想:在序列中依次选择最⼩值放到最前端,重复以上步骤,只到排序完成⽰意图:最⼩数为0,放到最前端1到n-1最⼩数为1,放到最前端依次执⾏以上步骤,最后为时间复杂度:O(n^2)空间复杂度:O(1)代码:1class SelectionSort {2public:3int* selectionSort(int* A, int n)4 {5// write code here6//从前往后依次放⼊为排序的数组的最⼩值7int min_b;8int temp;9for(int i = 0; i < n - 1; i++)10 {11 min_b = i;12for(int j = i; j < n; j++) //寻找最⼩值13 {14if(A[min_b] > A[j])15 min_b = j;1617 }18 temp = A[i];19 A[i] = A[min_b];20 A[min_b] = temp;21 }22return A;23 }24 };三,插⼊排序思想:对于数组A[n],保证前⾯的A[0]~A[m]是排序好的,再把A[m+1]插⼊到前⾯排好序的序列中,m递增,知道m=n-2⽰意图:原始序列为:6和5⽐较,6⽐5⼤,要交换接下来把3插⼊到前⾯排好序的序列中,⾸先3和6⽐,6⼤,后移⼀位接着3和5⽐较,5⼤,后移⼀位只到前⾯没有数了,或者前⾯的数⽐要插⼊的数⼩,就在对应的位置插⼊该数再对1执⾏以上步骤重复以上步骤,只到整个序列排序完成时间复杂度:O(n^2)空间复杂度:O(1)代码1class InsertionSort {2public:3int* insertionSort(int* A, int n)4 {5// write code here6int temp;7for(int i = 1; i < n; i ++)8 {9 temp = A[i];10for(int j = i - 1; j >= 0; j--)11 {12if(temp < A[j])13 {14 A[j + 1] = A[j];15if(j == 0)16 {17 A[j] = temp;18 }19 }20else21 {22 A[j + 1] = temp;23break;24 }25 }26 }27return A;28 }29 };四,归并排序思想:对数组中每个数看成是长度为1的有序区间,接着合并相邻两个长度为1的有序区间,变为长度为2的有序区间,接着合并相邻长度为2的有序区间变成长度为4的有序区间,依次进⾏,只到排序完成⽰意图:⾸先为长度为1的有序区间合并为长度为2的有序区间合并为长度为4的有序区间合并为长度为8的有序区间,排序完成时间复杂度:O(nlogn)空间复杂度:O(N)代码1class MergeSort {2public:3int* mergeSort(int* A, int n)4 {5 mergeSort(A,0,n-1);6return A;78 }9void mergeSort(int* A, int left, int right)10 {11if(left == right)12return;13int mid=(left+right)/2;14 mergeSort(A,left,mid);15 mergeSort(A,mid+1,right);16 merge_p(A,left,mid,right);17return;18 }1920void merge_p(int* A, int left, int mid, int right)21 {22int* temp = new int[right - left + 1];23int l = left;24int r = mid + 1;25int k = 0;26while(l <= mid && r <= right)27 {28if(A[l] < A[r])29 temp[k++] = A[l++];30else31 temp[k++] = A[r++];32 }33while(l <= mid)34 temp[k++] = A[l++];35while(r <= right)36 temp[k++] = A[r++];37for(int i = 0; i < k; i++)38 {39 A[left + i] = temp[i];40 }41 }4243 };五,快速排序思想:随机选择数组中的数,⼩于等于这个数的放在左边,⼤于这个数的放在右边,递归调⽤以上步骤,完成排序⽰意图:⾸先随机选择,划分区间递归调⽤,即可完成排序。

数据结构十大经典排序算法

数据结构十大经典排序算法

数据结构十大经典排序算法数据结构中的十大经典排序算法包括:1.冒泡排序(Bubble Sort):比较相邻两个元素,如果逆序则交换,重复多轮,直到无逆序情况。

2.插入排序(Insertion Sort):从第二个元素开始,将每个元素插入到已排序序列中的合适位置,重复多轮,直到所有元素有序。

3.归并排序(Merge Sort):将待排序序列分成若干子序列,对每个子序列进行归并排序,将有序的子序列合并成一个有序序列,重复多轮,直到所有元素有序。

4.堆排序(Heap Sort):将待排序序列构造成一个大根堆,将堆顶元素(最大值)与末尾元素交换,重复多轮,直到所有元素有序。

5.计数排序(Counting Sort):根据待排序序列中每个元素出现的次数,计算小于等于每个元素的元素个数,从后往前遍历待排序序列,将每个元素放在相应位置,重复一轮,直到所有元素有序。

6.选择排序(Selection Sort):首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾(即与未排序序列的第一个交换)。

7.快速排序(Quick Sort):选择一个基准元素,通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小。

8.希尔排序(Shell Sort):先将整个待排序的记录序列分割成若干个子序列(由相隔某个“间隔”的记录组成的)分别进行直接插入排序,然后依次缩减间隔再进行排序。

9.基数排序(Radix Sort):通过多次分配基数对每一位进行比较和分配。

10.桶排序(Bucket Sort):利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

这些算法各有优缺点,不同场景下应选择不同的算法来实现排序。

数据结构--排序算法总结

数据结构--排序算法总结

数据结构--排序算法总结概述排序的分类:内部排序和外部排序内部排序:数据记录在内存中进行排序外部排序:因排序的数据量大,需要内存和外存结合使用进行排序这里总结的八大排序是属于内部排序:当n比较大的时候,应采用时间复杂度为(nlog2n)的排序算法:快速排序、堆排序或归并排序。

其中,快速排序是目前基于比较的内部排序中被认为最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短。

———————————————————————————————————————————————————————————————————————插入排序——直接插入排序(Straight Insertion Sort)基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。

即:先将序列的第1个记录看成一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,用于临时存储和判断数组边界直接插入排序示例:插入排序是稳定的,因为如果一个带插入的元素和已插入元素相等,那么待插入元素将放在相等元素的后边,所以,相等元素的前后顺序没有改变。

算法实现:[cpp]view plain copy1.#include<iostream>ing namespace std;3.4.void print(int a[], int n ,int i)5.{6. cout<<i<<":";7.for(int j= 0; j<8; j++){8. cout<<a[j] <<" ";9. }10. cout<<endl;11.}12.13.void InsertSort(int a[],int n)14.{15.int i,j,tmp;16.for(i=1;i<n;++i)17. {18.// 如果第i个元素大于第i-1个元素,直接插入19.// 否则20.// 小于的话,移动有序表后插入21.if(a[i]<a[i-1])22. {23. j=i-1;24. tmp=a[i]; // 复制哨兵,即存储待排序元素25. a[i]=a[i-1]; // 先后移一个元素26.while(tmp<a[j])27. {28.// 哨兵元素比插入点元素小,后移一个元素29. a[j+1]=a[j];30. --j;31. }32. a[j+1]=tmp; // 插入到正确的位置33. }34. print(a,n,i); // 打印每一趟排序的结果35. }36.}37.38.int main()39.{40.int a[8]={3,1,5,7,3,4,8,2};41. print(a,8,0); // 打印原始序列42. InsertSort(a,8);43.return 0;44.}分析:时间复杂度:O(n^2)———————————————————————————————————————————————————————————————————————插入排序——希尔排序(Shell Sort)基本思想:先将整个待排序的记录序列分割成为若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录依次进行直接插入排序。

十大排序算法总结

十大排序算法总结

十大排序算法总结在计算机科学领域,排序算法是一个非常重要的研究方向。

排序算法可以帮助我们更快速、更有效率地处理大量数据。

在本文中,我们将介绍十大常见的排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序、基数排序。

1. 冒泡排序冒泡排序是一种基本的排序算法。

它重复地遍历待排序的序列,一次比较两个元素,如果它们的顺序错误就交换位置,直到整个序列有序为止。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

2. 选择排序选择排序是一种简单直观的排序算法。

它的工作原理是:首先在未排序的序列中找到最小元素,然后将其放到序列的起始位置;接着从剩余未排序的元素中继续寻找最小的元素,然后放到已排序序列的末尾。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

3. 插入排序插入排序是一种基本的排序算法。

它的工作原理是:将一个元素插入到已经排好序的序列中,使得插入后的序列仍然有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

4. 希尔排序希尔排序是一种改进版的插入排序。

它通过比较距离较远的元素,可以快速地将大元素向右移动,从而减少后续排序的比较次数。

希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

5. 归并排序归并排序是一种分治算法。

它将待排序的序列分成若干个子序列,每个子序列都是有序的。

然后再将有序的子序列合并成最终的有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

6. 快速排序快速排序是一种基于分治思想的排序算法。

它通过不断地将序列分成两个部分,将较小的元素移动到左边、较大的元素移动到右边,最终将整个序列排好序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn)。

7. 堆排序堆排序是一种基于堆的排序算法。

它将待排序的序列看成一棵完全二叉树,每个节点的值都不大于其父节点的值。

然后将最大值不断地从堆中取出,放到已排序序列的末尾。

程序员必知8大排序

程序员必知8大排序

程序员必知8大排序——转自CSDN博客每天都在叫嚣自己会什么技术,什么框架,可否意识到你每天都在被这些新名词、新技术所迷惑,.NET、XML等等技术固然诱人,可是如果自己的基础不扎实,就像是在云里雾里行走一样,只能看到眼前,不能看到更远的地方。

这些新鲜的技术掩盖了许多底层的原理,要想真正的学习技术还是走下云端,扎扎实实的把基础知识学好,有了这些基础,要掌握那些新技术也就很容易了。

要编写出优秀的代码同样要扎实的基础,如果排序和查找算法学的不好,怎么对程序的性能进行优化?废话不多说,本文要介绍的这些排序算法就是基础中的基础,程序员必知!1、直接插入排序(1)基本思想:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。

如此反复循环,直到全部排好顺序。

(2)实例2、希尔排序(也称最小增量排序)(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

当增量减到1时,进行直接插入排序后,排序完成。

(2)实例:3、简单选择排序(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

(2)实例:4、堆排序(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。

在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。

八种常见的排序算法

八种常见的排序算法

⼋种常见的排序算法插⼊排序1.直接插⼊排序原理:将数组分为⽆序区和有序区两个区,然后不断将⽆序区的第⼀个元素按⼤⼩顺序插⼊到有序区中去,最终将所有⽆序区元素都移动到有序区完成排序。

要点:设⽴哨兵,作为临时存储和判断数组边界之⽤。

实现:void InsertSort(Nodetype p[],int length){int i,j;//分别为有序区和⽆序区指针for(i=1;i<length;i++)//逐步扩⼤有序区{j=i+1;if(p[j]<p[i]){p[0]=p[j];//存储待排序元素while(p[0]<p[i])//查找在有序区中的插⼊位置,同时移动元素{p[i+1]=p[i];//移动i--;}p[i+1]=p[0];//将元素插⼊}i=j-1;//还原有序区指针}}2.希尔排序原理:⼜称增量缩⼩排序。

先将序列按增量划分为元素个数相同的若⼲组,使⽤直接插⼊排序法进⾏排序,然后不断缩⼩增量直⾄为1,最后使⽤直接插⼊排序完成排序。

要点:增量的选择以及排序最终以1为增量进⾏排序结束。

实现:void ShellSort(Nodetype p[],int d){while(d>=1)//直到增量缩⼩为1{Shell(p,d);d=d/2;//缩⼩增量}}void Shell(Nodetype p[],int d){int i,j;int length=strlen(p);for(i=d+1;i<length){if(p[i]<p[i-d]){p[0]=p[i];j=i-d;while(j>0&&p[j]>p[0]){p[j+d]=p[j];j=j-d;}p[j+d]=p[0];}}}交换排序1.冒泡排序原理:将序列划分为⽆序和有序区,不断通过交换较⼤元素⾄⽆序区尾完成排序。

要点:设计交换判断条件,提前结束以排好序的序列循环。

实现:void BubbleSort(Nodetype p[]){int i,j;int ischanged;//设计跳出条件for(j=n-1;j<0;j--){ischanged=0;for(i=0;i<j;i++){if(p[i]>p[i+1])//如果发现较重元素就向后移动{int temp=p[i];p[i]=p[i+1];p[i+1]=temp;ischanged=1;}}if(!ischanged)//若没有移动则说明序列已经有序,直接跳出break;}}2.快速排序原理:不断寻找⼀个序列的中点,然后对中点左右的序列递归的进⾏排序,直⾄全部序列排序完成,使⽤了分治的思想。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。

c语言、数据结构中的8种排序分析与代码

c语言、数据结构中的8种排序分析与代码

8种排序一、冒泡排序(小者上扬原则)已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。

首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。

再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。

再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。

这样处理一轮后,a[n]的值一定是这组数据中最大的。

再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。

再对a[1]~a[n-2]以相同方法处理一轮,以此类推。

共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。

优点:稳定,比较次数已知;缺点:慢,每次只能移动相邻两个数据,移动数据的次数多。

初始关键字[49 38 65 97 76 13 27 49]第一趟排序后[38 49 65 76 13 27 49] 97第二趟排序后[38 49 65 13 27 49] 76 97第三趟排序后[38 49 13 27 49] 65 76 97第四趟排序后[38 13 27 49] 49 65 76 97第五趟排序后[38 13 27] 49 49 65 76 97第六趟排序后[13 27]38 49 49 65 76 97第七趟排序后[13] 27 38 49 49 65 76 97最后排序结果13 27 38 49 49 76 76 97#include <iostream>using namespace std;void main(){int i,j,k;int a[8]={49,38,65,97,76,13,27,49};for(i=7;i>=0;i--){for(j=0;j<i;j++){if(a[j]>a[j+1]){k=a[j];a[j]=a[j+1];a[j+1]=k;}}}for(i=0;i<8;i++)cout<<a[i]<<endl;}二、选择排序①初始状态:无序区为R[1..n],有序区为空。

八大排序

八大排序

八大排序算法排序的基本概念排序是将一批(组)任意次序的记录重新排列成按关键字有序的记录序列的过程。

排序算法有许多,但就全面性能而言,还没有一种公认为最好的。

每种算法都有其优点和缺点,分别适合不同的数据量和硬件配置。

评价排序算法的标准有:执行时间和所需的辅助空间,其次是算法的稳定性。

若排序算法所需的辅助空间不依赖问题的规模n,即空间复杂度是O(1) ,则称排序方法是就地排序,否则是非就地排序。

排序的分类待排序的记录数量不同,排序过程中涉及的存储器的不同,有不同的排序分类。

① 待排序的记录数不太多:所有的记录都能存放在内存中进行排序,称为内部排序;② 待排序的记录数太多:所有的记录不可能存放在内存中, 排序过程中必须在内、外存之间进行数据交换,这样的排序称为外部排序。

内部排序的基本操作对内部排序地而言,其基本操作有两种:◆ 比较两个关键字的大小;◆ 存储位置的移动:从一个位置移到另一个位置。

第一种操作是必不可少的;而第二种操作却不是必须的,取决于记录的存储方式,具体情况是:① 记录存储在一组连续地址的存储空间:记录之间的逻辑顺序关系是通过其物理存储位置的相邻来体现,记录的移动是必不可少的;② 记录采用链式存储方式:记录之间的逻辑顺序关系是通过结点中的指针来体现,排序过程仅需修改结点的指针,而不需要移动记录;③ 记录存储在一组连续地址的存储空间:构造另一个辅助表来保存各个记录的存放地址(指针) :排序过程不需要移动记录,而仅需修改辅助表中的指针,排序后视具体情况决定是否调整记录的存储位置。

①比较适合记录数较少的情况;而②、③则适合记录数较少的情况。

为讨论方便,假设待排序的记录是以①的情况存储,且设排序是按升序排列的;关键字是一些可直接用比较运算符进行比较的类型。

一交换类排序法所谓交换排序法是指借助数据元素之间互相交换进行排序的方法。

冒泡排序与快速排序法都属于交换类排序方法。

交换排序— 冒泡排序:基本思想:1.比较相邻的元素。

数据结构--排序算法介绍

数据结构--排序算法介绍

数据结构--排序算法总结概述排序的分类:内部排序和外部排序内部排序:数据记录在内存中进行排序外部排序:因排序的数据量大,需要内存和外存结合使用进行排序这里总结的八大排序是属于内部排序:当n比较大的时候,应采用时间复杂度为(nlog2n)的排序算法:快速排序、堆排序或归并排序。

其中,快速排序是目前基于比较的内部排序中被认为最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短。

———————————————————————————————————————————————————————————————————————插入排序——直接插入排序(Straight Insertion Sort)基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。

即:先将序列的第1个记录看成一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,用于临时存储和判断数组边界直接插入排序示例:插入排序是稳定的,因为如果一个带插入的元素和已插入元素相等,那么待插入元素将放在相等元素的后边,所以,相等元素的前后顺序没有改变。

算法实现:[cpp]view plain copy1.#include<iostream>ing namespace std;3.4.void print(int a[], int n ,int i)5.{6. cout<<i<<":";7.for(int j= 0; j<8; j++){8. cout<<a[j] <<" ";9. }10. cout<<endl;11.}12.13.void InsertSort(int a[],int n)14.{15.int i,j,tmp;16.for(i=1;i<n;++i)17. {18.// 如果第i个元素大于第i-1个元素,直接插入19.// 否则20.// 小于的话,移动有序表后插入21.if(a[i]<a[i-1])22. {23. j=i-1;24. tmp=a[i]; // 复制哨兵,即存储待排序元素25. a[i]=a[i-1]; // 先后移一个元素26.while(tmp<a[j])27. {28.// 哨兵元素比插入点元素小,后移一个元素29. a[j+1]=a[j];30. --j;31. }32. a[j+1]=tmp; // 插入到正确的位置33. }34. print(a,n,i); // 打印每一趟排序的结果35. }36.}37.38.int main()39.{40.int a[8]={3,1,5,7,3,4,8,2};41. print(a,8,0); // 打印原始序列42. InsertSort(a,8);43.return 0;44.}分析:时间复杂度:O(n^2)———————————————————————————————————————————————————————————————————————插入排序——希尔排序(Shell Sort)基本思想:先将整个待排序的记录序列分割成为若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录依次进行直接插入排序。

八大排序总结

八大排序总结

1.冒泡排序(稳定排序)思想:从第一个开始,每两个数进行比较,将较大(较小)的数交换到前面直到最后一个数。

两层循环嵌套,内层用于遍历一次数组,每次两两比较,外层控制遍历的次数。

时间复杂度:O(n^2).空间复杂度:O(1)。

2.直接插入排序(稳定排序)思想:每次把一个待排的数记录下来,按其值的大小插入前面适当的位置,知道全部插完为止。

时间复杂度:O(n^2)。

空间复杂度:O(1)。

3.选择排序(不稳定排序)思想:两层for循环嵌套,内层用于每次从(j=i+1)的位置开始,将最大(最下)的数找出来,和i位置的值交换,i++,外层控制找最大值的次数。

时间复杂度:O(n^2)。

空间复杂度:O(1)。

4.希尔排序(不稳定排序)思想:他是一种分组插入排序的方法,对于分的组数应该互为素数。

每次将下标间距相等的数分为一组,对每组进行插入排序,直到组数变成一为止,最后对整个数组进行一次排序。

时间复杂度:O(n^1.3)。

空间复杂度:O(1)。

5.堆排序(不稳定排序)思想:堆排序利用堆积树进行选择排序。

堆是二叉树,当由小到大排序时,建立大根堆,首先对树进行调整(从最后一棵枝桠开始),调整后的最大值便存储在0节点,将0节点的值与最后一个节点的值交换,便找出了整个数组的最大值,用for循环对整个树在进行调整,依次得到较大的值,知道数组有序。

时间复杂度:O(nlog2n)。

空间复杂度:O(1)。

6.快速排序(不稳定排序)思想:快排是对冒泡排序的一种改进。

每次将第一个数作为基准,一趟排序后,数组要分成两部分,比基准小的都放在左边,大的放在右边,因此需要定义low,high分别指向每块的第一个数和最后一个数。

通过对基准左边和右边数的个数的判断,分别对左右两边进行找基准排序,对此,既可以使用递归进行后面的排序,也可用while循环进行。

优化一:每次用rand()函数随机产生high指向的值。

rand()%(end-start)+start.产生从0到(end-start)+start.的随机数优化二:三数取中法。

八大排序详解

八大排序详解

八大排序详解八大排序算法包括插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序和基数排序。

1. 插入排序:这是一种简单直观的排序算法,其工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

在插入过程中,如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面,因此插入排序是稳定的。

2. 希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。

3. 选择排序:它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4. 冒泡排序:这种排序算法会重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

5. 归并排序:归并排序是一种采用分治法的排序算法。

它将待排序的序列分成若干个子序列,每个子序列单独进行排序,然后将已排序的子序列进行合并,得到最终的排序结果。

6. 快速排序:快速排序采用分治法进行排序。

在每一步中,它选择一个“基准”元素,并将数组分为两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大。

然后,对这两部分独立地进行快速排序。

7. 堆排序:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆是一种特殊的树形数据结构,它的每个父节点都大于或等于(小于或等于)其子节点(通常称为大顶堆或小顶堆)。

8. 基数排序:基数排序是一种非比较整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

以上就是八大排序算法的详解,这些算法各有特点和使用场景,可以根据实际情况选择合适的算法。

著名的排序算法

著名的排序算法

著名的排序算法排序算法是计算机程序设计中非常重要的一部分。

可以将其简单地理解为将一组数据按照一定规则(大小、字母顺序等)进行排序的方法。

排序算法可以应用于各种数据处理场景中,如数据库查询、音频、视频、图像等领域。

在计算机领域,有很多种著名的排序算法。

下面就让我们详细了解一些著名的排序算法,包括它们的原理、特点和应用场景等。

1. 冒泡排序冒泡排序是最基本的排序算法之一。

它的工作原理是通过不断交换相邻的两个元素,类似冒泡的方式,将最小(大)元素逐渐“浮” 到数列的顶端(底端)。

时间复杂度为O(n2)。

2. 选择排序选择排序是一种简单的排序算法。

在每一次的排序过程中,选择未排序部分中最小(大)的元素,将它与未排序部分的第一个元素交换位置,一直重复进行这个过程直到排序完毕。

时间复杂度为 O(n2)。

3. 插入排序插入排序理论上是最快的排序算法之一。

它的工作原理是将一个未排序的元素插入到已排序的元素中的正确位置,最后得到一个有序的序列。

时间复杂度为 O(n2)。

4. 快速排序快速排序是一种分治的排序算法,它的核心思想是通过一次排序将一个序列分成两个子序列,递归的对它们进行排序,最终达到对整个序列排序的目的。

时间复杂度为O(nlogn)。

5. 归并排序堆排序是一种树形选择排序,它利用了完全二叉树的结构,将待排序的元素构建成一个大(小)根堆或者小(大)根堆,每次将堆顶元素与堆末元素交换位置,直到整个序列有序。

时间复杂度为 O(nlogn)。

7. 希尔排序希尔排序是一种插入排序的改进版。

它通过依次缩小增量(间隔)来对序列进行排序,最后缩小到 1,即对整个序列进行一次插入排序,从而达到时间复杂度优化的目的。

时间复杂度为 O(n1.3)。

总之,以上这些排序算法都各有特点,应用于不同的场景和数据情况中。

掌握这些排序算法,可以更好地解决实际问题,提高程序效率。

8种排序算法Ultimate

8种排序算法Ultimate

8种排序算法(有代码)个人对这8种排序算法的理解,希望对大家有点帮助.趁自修时间,自己将这8种排序的代码写了一下.......1.简单的选择排序bool selectionsort(int *array,int n) //array为存储数据的数组,n为数组元素个数{int k,temp; //k用来存储,临时最小数据的位置for(int i=0;i<n-1;i++){k=i;for(int j=i+1;j<n;j++) //从第i个数开始选择最小数位置,存于k中if(array[j]<array[k])k=j;if(k!=i) //若最小数,不为array[i],则array[i]与array[k]进行交换 {temp=array[i];array[i]=array[k];array[k]=temp;}}return true;}思想:逐个找出,第一小,第二小....第n小的数...算法平均时间复杂度: O(n^2)2.插入排序bool insertionsort(int *array,int n){int temp; //用来存储,插入的数据for(int i=1;i<n;i++){temp=array[i]; //用temp记录array[i]for(int j=i-1;j>=0;j--) //逐个向前寻找插入点if(temp>array[j]) //找到,跳出循环break;else //没找到,将前一个数据后移array[j+1]=array[j];}array[j+1]=temp;}return true;}思想: 逐个取数,插入一个有序数组(从后向前插)算法平均时间复杂度: O(n^2)3.自底向上排序bool bottomupsort(int *array,int n){int length=1,temp_length,i; //temp_length表示单个合并数组的长度while(length<n){temp_length=length; //length表示合并后数组的长度length=2*temp_length;i=0; //i用于记录合并数组的起始位置while(i+length-1<=n-1){merge(array,i,i+temp_length,i+length-1); //合并i~i+temp_length-1 和 i+temp_length~i+length-1 段i=i+length; //取下一个合并段的起始位置}if(i+temp_length<n-1)merge(array,i,i+temp_length,n-1); //对尾部剩余段合并}return true;}bool merge(int *array,int start1,int start2,int n) //合并两个有序数{int temp_n=n-start1+1, //两合并数组的长度和*temp_array,n1=start2-1, //第一个有序数组的末端位置temp_start1=start1; //记录start1的初始位置temp_array=(int *)malloc(sizeof(int)*temp_n); //申请长度为temp_n 的整形空间,用于临时存储合并后的数组for(int i=0;start1<=n1&&start2<=n;i++) //对两个有序数组进行合并,存储于temp_array{if(array[start1]<=array[start2]){temp_array[i]=array[start1];start1++;}else{temp_array[i]=array[start2];start2++;}}if(start1<=n1){while(start1<=n1){temp_array[i++]=array[start1];start1++;}}else{while(start2<=n){temp_array[i++]=array[start2];start2++;}}for(i=0,start1=temp_start1;i<temp_n;start1++,i++) //将合并后的有序数组,复制到array数组中{array[start1]=temp_array[i];}free(temp_array);return true;}思想: 将数组的个部分,两两有序数组进行合并算法平均时间复杂度: O(nlogn)4.快速排序void QuickSort(int low,int high,int *array){int pos;if(low<high){pos=SPLIT(low,high,array); //以array[low]进行划分,pos最为划分点//前一部分<array[low],后一部分,反之QuickSort(low,pos-1,array); //对划分后的前一部分递归处理QuickSort(pos+1,high,array); //对划分后的后一部分递归处理}}int SPLIT(int low,int high,int *array){int temp=array[low]; //用temp来记录划分数while(low<high){while(array[high]>temp&&low<high) //寻找小于temp的数high--;if(low==high)break;else{array[low]=array[high];low++;}while(array[low]<temp&&low<high) //寻找大于temp的数low++;if(low==high)break;else{array[high]=array[low];high--;}}array[low]=temp; //最终low=high作为划分点,并将划分数存于array[low]return low;}思想:就是你从数组中任取一个元素 p (可随机取,现在以取第一个为例)以P作为主元,对数组进行划分 ,前一部分小于 P,后一部分大于p最后划分处存储 p然后分别对划分后的前一部分和后一部分递归调用算法平均时间复杂度: O(nlogn)5.归并排序bool MergeSort(int low,int high,int *array){int middle=(high+low)/2; //将数组划分为2分if(low<high){MergeSort(low,middle,array); //对前一部分进行递归处理MergeSort(middle+1,high,array); //对后一部分进行递归处理HeBing(low,middle,middle+1,high,array); //将排序后的,前后两部分,进行合并}return true;}bool HeBing(int low1,int high1,int low2,int high2,int *array){int *temp,i=low1,j=low2,k=0;temp=(int *)malloc((high2-low1+1)*sizeof(int)); //temp用于临时存储合并后的数组while(i<=high1&&j<=high2) //对两个有序数组进行合并{if(array[i]<array[j]){temp[k++]=array[i];i++;}else{temp[k++]=array[j];j++;}}if(i<=high1){while(i<=high1)temp[k++]=array[i++];}else{while(j<=high2)temp[k++]=array[j++];}for(i=low1,j=0;i<=high2;i++,j++) //将合并后的数组,复制到array中{array[i]=temp[j];}free (temp);return true;}思想: 将数组划分为小数组,通过局部的有序合并,解决问题算法平均时间复杂度: O(nlogn)6.冒泡排序bool bubblesort(int *array,int n){int flag=1, //用来标记是否发生交换temp;for(int i=0;i<n-1;i++){for(int j=i+1;j<n;j++){if(array[j]<array[j-1]){temp=array[i];array[i]=array[j];array[j]=temp;flag=0;}}if(flag) //如果flag为真,及没发生交换,直接跳出循环break;elseflag=1;}return true;}思想: 相邻两数比较,小数放前面算法平均时间复杂度: O(n^2)7.堆排序bool slipdown(int *array,int cur,int n){for(int next=2*cur;next<=n;next=2*cur) //next表示cur的左孩子{if(next<n&&array[next]<array[next+1]) //取cur的两个孩子的大者next++;if(array[next]<array[cur])break;int temp=array[cur]; //交换cur和他孩子中的大者array[cur]=array[next];array[next]=temp;cur=next; //令当前需要调整的关键字的位置cur=next}return true;}bool heapsort(int *array,int n){int temp;for(int i=n/2;i>0;i--) //将数组调整为大顶堆slipdown(array,i,n);for(int N=n;N>1;N--) //选出堆中最大元,存于N位置,循环进行{temp=array[N];array[N]=array[1];array[1]=temp;slipdown(array,1,N-1);}return true;}思想: 用二叉树的结构来表示数组,及用数组来表示二叉树的结构,比如i为父节点其孩子为,2i,和2i+1其中,大顶堆中父节点大于其两个孩子算法平均时间复杂度: O(nlogn)8.基数排序bool radixsort(int *array,int n){L TENL[10]; //其中TENL[m].number中存储,数据的第i位为m的数据int k;for(int i=0;i<10;i++)TENL[i].n=0;for(i=1;i<=5;i++) //这里假设数据都小于100000,对数据进行五次分配{for(int j=0;j<n;j++) //对数据进行分配{k=getnum(array[j],i);TENL[k].number[TENL[k].n]=array[j];TENL[k].n++;}j=0;for(k=0;k<10;k++) //将此次分配后的数据,按顺序重新置入array中{for(int m=0;m<TENL[k].n;m++)array[j++]=TENL[k].number[m];TENL[k].n=0;}}return true;}int getnum(int num,int i) //从个位起,获得num的第i为数据{int temp=1;for(int j=0;j<i;j++)temp=temp*10;return (num%temp-num%(temp/10))/(temp/10);}思想:先从数据的低位开始,进行分配,分成10个空间,分别存储位为,0,1,2,3 (9)重复的对次地位操作,知道预定的高位,排序完成8种排序算法个人对这8种排序算法的理解,希望对大家有点帮助.趁自修时间,自己将这8种排序的代码写了一下.......1.简单的选择排序思想:逐个找出,第一小,第二小....第n小的数...算法平均时间复杂度: O(n^2)2.插入排序思想: 逐个取数,插入一个有序数组(从后向前插)算法平均时间复杂度: O(n^2)3.自底向上排序思想: 将数组的个部分,两两有序数组进行合并算法平均时间复杂度: O(nlogn)4.快速排序思想:就是你从数组中任取一个元素 p (可随机取,现在以取第一个为例)以P作为主元,对数组进行划分 ,前一部分小于 P,后一部分大于p最后划分处存储 p然后分别对划分后的前一部分和后一部分递归调用算法平均时间复杂度: O(nlogn)5.归并排序思想: 将数组划分为小数组,通过局部的有序合并,解决问题算法平均时间复杂度: O(nlogn)6.冒泡排序思想: 相邻两数比较,小数放前面算法平均时间复杂度: O(n^2)7.堆排序思想: 用二叉树的结构来表示数组,及用数组来表示二叉树的结构,比如i为父节点其孩子为,2i,和2i+1其中,大顶堆中父节点大于其两个孩子算法平均时间复杂度: O(nlogn)8.基数排序思想:先从数据的低位开始,进行分配,分成10个空间,分别存储位为,0,1,2,3 (9)重复的对次地位操作,知道预定的高位,排序完成以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。

C 八种排序算法总结及实现

C   八种排序算法总结及实现

八种排序算法总结之C++版本五种简单排序算法一、冒泡排序【稳定的】void BubbleSort(int*a,int Count)//实现从小到大的最终结果{int temp;for(int i=1;i<Count;i++)//外层每循环一次,将最小的一个移动到最前面for(int j=Count-1;j>=i;j--)if(a[j]<a[j-1]){temp=a[j];a[j]=a[j-1];a[j-1]=temp;}}现在注意,我们给出O方法的定义:若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n)=O(g(n))。

(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!)现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。

所以f(n)=O(g(n))=O(n*n)。

所以我们程序循环的复杂度为O(n*n)。

二、交换排序【稳定的】void ExchangeSort(int*a,int Count){int temp;for(int i=0;i<Count-1;i++)for(int j=i+1;j<Count;j++)if(a[j]<a[i]){temp=a[j];a[j]=a[i];a[i]=temp;}}时间复杂度为O(n*n)。

三、选择法【不稳定的】void SelectSort(int*a,int Count){int temp;//一个存储值int pos;//一个存储下标for(int i=0;i<Count;i++){temp=a[i];pos=i;for(int j=i+1;j<Count;j++)if(a[j]<temp)//选择排序法就是用第一个元素与最小的元素交换{temp=a[j];pos=j;//下标的交换赋值,记录当前最小元素的下标位置}a[pos]=a[i];a[i]=temp;}}遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。

八大排序算法

八大排序算法

算法实现: 我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数 即:先将要排序的一一组记录按某个增量d(n/2,n为要排序数的个数)分成若干干组子子序列,每组中记录的 下标相差d.对每组中全部元素进行行直接插入入排序,然后再用用一一个较小小的增量(d/2)对它进行行分组,在每 组中再进行行直接插入入排序。继续不断缩小小增量直至至为1,最后使用用直接插入入排序完成排序。 1. void print(int a[], int n ,int i){ 2. 3. 4. 5. 6. 7. } 8. 9. 10. 11. 12. 13. 14. 15. void ShellInsertSort(int a[], int n, int dk) 16. { 17. 18. 19. 20. 21. 22. for(int i= dk; i<n; ++i){ if(a[i] < a[i-dk]){ int j = i-dk; int x = a[i]; a[i] = a[i-dk]; while(x < a[j]){ } cout<<endl; cout<<i <<":"; for(int j= 0; j<8; j++){ cout<<a[j] <<" ";
操作方方法: 1. 选择一一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; 2. 按增量序列个数k,对序列进行行k 趟排序; 3. 每趟排序,根据对应的增量ti,将待排序列分割成若干干长度为m 的子子序列,分别对各子子表进行行直接 插入入排序。仅增量因子子为1 时,整个序列作为一一个表来处理,表长度即为整个序列的长度。 希尔排序的示示例:

八种排序方法

八种排序方法

⼋种排序⽅法⼀.直接(选择)插⼊排序有两种⽅式:升序和降序我使⽤升序直接(简单)插⼊排序:每次向已经排序好的队列⾥⾯找个合适的位置,将值插⼊//笔试和⾯试://1.算法的描述 2.算法的实现 3.效率(时间复杂度和空间复杂度和稳定性)//稳定性定义:如果两个关键值A和A`,如果⼀开始A就在A`前⾯,你排序后A还在A`前⾯,我们就认为是稳定的//怎么看稳定性:看有没有跳跃交换直接插⼊排序:如果数组基本有序,我们就⽤直接插⼊排序,越有序,时间复杂度越⼩,极端情况下为O(n)时间复杂度O(n^2)空间复杂度O(1),稳定的为什么不⽤从前向后找:如果数组有序,则时间复杂度太⼤具体代码实现:#include <stdio.h>#include <assert.h>void InsertSort(int arr[], int len){//循环多少次个数-1//⽤临时量tmp保存关键值,从后向前找,⽐它⼩的或者⾛到了头,就将关键值放到下⼀个位置上assert(arr != NULL);if (NULL == arr)return;int count = 0;int tmp = 0;int j = 0;for (int i = 1; i < len; i++)//控制揭牌后需要排序的次数{tmp = arr[i];for (j = i - 1; j >= 0; j--)//从后向前找{if (arr[j] > tmp)//⽐关键值⼤,则向后移动{arr[j + 1] = arr[j];count++;}else{break;//找到了⽐它⼩的值退出}}arr[j + 1] = tmp;}printf("count %d\n", count);}void Show(int* arr, int len){assert(arr != NULL);if (NULL == arr)return;for (int i = 0; i < len; i++){printf("%d ", arr[i]);}printf("\n");}int main(){int arr[] = { 2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88 };InsertSort(arr, sizeof(arr) / sizeof(arr[0]));Show(arr, sizeof(arr) / sizeof(arr[0]));return0;}希尔shell排序:就是⼀种特殊的直接插⼊排序,只不过调⽤了很多次直接插⼊排序,按增量分组要求:增量最后⼀个必须为1,增量保持互素时间复杂度O(n^1.3~1.5),空间复杂度O(1) ,稳定性:发⽣了跳跃交换,所以不稳定例如:分成5组,处理之后的值:分成3组,处理之后的值:最后分成1组,处理之后的值:具体代码实现:#include <stdio.h>#include <assert.h>static void Shell(int arr[], int len, int gap)//gap 分成多少组(间隔){int tmp = 0;int j = 0;int count = 0;for (int i = gap; i < len; i++)//i开始的位置{tmp = arr[i];for (j = i - gap; j >= 0; j = j - gap){if (arr[j] > tmp){arr[j + gap] = arr[j];count++;}else{break;}}arr[j + gap] = tmp;}printf("%d count %d\n", gap, count);}void ShellSort(int arr[], int len){assert(arr != nullptr);if (NULL == arr)return;int dk[] = { 5, 3, 1 };for (int i = 0; i < sizeof(dk) / sizeof(dk[0]); i++){Shell(arr, len, dk[i]);}}void Show(int* arr, int len){assert(arr != NULL);if (NULL == arr)return;for (int i = 0; i < len; i++){printf("%d ", arr[i]);}printf("\n");}int main(){int arr2[] = { 2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88 };ShellSort(arr2, sizeof(arr2) / sizeof(arr2[0]));Show(arr2, sizeof(arr2) / sizeof(arr2[0]));return0;}⼆.交换排序冒泡(沉⽯)排序:两两⽐较,⼤的向后挪,⼩的向前挪时间复杂度O(n^2)空间复杂度O(1)稳定的具体代码实现://冒泡排序:两两⽐较,⼤的向后挪void BubbleSort(int arr[], int len){//assert/*int count=0;bool tag = true;*/int tmp = 0;for(int i=0; i<len-1; i++)//次数{//tag = true;for(int j=0;j+1<len-i; j++)//两两⽐较,⼤的向后挪{if(arr[j] > arr[j+1]){tmp = arr[j];arr[j] = arr[j+1];arr[j+1] = tmp;//tag = false;}//count++;}/*if(tag){break;}*/}//printf("count = %d\n", count);}int main(){int arr[] = {2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88};BubbleSort(arr, sizeof(arr)/sizeof(arr[0]));Show(arr, sizeof(arr)/sizeof(arr[0]));return 0;}快速排序法每次找到基准值,以基准值为分界线,将数据分成两块,左边的数据都⽐基准值⼩,右边的数据都⽐基准值⼤快速排序,越有序越慢,规则:1.从右向左找⽐基准值⼩的数据,找到后,向左挪动2.从左向右找⽐基准值⼤的数据,找到后,向右挪动3.重复1,2,直到left == right,结束,将基准值放到arr[left] 或者arr[right]内缺点:越有序越慢,不稳定具体实现代码:#include<stdio.h>#include<assert.h>static int Partition(int arr[], int left, int right){int tmp = arr[left];while (left < right)//进来保证有两个值{while(left < right && arr[right] > tmp)right--;if(left == right){break;}arr[left] = arr[right];while(left < right && arr[left] <= tmp)left++;if(left == right){break;}arr[right] = arr[left];}arr[left] = tmp;//arr[right] = tmp;return left;//return right; 因为此时left == right}static void Quick(int arr[], int left, int right){if(left < right){//第⼀种优化:如果有效个数特别少,直接调⽤直接插⼊排序/*if(right-left+1<20 ) //⾃⼰设置有效个数{Insertsort(arr,left, high)return;} // Insertsirt表⽰⼀个插⼊排序类*///第⼆种优化:三数取中/*GetMiddleNumber(arr,left,mid,right);*///第三种优化:防⽌完全有序,⾃⼰打乱⼀下/*Swap(arr,start,rand()%(right-left+1)+start;*///第四种/*if(left < right){int midindex = Partition(arr, left, right);if(left < midindex-1){Quick(arr, left, midindex-1);}if(midindex+1 < right){Quick(arr, midindex+1, right);}}*/int midindex = Partition(arr, left, right);Quick(arr, left, midindex-1);Quick(arr, midindex+1, right);}}//⽤栈static void Quick_stack(int arr[], int left, int right){stack<int> st;if (left < right){int midindex = Partition(arr, left, right);if (left < midindex - 1){st.push(left);st.push(midindex - 1);}if (midindex + 1 < right){st.push(midindex + 1);st.push(right);}}while (!st.empty()){int q = st.top();st.pop();int p = st.top();st.pop();int midindex = Partition(arr, p, q);if (p < midindex - 1){st.push(p);st.push(midindex - 1);}if (midindex + 1 < q){st.push(midindex + 1);st.push(q);}}}void QuickSort(int arr[], int len)//时间复杂度O(nlogn)空间复杂度O(1)不稳定{//assertQuick_stack(arr, 0, len-1);}第⼀种优化代码:void InsertSort(int arr[], int left, int right){int tmp = arr[left];for (int i = left + 1; i <= right; i++){tmp = arr[i];int j = i - 1;while (j >= right && arr[i] > tmp){arr[j + 1] = arr[j];j--;}arr[j + 1] = tmp;}}第⼆种优化代码:void GetMiddleNumber(int arr[], int left, int right){if (arr[left] > arr[right]){Swap(arr, left, right);//交换左右端数据,保证左端较⼩}if (arr[mid] > arr[right]){Swap(arr, left, right);//交换中间和右边,保证中间较⼩}if (arr[mid] > arr[left]){Swap(arr, left, right);//交换中间和左端数据,保证左边不是最⼩的那⼀个}}第三种优化代码:Swap(arr, left, rand() % (end - start + 1) + start);//取⼀个⼩于有效长度随机值+最左端值的下标作为随机基准值的下标与start进⾏交换三.选择排序直接选择(简单选择排序):每次从待排序队列中找到最⼩值,和待排序队列的第⼀位交换即可时间复杂度O(n^2)空间复杂度O(1)不稳定的具体实现代码:#include<stdio.h>#include<assert.h>void SelectSort(int arr[], int len){assert(arr != NULL);if (NULL == NULL)return;int tmp = 0;for (int i = 0; i < len - 1; i++){int m= i;//存放最⼩值下标for (int j = i + 1; j < len ; j++){if (arr[j] <arr[m]){m = j;}}if (m != i)//if判断可省略{tmp = arr[m];arr[m] = arr[i];arr[i] = tmp;}}}void Show(int* arr, int len){assert(arr != NULL);if (NULL == arr)return;for (int i = 0; i < len; i++){printf("%d ", arr[i]);}printf("\n");}int main(){int arr[] = { 2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88 };SelectSort(arr, sizeof(arr) / sizeof(arr[0]));Show(arr, sizeof(arr) / sizeof(arr[0]));return 0;}堆排序:堆排序的时间复杂度O(nlogn)空间复杂度O(1)不稳定什么是堆?堆分为两种:⼤顶堆和⼩顶堆两个统称为堆⼤顶堆:⼀个⼆叉树,⽗节点的值⼤于⼦节点的值⼩顶堆:⼀个⼆叉树,⽗节点的值⼩于⼦节点的值什么是树形结构:⼆叉树,树根,深度,叶⼦结点,左孩⼦,右孩⼦,完全⼆叉树,满⼆叉树深度怎么求:log2n+1⼤顶堆和⼩顶堆的关系,和兄弟节点的值⽆关,只和⽗⼦节点有关调整2个要点:1.从最后⼀个⾮叶⼦节点⼦树开始从后向前调整2.调整的时候顺序是从上向下3.升序(⼤顶堆),降序(⼩顶堆)具体实现代码:#include<stdio.h>#include<assert.h>static void HeapAdjust(int arr[], int start, int end)//时间复杂度O(log2n)空间复杂度O(1){int tmp = arr[start];for(int i=2*start+1; i<=end; i=i*2+1)//i? 堆排序效率⾼体现在这⾥i=i*2+1{//1.左右孩⼦都存在//2.只有左孩⼦,没有右孩⼦if(i<end && arr[i] < arr[i+1])//通过i<end保证右孩⼦存在,且arr[i] <arr[i+1]保证左孩⼦⼩于右孩⼦ {i++;//这时候让i指向较⼤的右孩⼦下标}//if判断失败的话,要么没有右孩⼦,要么有右孩⼦但是左孩⼦⽐右孩⼦值⼤,所以i不需要改变if(arr[i] > tmp)//判断较⼤孩⼦节点的值是否⽐⽗节点的值⼤,⼤的话向上覆盖,不然就找到了合适位置 {arr[start] = arr[i];start = i;}else{break;//左右孩⼦中较⼤的孩⼦值⼩于tmp}}arr[start] = tmp;//有两种情况执⾏到这⼀⾏代码:1.触底 2.找到放tmp的合适位置}//堆排序的时间复杂度O(nlog2n)空间复杂度O(1)不稳定void HeapSort(int arr[], int len){//assert//2.调整为⼤顶堆for(int i=(len-1-1)/2; i>=0; i--)//O(nlog2n){HeapAdjust(arr, i, len-1);//}//第⼀个for循环⾛出来,这时已经为⼤顶堆了int tmp = 0;for(int j=0; j<len-1; j++)//j指的是循环的次数(顶部数据和最后⼀个节点交换的次数)//O(nlog2n){//3.将顶部数据和最后⼀个节点进⾏了交换tmp = arr[0];arr[0] = arr[len-1-j];arr[len-1-j] = tmp;//已经将顶部数据和最后⼀个节点进⾏了交换 //4.重复2.3操作HeapAdjust(arr, 0, (len-1-j)-1);}}void Show(int* arr, int len){assert(arr != NULL);if (NULL == arr)return;for (int i = 0; i < len; i++){printf("%d ", arr[i]);}printf("\n");}int main(){int arr[] = { 2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88 };HeapSort(arr, sizeof(arr) / sizeof(arr[0]));Show(arr, sizeof(arr) / sizeof(arr[0]));return0;}四.⼆路归并排序⼆路归并排序,⾮递归形式:将两个有序的段合并成⼀个有序的段,直到全部数据在同⼀个段内有序,则完成有序时间复杂度O(n log2n)空间复杂度O(1)稳定的具体代码实现://⼀次归并以gapgap合并static void Merge(int arr[], int len, int gap)//gap 标志⼏⼏合并{int *brr = (int*)malloc(sizeof(int) * len);assert(brr != NULL);int low1 = 0;int high1 = low1 + gap -1;int low2 = high1 + 1;int high2 = low2+gap-1<len ? low2+gap-1 : len-1;//H2 有可能越界若⼩于则low2+gap-1,不是则len-1int i = 0;while(low2 < len)//有两个有序段{while(low1 <= high1 && low2 <= high2)//两个段内头指针都没⾛到尾巴{if(arr[low1] <= arr[low2]){brr[i++] = arr[low1++];}else{brr[i++] = arr[low2++];}}//左边的段⾛到尾,那直接将右边的段内数据向下拷贝到brr内即可while(low2 <= high2){brr[i++] = arr[low2++];}//右边的段⾛到尾,那直接将左边的段内数据向下拷贝到brr内即可while(low1 <= high1){brr[i++] = arr[low1++];}//更改L1L2 H1H1,让指向接下来的两个有序段即可low1 = high2 + 1;high1 = low1+gap-1;low2 = high1 + 1;high2 = low2+gap-1<len ? low2+gap-1 : len-1;}//只有⼀个有序段while(low1 < len){brr[i++] = arr[low1++];}//将brr⾥的全部值拷贝到arr⾥⾯,然后将brr释放for(int j=0; j<len; j++){arr[j] = brr[j];}free(brr);brr = NULL;}void MergeSort(int arr[], int len)//控制合并次数{assert(arr != NULL);if(NULL == arr)return;for(int i=1; i<len; i*=2){Merge(arr, len, i);}}int main(){int arr[] = {2,4,6,8,23,98,76,56,74,36,1,3,5,7,99,66,77,88};MergeSort(arr, sizeof(arr)/sizeof(arr[0]));Show(arr, sizeof(arr)/sizeof(arr[0]));return0;}五.基数排序⼜称桶排序低位优先,所有数据从低位(个)位开始,依次放⼊到对应的⼗个桶内(队列中),再依次从桶中将数据依次取出(出队),直到所有数据循环次数和最⼤位数有关时间复杂度o(n) , 空间复杂度o(n)此时完全有序具体实现代码:#include<stdio.h>#include<assert.h>//基数排序//获取数组中最⼤值的位数static int Get_Figure(int arr[], int len) {int max = 0;for(int i=0; i<len; i++){if(arr[i] > max){max = arr[i];}}int count = 0;while(max != 0)max /= 10;}return count;}//获取n的第fin位的值//1234,2 = 2//234,0 = 4//12345,4 = 1//12345,7 = 0static int Get_num(int n, int fin){for(int i=0; i<fin; i++){n = n / 10;}return n % 10;//return n/(int)(pow((double)10, fin)) % 10;}//⽤⼆维数组调⽤static void Radix(int arr[], int len, int fin)//⼆维数组 fin判断的依据,到底是以什么位排序//时间复杂度O(n)空间复杂度O(n){int bucket[10][20] = {0};//桶int num[10] = {0};//对应的桶中有多少个有效值//所有的数据都以fin位为依据,放到了桶内for(int i=0; i<len; i++)//数组的下标从0开始放{int index = Get_num(arr[i], fin);//获取arr[i]的fin位的值,找到对应的桶bucket[index][num[index]] = arr[i];//放到对⽤的桶中第num[index]位上num[index]++;//对应的桶中有效个数++}//从0-9桶内依次取值到arr⾥int k = 0;for(int i=0; i<10; i++)//⼏号桶{for(int j=0; j<num[i]; j++)//j桶中有效值个数{arr[k++] = bucket[i][j];}}}//⽤链式队列调⽤static void Radix_queue(int arr[], int len, int fin)//时间复杂度O(n)空间复杂度O(n){LQueue queArr[10];for(int i=0; i<10; i++){InitLQueue(&queArr[i]);}for(int i=0; i<len; i++){int index = Get_num(arr[i], fin);Push(&queArr[index], arr[i]);}int k = 0;for(int i=0; i<10; i++){while(!IsEmpty(&queArr[i])){Pop(&queArr[i], &arr[k++]);}}for(int i=0; i<10; i++){Destroy(&queArr[i]);}}void RadixSort(int arr[], int len)//时间复杂度O(dn)空间复杂度(n)稳定{//assertint count = Get_Figure(arr, len);for(int i=0; i<count; i++)//循环的趟数,低位优先{Radix_queue(arr, len, i);}。

数据结构之——八大排序算法

数据结构之——八大排序算法

数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。

这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。

所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。

(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。

快速排序由C. A. R. Hoare在1960年提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八大排序算法概述排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们这里说说八大排序就是内部排序。

当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。

快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。

即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

算法的实现:[cpp]view plain copyprint?1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8.9.10.void InsertSort(int a[], int n)11.{12.for(int i= 1; i<n; i++){13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入14.int j= i-1;15.int x = a[i]; //复制为哨兵,即存储待排序元素16. a[i] = a[i-1]; //先后移一个元素17.while(x < a[j]){ //查找在有序表的插入位置18. a[j+1] = a[j];19. j--; //元素后移20. }21. a[j+1] = x; //插入到正确位置22. }23. print(a,n,i); //打印每趟排序的结果24. }25.26.}27.28.int main(){29.int a[8] = {3,1,5,7,2,4,9,6};30. InsertSort(a,8);31. print(a,8,8);32.}效率:时间复杂度:O(n^2).其他的插入排序有二分插入排序,2-路插入排序。

希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。

希尔排序又叫缩小增量排序基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

操作方法:1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;2. 按增量序列个数k,对序列进行k 趟排序;3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。

仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

希尔排序的示例:算法实现:我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

继续不断缩小增量直至为1,最后使用直接插入排序完成排序。

[cpp]view plain copyprint?1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8./**9. * 直接插入排序的一般形式10. *11. * @param int dk 缩小增量,如果是直接插入排序,dk=112. *13. */14.15.void ShellInsertSort(int a[], int n, int dk)16.{17.for(int i= dk; i<n; ++i){18.if(a[i] < a[i-dk]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入19.int j = i-dk;20.int x = a[i]; //复制为哨兵,即存储待排序元素21. a[i] = a[i-dk]; //首先后移一个元素22.while(x < a[j]){ //查找在有序表的插入位置23. a[j+dk] = a[j];24. j -= dk; //元素后移25. }26. a[j+dk] = x; //插入到正确位置27. }28. print(a, n,i );29. }30.31.}32.33./**34. * 先按增量d(n/2,n为要排序数的个数进行希尔排序35. *36. */37.void shellSort(int a[], int n){38.39.int dk = n/2;40.while( dk >= 1 ){41. ShellInsertSort(a, n, dk);42. dk = dk/2;43. }44.}45.int main(){46.int a[8] = {3,1,5,7,2,4,9,6};47.//ShellInsertSort(a,8,1); //直接插入排序48. shellSort(a,8); //希尔插入排序49. print(a,8,8);50.}希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。

目前还没有人给出选取最好的增量因子序列的方法。

增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。

希尔排序方法是一个不稳定的排序方法。

基本思想:在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。

简单选择排序的示例:操作方法:第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;以此类推.....第i 趟,则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换,直到整个序列按关键码有序。

算法实现:[cpp]view plain copyprint?1.void print(int a[], int n ,int i){2. cout<<"第"<<i+1 <<"趟 : ";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8./**9. * 数组的最小值10. *11. * @return int 数组的键值12. */13.int SelectMinKey(int a[], int n, int i)14.{15.int k = i;16.for(int j=i+1 ;j< n; ++j) {17.if(a[k] > a[j]) k = j;18. }19.return k;20.}21.22./**23. * 选择排序24. *25. */26.void selectSort(int a[], int n){27.int key, tmp;28.for(int i = 0; i< n; ++i) {29. key = SelectMinKey(a, n,i); //选择最小的元素30.if(key != i){31. tmp = a[i]; a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换32. }33. print(a, n , i);34. }35.}36.int main(){37.int a[8] = {3,1,5,7,2,4,9,6};38. cout<<"初始值:";39.for(int j= 0; j<8; j++){40. cout<<a[j] <<" ";41. }42. cout<<endl<<endl;43. selectSort(a, 8);44. print(a,8,8);45.}简单选择排序的改进——二元选择排序简单选择排序,每趟循环只能确定一个元素排序后的定位。

我们可以考虑改进为每趟循环确定两个元素(当前趟最大和最小记录)的位置,从而减少排序所需的循环次数。

改进后对n 个数据进行排序,最多只需进行[n/2]趟循环即可。

具体实现如下:[cpp]view plain copyprint?1.void SelectSort(int r[],int n) {2.int i ,j , min ,max, tmp;3.for (i=1 ;i <= n/2;i++) {4.// 做不超过n/2趟选择排序5. min = i; max = i ; //分别记录最大和最小关键字记录位置6.for (j= i+1; j<= n-i; j++) {7.if (r[j] > r[max]) {8. max = j ; continue ;9. }10.if (r[j]< r[min]) {11. min = j ;12. }13. }14.//该交换操作还可分情况讨论以提高效率15. tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp;16. tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp;17.18. }19.}堆排序是一种树形选择排序,是对直接选择排序的有效改进。

相关文档
最新文档