两组对角分别相等的四边形是平行四边形ppt课件
合集下载
平行四边形判定PPT课件
两组对边分别相等
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
平行四边形的ppt课件
VS
外角和定理的证明
通过平移、旋转等几何变换,将平行四边 形转化为三角形,再利用三角形外角和定 理进行证明。
谢谢
THANKS
平行四边形的性质课件
目录
CONTENTS
• 平行四边形的基本概念 • 平行四边形的特殊形式 • 平行四边形与生活中的应用 • 平行四边形的证明实例 • 平行四边形的探究与拓展
01 平行四边形的基本概念
CHAPTER
平行四边形的定义
平行四边形定义
平行四边形是两组对边分别平行的四 边形。
平行四边形的符号表示
05 平行四边形的探究与拓展
CHAPTER
平行四边形的面积计算
面积计算公式
平行四边形的面积可以通过底乘高的方式进行计算,其中底为平行四边形的底边,高为该边上的垂直 距离。
面积计算的实际应用
面积计算在日常生活和数学领域中都有广泛的应用,如几何图形面积的求解、土地面积的测量等。
平行四边形的内角和
内角和定理
采光
平行四边形的窗户设计能够更好地利用自然光线 ,提高室内采光效果。
交通标志
方向性
平行四边形形状的交通标志具有明显的方向性,能够清晰地指示 车辆前行方向。
易识别性
平行四边形的简单形状和鲜明的颜色使得交通标志易于识别,有助 于提高交通安全。
规范性
平行四边形的交通标志符合道路交通规范,能够确保交通秩序和安 全。
矩形的四个角都是直角, 对角线相等。
判定
如果一个平行四边形有一 个角是直角,那么它是矩 形。
菱形
定义
有一组邻边相等的平行四 边形是菱形。
性质
菱形的四条边都相等,对 角线互相垂直平分。
判定
平行四边形课件ppt
判定
有一个角是直角的菱形是 正方形;对角线相等的菱 形是正方形。
03
CATALOGUE
平行四边形的应用
在几何作图中的应用
总结词:基础应用
详细描述:平行四边形是几何学中最基础的图形之一,它在证明定理、解决几何 问题等方面有着广泛的应用。通过平行四边形的性质和判定,可以解决各种几何 问题,如面积计算、线段长度比较等。
。
掌握平行四边形的面积和周长的 计算方法。
加深对平行四边形的应用的理解 ,如对称问题、最值问题等。
THANKS
感谢观看
进一步提高孩子们对平行四边形性质的理解和应用能力。
详细描述
给出一个不规则的图形,让孩子们通过重新排列或剪切得到一个平行四边形,并说明理由。
06
CATALOGUE
总结与回顾
主要概念总结
平行四边形定义
两组对边分别平行的四边形叫做 平行四边形。
平行四边形性质
平行四边形的对边相等且平行、 对角相等、对角线互相平分。
对角线互相平分的四边形是平行四边 形。
一组对边平行且相等的四边形是平行 四边形。
两组对角分别相等的四边形是平行四 边形。
02
CATALOGUE
平行四边形的特殊形式
矩形
定义
有一个角是直角的平行四边形是 矩形。
性质
矩形的四个角都是直角,矩形的对 角线相等。
判定
有一个角是直角的平行四边形是矩 形;对角线相等的平行四边形是矩 形。
平行四边形属于中心 对称图形,其对称中 心是两条对角线的交 点。
平行四边形的性质
01
02
03
04
对边平行:平行四边形的对边 平行且相等。
对角相等:平行四边形的对角 相等,邻角互补。
《平行四边形的性质》课件
平行四边形与三角形面积比较
平行四边形的面积始终大于其内接的三角形,且小于其外接的三角形。
真假题习题
使用真假题来检验你对平行四边形知识的掌握程度。
综合应用题
用综合应用题来加深你对平行四边形的应用能力。
总结
平行四边形是一个非常重要的几何形状,具有许多有趣且有用的性质。通过 本课件的学习,你现在已经掌握了平行四边形的各种性质和应用方法。
3
利用特殊四边形
通过证明其为矩形、菱形或等腰梯形,间接证明两组对边平行。
平行四边形的两组对边相等
平行四边形的两组对边分别相等。
平行四边形中线具有相同长度
平行四边形的中线(连接相对顶点中点的线段)具有相同的长度。
平行四边形中垂线长相等
平行四边形的垂线(从顶点向对边作垂直线)具有相同的长度。
平行四边形的高度
平行四边形的高度是从一条边到对边平行距离的垂直线段。
平行四边形内接圆和外接圆
1 内接圆
平行四边形可以有一个内接圆,圆心位于对 角线交点。
2 外接圆
平行四边形可以有一个外接圆,圆心位于四 个顶点外的某点。
平行四边形的面积公式
平行四边形的面积可以通过底边与高的乘积来计算。
平行四边形的周长公式
平行四边形的周长可以通过四条边长之和来计算。
平行四边形的对角线平分
平行四边形的对角线相交于一点,且互相平分。
边界角的性质
平行四边形的边界角互补,它们的和为180度。
平行四边形的中心对角线
平行四边形的中心对角线相等。
证明平行四边形的方法
1
利用定义
根据平行四边形的定义,证明其两组对边平行。
2
通过角度
利用内角和、对角线平分等性质,证明其两组对边。
1.1平行四边形及其边角性质PPT课件(华师大版)
总结
知3-讲
平行四边形中求有关角度的基本方法是利用平 行四边形对角相等,邻角互补的性质,并且已知一 个角或已知两邻角的关系可求出所有内角的度数.
知3-练
1 如图,在 ABCD中,M是BC延长线上的一点,若 ∠A=135°,则∠MCD的度数是( ) A.45° B.55° C.65° D.75°
知3-练
知2-讲
例2 如图, 在 ABCD中,AB= 8, 周长等于24. 求其 余三条边的长.
解:在 ABCD中, AB = DC,AD = BC(平行四边形的对边相等). ∵AB=8, ∴ DC=8 , 又∵AB+BC+DC+AD=24, ∴AD=BC = 1 (24-2AB)=4. 2
知2-讲
例3 已知平行四边形的周长是24, 相邻两边的长度相 差4,求该平行四边形相邻两边的长.
知2-导
知识点 2 平行四边形的性质——对边相等
你还发现平行四边形有哪些性质?
我们还发现:平行四边形的对边相等、对角相等. 请你尝试证明这些结论.
知2-讲
边的性质: 平行四边形对边平行;平行四边形对边相等.
数学表达式: 如图,∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC,AB=CD,AD=BC.
知2-练
2 如图,在 ABCD中,E,F是对角线BD上的两点, 如果添加一个条件,使△ABE≌△CDF,则添加的 条件不能为( ) A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2
知2-练
3 在平面直角坐标系中,已知▱ABCD
的三个顶点坐标分别是A(m,n),B(2,-1),
C(-m,-n),则点D的坐标是( )
知1-练
1 如图,在 ABCD中,EF∥AD,HN∥AB,EF与 HN相交于点O,则图中共有平行四边形( ) A.12个 B.9个 C.7个 D.5个
《平行四边形的性质》PPT课件(第1课时)
(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时
平行四边形的判定ppt课件
∴△ABE≌△FCE(AAS).
∴AE=EF.
又∵BE=CE,
∴四边形ABFC是平行四边形.
4.如图所示,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.
(1)求证:四边形BCED是平行四边形;
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC.
∵DE=AD,
∴DE=BC,DE∥BC.
∴AD=BC,AE=CF.
∵E,F分别为边AB,CD的中点,
∴AB=2AE,CD=2CF.
∴AB=CD.
∴四边形ABCD是平行四边形.
新知应用
如 图 所 示 , 已 知 E,F,G,H 分 别 是 ▱ ABCD 的 边 AB,BC,CD,DA 上 的 点 , 且
AE=CG,BF=DH.求证:四边形EFGH是平行四边形.
别在直线AD,BC上,EH平分∠FEG,线段EH的长是否是两条平行线AD,BC之
间的距离?为什么?
解:是.理由如下:
∵AB∥EF,CD∥EG,
∴∠AEF+∠A=180°,∠DEG+∠D=180°.
∵∠A=∠D,∴∠AEF=∠DEG.
∵EH 平分∠FEG,∴∠FEH=∠GEH.
∴∠AEF+∠FEH= ×180°=90°,即∠AEH=90°.∴EH⊥AD.
O,BE⊥AC,DF⊥AC,垂足分别为E,F,且AF=CE,∠BAC=∠DCA.求证:四边形
ABCD是平行四边形.
证明:∵AF=CE,∴AF-EF=CE-EF.∴AE=CF.
∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.
∵∠BAC=∠DCA,∴AB∥CD.∴∠BAE=∠DCF.
∠ = ∠,
∴AE=EF.
又∵BE=CE,
∴四边形ABFC是平行四边形.
4.如图所示,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.
(1)求证:四边形BCED是平行四边形;
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC.
∵DE=AD,
∴DE=BC,DE∥BC.
∴AD=BC,AE=CF.
∵E,F分别为边AB,CD的中点,
∴AB=2AE,CD=2CF.
∴AB=CD.
∴四边形ABCD是平行四边形.
新知应用
如 图 所 示 , 已 知 E,F,G,H 分 别 是 ▱ ABCD 的 边 AB,BC,CD,DA 上 的 点 , 且
AE=CG,BF=DH.求证:四边形EFGH是平行四边形.
别在直线AD,BC上,EH平分∠FEG,线段EH的长是否是两条平行线AD,BC之
间的距离?为什么?
解:是.理由如下:
∵AB∥EF,CD∥EG,
∴∠AEF+∠A=180°,∠DEG+∠D=180°.
∵∠A=∠D,∴∠AEF=∠DEG.
∵EH 平分∠FEG,∴∠FEH=∠GEH.
∴∠AEF+∠FEH= ×180°=90°,即∠AEH=90°.∴EH⊥AD.
O,BE⊥AC,DF⊥AC,垂足分别为E,F,且AF=CE,∠BAC=∠DCA.求证:四边形
ABCD是平行四边形.
证明:∵AF=CE,∴AF-EF=CE-EF.∴AE=CF.
∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.
∵∠BAC=∠DCA,∴AB∥CD.∴∠BAE=∠DCF.
∠ = ∠,
平行四边形的定义及性质ppt课件
§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件
新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.
平行四边形PPT课件
高
底
过平行四边形一顶点,向对边画垂线,这点到
垂足的线段是平行四边形的高。
这条对边是平行四边形的底。
平行四边形一条底上有几条高? (无数条)
A
D
高
B
C
底
自学提示:注意底和高的对应。
高
高
底
底
我是小法官
(1)平行四边形的两组对边分别相等。
(√ )
(2)在一个平行四边形里,只可以画出一条高。 (×)
(3)
高
底
(×)
在下图中标出平行四边形的底和高。
高
高
底
底
说一说:下图中你认识的图形的 名称。
总结:
1.通过今天的学习,你收获了什么? 2.还有哪些不太明白的地方?
谢谢观赏!
2020/11/5
15
平行四边形PPT课件
平行四边形
两组对边分别平行的四边形,就是 平行四边形。
( 不是 )
(是 )
( 不是 )
( 不是 )ห้องสมุดไป่ตู้
(是 )
观察、思考:拉成了什么图形? 两组对边有什么变化?两组对角有什 么变化?
平行四边形具有不稳定性(易变形) 两组对边分别相等 两组对角分别相等
折痕是平行四 边形的高。
平行四边形ppt课件
02
平行四边形在生活中的应 用
建筑设计中的应用
稳定性
平行四边形结构在建筑设 计中具有稳定性,能够承 受较大的压力和拉力。
空间利用率
平行四边形结构可以有效 地利用空间,提高建筑物 的使用效率。
美学价值
平行四边形在建筑立面上 的运用,可以增强建筑物 的立体感和现代感。
机械制造中的应用
平行四边形机构
理,即a²=b²+c²-2bc×cosA,其中A为夹角。
02
边长与高度关系
平行四边形的高h与底边长a及夹角θ有关,即h=a×sinθ。同时,高度
与面积之间满足的高度与夹角θ有关,当θ为90°时,高h即为直角边,此时
平行四边形为矩形。当θ小于90°时,高h在平行四边形内部;当θ大于
在机械制造中,平行四边形机构 常用于实现物体的平移、升降和
支撑等功能。
精度控制
平行四边形机构的运动轨迹较为稳 定,可以实现较高的精度控制。
传递力量
平行四边形机构可以有效地传递力 量,实现力的放大或减小。
美术与图案设计中的应用
图案构成
创意发挥
平行四边形可以作为美术和图案设计 中的基本元素,通过重复、旋转和对 称等方式构成各种图案。
梯形
平行四边形的一组对边可以看作梯形的上底和下底,而另一组对边则是梯形的 腰。通过作高可以将梯形划分为一个矩形和两个三角形,从而推导出梯形的面 积公式。
04
平行四边形的计算问题
周长、面积、对角线长度计算
周长计算
平行四边形的周长等于其四边之和,即P=2(a+b),其中a、b为相 邻两边长。
面积计算
平行四边形面积计算公式为S=ah,其中a为底边长,h为高。
6.平行四边形的判定课件
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1
X轴
(-1,-2)B -2 -3
C(3 , -2 )
-4
-5 -6
F(0,-5)
高效上好每节课·快乐上好每天学
学习了本节课后, 你会用什么方法 来画一个平行四
边形呢?
1
2
3
4
高效上好每节课·快乐上好每天学
高效上好每节课·快乐上好每天学
高效上好每节课·快乐上好每天学
已知:在四边形ABCD中,AB=CD, AD=BC , 求证:四边形ABCD是平行四边形.
A
D
分析: △ABC ≌△CDA
连结AC
B
C
角相等
AD ∥ BC或AB ∥ CD
两组对边分别平行 一组对边平行且相等 四边形ABCD是平行四边形
高效上好每节课·快乐上好每天学
已知:在四边形ABCD中,AB=CD, AD=BC , 求证:四边形ABCD是平行四边形.
高效上好每节课·快乐上好每天学
已知:如图 ,在平行四边形ABCD中, E,F分别是边AD,BC的中点.
(1)求证:EB=DF.
(2)图中还有其它平行四边形吗?说明理由.
高效上好每节课·快乐上好每天学
学习目标
1.探索平行四边形的性质定理1与判定定理1互为逆命 题的关系,体验数学命题探究和发现的过程; 2.理解并掌握平行四边形的判定定理1和2——“一组 对边平行且相等的四边形是平行四边形”、“两组 对边分别相等的四边形是平行四边形”.
3
1
2
4
∵ AB ∥ CD (已知)
B
C
∴∠1=∠2(两直线平行,内错角相等)
又∵ AB=CD(已知) AC=AC(公共边)
平行四边形的判定课件人教版数学八年级下册2
∵点G是AB的中点,BE=EF
G
∴GE是△ABF的一条中位线,
A
∴GE∥AF,即CE∥AF,
C
E O F
H
D
同理可得 CF∥AE, ∴四边形AFCE是平行四边形. ∴OA=OC,OE=OF, 又∵BE=DF, ∴OB=OD, ∴四边形ABCD是平行四边形.
B G A
C
E O F
H
D
归纳新知
平 行 四 边 形 的 判 定
D
A
B
O
C
2.如图, 在平行四边形 ABCD 中,EF 过对角线 BD 的中
点 O. 求证:四边形 BFDE 是平行四边形.
证明:∵四边形 ABCD 是平行四边形
A
FD
∴OB=OD,AD//BC
O
∵ AD//BC ∴∠FDO=∠EBO
BE
C
∵ ∠FDO=∠EBO,OD=OB, ∠FOD=∠EOB
∴△FDO≌△EBO,OF=OE
(1)求证:四边形DEBF是平行四边形; (2)当DE=DF时,求EF的长.
解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又∵∠DOF= ∠BOE,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,又∵DF∥BE,∴四边形 DEBF是平行四边形
(2)∵DE=DF,四边形 DEBF 是平行四边形,∴四边形 DEBF 是菱形,∴ DE=BE,EF⊥BD,OE=OF,设 AE=x,则 DE=BE=8-x,在 Rt△ADE 中,根据勾股定理,有 AE2+AD2=DE2,∴x2+62=(8-x)2,解得 x=74 ,∴ DE=8-74 =245 ,在 Rt△ABD 中,根据勾股定理,有 AB2+AD2=BD2,∴BD = 62+82 =10,∴OD=12 BD=5,在 Rt△DOE 中,根据勾股定理,有 DE2 - OD2=OE2,∴OE= (245)2-52 =145 ,∴EF=2OE=125
平行四边形性质及定理PPT课件
的平衡和美感。
图案设计
02
平行四边形在图案设计中也有广泛应用,如纺织品、壁纸、地
毯等的设计。
舞台布景和道具设计
03
在舞台布景和道具设计中,平行四边形也常被用于创造视觉效
果和空间感。
THANKS FOR WATCHING
感谢您的观看
一组对边平行
总结词
如果一个四边形中有一组对边平 行,则该四边形是平行四边形。
详细描述
这是平行四边形的一个基本判定 定理。如果一个四边形的对边平 行,则这个四边形必然是平行四 边形。
一组对边相等
总结词
如果一个四边形中有一组对边相等, 则该四边形是平行四边形。
详细描述
这也是平行四边形的一个基本判定定 理。如果一个四边形的对边相等,则 这个四边形必然是平行四边形。
窗户和门的形状设计
平行四边形因其独特的对边平行和相 对边相等的特性,常被用于创造空间 感和视觉效果。
窗户和门的形状设计经常采用平行四 边形,以实现采光和通风的最佳效果。
建筑结构的稳定性
平行四边形的对角线互相平分,这使 得它在建筑结构设计中具有稳定性, 如桥梁、房屋的支撑结构等。
机械设计中的应用
机械零件的形状设计
平行四边形性质及定理ppt课件
contents
目录
• 平行四边形的基本性质 • 平行四边形的判定定理 • 特殊平行四边形 • 平行四边形在实际生活中的应用
01 平行四边形的基本性质
对边平行
总结词
平行四边形的对边是平行的。
详细描述
这是平行四边形的基本性质之一,即相对的两条边是平行的,不会相交于一点。
直角三角形斜边中线定 理,矩形的对角线相等
且互相平分。
八年级数学《平行四边形的判定》课件
选做题
2、已知: ABCD中, E、F分别是AC上两点, 且BE⊥AC于E,DF⊥AC于F. 求证: 四边形BEDF是平行四边形.
A
E
D
F
B
C
图形语言 符号语言 C∵AB∥CD, AD∥BC D
B C∵AB=CD, AD= BC
∴ABCD是平行四边形
∴ABCD是平行四边形
B C ∵∠A=∠C, ∠B=∠D B C ∵OA=OC, OB=OD
O
∴ABCD是平行四边形
∴ABCD是平行四边形
B
必做题
1、已知:E、F是平行四边形ABCD对角 线AC延长线上的两点,并且AE=CF . 求证:四边形BFDE是平行四边形
命题3:对角线互相平分的四边形是平行四边形
百炼成金
定义:两组对边分别平行的四边形是 平行四边形 定理1:两组对边分别相等的四边形是 平行四边形 定理2:两组对角分别相等的四边形是 平行四边形 定理3:对角线互相平分的四边形是 平行四边形
请你来判断:
下列哪些四边形是平行四边形?并说明理由
大显身手
人教版数学教材八年级下
18.1.2平行四边形的判定(1)
知识回顾 定义:两组对边分别平行的四边形 叫做平行四边形
边
平行四边形的两组对边 分别相等
平行四边 形的性质:
平行四边形的两组对角 角 分别相等 对角线 平行四边形的对角线互 相平分
得出猜想
命题1:两组对边分别相等的四边形是平行四边形
命题2:两组对角分别相等的四边形是平行四边形
例1:已知:E、F是平行四边形ABCD对 CF DE= ∥ BF . 角线AC上的两点,并且 AE 求证:四边形BFDE是平行四边形
课堂小结:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
F
C
A
E
B
3
• 3.如图所示,在四边形ABCD中,AB=CD, BC=AD,E,F为对角线AC上的点,且 AE=CF,求证:BE=DF.
4
平行四边形判定
• 平行四边形的判定定理2:
两组对角分别相等的四边形是平行 四边形。
A
D
B
C ∵ ∠A=∠C, ∠B=∠D (已知) ∴四边形ABCD是平行四边形(两
复习:平行四边形判定1
两组对边分别相等的四边形是平行 四边形
1
练习题
• 如图所示,已知□ABCD中,AE、CF分别 是∠DAB、∠BCD的平分线,求证:四边形 AFCE是平行四边形。
2
• 1、如图,已知在□ABCD中,E、F分别是 AB、CD的中点,
求证:(1)△AFD≌△CEB
(2)四边形AECF是平行四边形
∠D的度数之比,其中能判断四边形ABCD是
平行四边形的是(
)C
A、1:2:3:4
B、2:2:3:3
C、2:3:2:3
D、2:3:3:2
2、要使四边形ABCD是平行四边形,∠A:∠B:
∠C:∠D可能为( ) D
A、2:3:6:7
B、3:4:5:6
C、3:5:7:9
D、4:5:4:5 7
3、如图,在四边形ABCD中, ∠A+∠B=180,∠A=∠C,求证:四边形 ABCD是平行四边形。
A
D
B
C
8
• 4、如图,在平行四边形ABCD中,已知AE、 CF分别是 DAB、 BCD的角平分线,试 说明四边形AFCE是平行四边形.
A
F
D
B
E
C
9
组对角分别相等的四边形是平行四
边形。)
5
3、填空题: 如图,在四边形ABCD中,
A B
D C
② 若 ∠ A=1200, 则 ∠ B=__6_0_0,∠C=_1_2_0_0 , ∠D=_6__0_0时,四边形ABCD是平行四边形。
点评:两
1、下列给出了四边形ABCD中∠A、∠B、∠C、