小学奥数思维训练-余数|通用版
二年级下册奥数-余数的妙用 全国通用(无答案)
二年级奥数余数的妙用(一)(1)……4,除数最小是几?(2余数可以是几?其中最大的一个是几?疯狂操练11.()÷()=()……6,除数最小是几?2.()÷()=6……7,除数取最小时,被除数是几?3.()÷8=7……(),余数取最大时,被除数是几?王牌例题2 ()÷8=3……(),根据余数写出被除数最大是几?最小是几?疯狂操练21.下面各题中被除数最大填几,最小填几?①()÷6=8……()②()÷7=5……()2.下题中要使除数最小,被除数应为几?①()÷()=6......8 ②()÷()=9 (1)王牌例题3 老师拿出15颗小红星,每人奖2颗,还余1颗,老师奖给了几位小朋友?疯狂操练31.在括号里填上合适的数。
48÷()=9......3 67÷()=7 (4)2.阿姨拿来35块饼干,每个小朋友分得4块,还余3块,阿姨发给了几个小朋友?3.某数(0除外)除以5,当商和余数相同时,这个数可能是哪些数?王牌例题4 有28个梨,最少拿走几个,就使得6个小朋友分得一样多?每个小朋友分几个?疯狂操练41.有37只气球,最少拿走几只,就使得7个小朋友分得一样多?每个小朋友分几只?2.老师做了许多小红花,分给20个小朋友,每人3朵,还剩下2朵,老师共做了多少朵小红花?3.学校体育室要给全校20个班级发乒乓球,现在已知每班分到4只,剩下的只数不够分了,体育室里最多有多少只乒乓球?王牌例题5 有一筐梨,总数不到60个,把这筐梨平均分给8个人,还剩2个,这筐梨最多有多少个?疯狂操练51.一盒饼干,总数不到51块,平均分给8个小朋友,还余下2块,这盒饼干里有多少块?2.有一些练习本,不到35本,平均分给4个孩子或平均分给7个孩子,都剩下3本,想一想,有多少本练习本?3.学校总务主任到文具店买几盒相同价钱的橡皮,付了50元钱,找回10元,你知道总务主任买了多少盒橡皮吗??。
小学奥数----余数问题
余数问题例1:被除数、除数、商和余数之和是2143,已知商事33,余数是52,求被除数和除数。
拓展1:有一个自然数,用它去除63、91、129得到3个余数和是25,这个自然数是多少?例2:一个自然数除以3余1,除以5余3,加上2就能被7整除,这个自然数最小是多少?拓展2:在1~200这200个自然数中,被3除或被7除都余2的数有多少个?例3:自然数a除以7余3,自然数b除以7余4,a加b的和除以7余几?拓展3:自然数a除以7余3,自然数b除以7余3,已知a 大于b,那么a减b的差除以7,余数是多少?例4:有一个整数,除300、262、205得到的余数相同,这个数是多少?例5:整数11111----111(2004个1)被6除余数是几?1、2100除以一个两位数得到的余数是56,那么这个两位数是()。
2、在整数除法里,余数比除数小,那么从4到50的各整数除以4,余数是2的整数有()个。
3、一个数被2除余1,被3除余2,被4除余3,被5除余4,这个数至少是()。
4、清照小学鼓号队同学在操场上列队,已知人数在90~110人之间,排成3列没有剩余,排成5列不足2人,排成7列不足4人,共用()人参加列队。
5、一个四位数2a75除以11后所得余数是1,那么a=()。
6、用一个整数去除312、231、123、得到的3个余数之和是41,这个数是()。
7、在1~400整数中,被3、5、7除都余2的数有()个。
8、100个7组成一个一百位数,被13除后余数是(),商的各位数字之和是()。
9、71427和19的积被7除余()。
10、小刚在一次计算除法时,把被除数171错写成117,结果商少了3,而余数恰好相同,原题中的除数是()。
11、69、90、125被某个自然数除时,余数相同,这个自然数最大是()。
12、1991和1769除以某一个自然数n,余数分别是2和1,那么n最小是()。
13、一个十几岁的男孩,把自己的岁数写在父亲之后,组成一个四位数,从这个四位数中减去他们父子两人岁数的差得4289,男孩()岁,父亲()岁。
小学五年级数学思维能力(奥数)《有余数的除法》训练题
小学五年级数学思维能力(奥数)《有余数的除法》训练题1.用某自然数a去除1992,得到商是46,余数是r,求a和r.2.一个两位数除310,余数是37,求这样的两位数。
3.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?4.两个整数相处商是12,余数是6,已知被除数,除数商与余数的差是204,除数是多少?5.三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
6.一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.7.有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?8.一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.9. 有一个整数,除39,51,147所得的余数都是3,求这个数.10.两位自然数ab与ba除以7都余1,并且ab,求abba.11. 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?12.在除13511,13903及14589时能剩下相同余数的最大整数是_________.13.20032与22003的和除以7的余数是________.14.在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.15.有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.16.用自然数n去除63,91,129得到的三个余数之和为25,那么n=________17.号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?18.六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.。
小学奥数题库《数论》余数问题中国剩余定理3星题(含解析)全国通用版
数论-余数问题-中国剩余定理-3星题课程目标知识提要中国剩余定理•概述中国剩余定理即我们常说的“物不知数”,是利用同余式组来求解的一类问题。
A、一个数分别除以两个数余数相同的时候,将原数减去这个余数之后可以整除那两个数B、上述情况下的余数虽有不同,但与各自对应的除数的差相同,将原数加上这个差之后便可以整除C、其他情况下,凑出相同余数之后,运用第一种情况的方法.精选例题中国剩余定理1. 某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是.【答案】41【分析】这个自然数除以2、4、5都余1,[2,4,5]=20,所以这个数应满足1+20n,同时除以3余2,所以最小是41.2. 一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条件的自然数最小为.【答案】148【分析】观察发现三个数中前两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以满足前两个条件的自然数为a=35m+8,下一步只需要a除以9余4,35÷9=3⋯8,只需8+8m除以9余4,只需8m除以9余5,最小的m=4,因此满足所有条件的最小自然数为8+35×4=148.3. 有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少个.【答案】62【分析】设有x个苹果.因为11除以3余2,所以x除以3余2;因为10除以4余2,所以x除以4余2;因为12除以5余2,所以x除以5余2.又因为x大于12,x=[3,4,5]+2=60+2=62(个).4. 小明心里想了一个正整数.并且求出了它分别被14和21除后所得的余数,已知这两个余数的和是33,则该整数被42除的余数是.【答案】41【分析】该整数除以14的余数不大于13,除以21余数不大于20,所以这两个余数的和不大于33,而由题有这两个余数的和恰好是33,所以该整数除以14余数是13,除以21余数是20.这个数加上1就是14和21的倍数,而[14,21]=42,所以这个数可以表示成42k−1的形式,被42除的余数是41.5. 一个大于2的数,除以3余1,除以5余3,除以7余5,问满足条件的最小自然数是.【答案】103.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺2能被整除,这样得[3、5、7]−2=103.6. 某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是.【答案】998【分析】观察到11−8=13−10=3,因此除以11余8,除以13余10的最小自然数为11×13−3=140,设某数为a,则a=143m−3m为非零自然数,只需143m−3除以17余12,而143÷17=8⋯7,只需(7m−3)÷17=n⋯12,即7m−15是17的倍数所以,m=7,所以a=143×7−3=998.7. 一个大于3的数,除以7余4,除以9余6,除以11余8,问满足条件的最小自然数是.【答案】690.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺3能被整除,这样得[7、9、11]−3=690.8. 一个大于10的数,除以5余3,除以7余1,问满足条件的最小自然数为.【答案】43.【分析】根据总结,我们发现两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7]=35,所以这个数就是35+8=43.9. 我国南宋数学家杨辉在其《续古摘奇算法》上记载了这样一个问题:“二数余一,五数余二,七数余三,九数余四,问本数.”用现代语言表述就是:“有一个数用2除余1,用5除余2,用7除余3,用9除余4,问这个数是多少?”请将满足条件的最小的自然数写在这里.【答案】157【分析】(解法一)先考虑除以5余2,除以7余3,除以9余4;用剩余定理得5×7×5+5×9×1+7×9×4=472[5,7,9]=315,故472±315k都符合除以5余2,除以7余3,除以9余4最小是472−315=157,且也符合除以2余1.(解法二)除以2余1的数有:1,3,5,7,9,11,13,15,17,⋯;除以5余2的数有:2,7,12,17⋯;除以7余3的数有:3,10,17⋯;所以满足“用2除余1,用5除余2,用7除余3”的数的形式为[2,5,7]n+17=70n+17(n为自然数)此时只需要找一个最小的n,满足除以9余4即可.当n=2时,满足除以9余4,所以满足条件的最小的自然数为70⋯2+17=15710. 一个数,除以11余7,除以13余9,除以19余15,问满足条件的最小自然数是.【答案】2713.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺4能被整除,这样得[11、13、19]−4=2713.11. 智慧老人到小明的年级访问,小明说他们年级共一百多名同学,老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级人数应该是人.【答案】127【分析】根据条件,该数除以3余1,除以5余2,除以7余1,逐级满足法,令该数为a,则a÷3⋯⋯1 ①a÷5⋯⋯2 ②a÷7⋯⋯1 ③符合条件①的有1,4,7,10,13,16,⋯.同时满足①、②的最小值为7,以后a=7+15m均满足①、②;现在来看(7+15m)除以7余1,则15m除以7余1,则m最小取1,符合,最小的符合的数为a=22.以后每隔[3,5,7]=105即符合.由于该年级有100多名学生,为22+105= 127.12. 一个大于2000数,除以11余5,除以13余3,除以17余16,问满足条件的最小自然数为.【答案】2447.【分析】根据题意,我们发现三个算式中两个数的除数与余数的和都是11+5=13+3= 16,这样我们可以把余数都处理成都余16,所以[11、13、17]=2431,所以这个数就是2431+16=2447.13. 某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是.【答案】62【分析】由题可知,此数是一个2的倍数,并且除以3、4、5都余2的数,这样的数最小是2,因为这个数是两位数,2+[3、4、5]=62.14. 5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少人.【答案】59.【分析】分析题意知,这个班的人数除以3余2,除以4余3,除以5余4,除以6余5,凑缺相同,这个班人数为[3、4、5、6]−1=59(人).15. 有一堆水果糖,如果按8块一份来分,最后剩下2块;如果按9块一份来分,最后剩3块;如果按10块一份来分,最后剩下4块.这堆糖至少有块.【答案】354【分析】这堆水果糖的总数被8除余2,被9除余3,被10除余4,如果增加6块就刚好是8、9、10的公倍数,又8、、9、10的最小公倍数是360.所以这堆水果糖至少有360−6=354(块).16. 一个大于100的数,除以9余3,除以11余1,问满足条件的最小自然数为.【答案】111.【分析】据题意,我们发现两个数的除数与余数的和都是9+3=11+1=12,这样我们可以把余数都处理成都余12,所以[9、11]=99,所以这个数就是99+12=111.17. 一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为.【答案】323【分析】根据总结,我们发现三个数中前两个数的除数与余数的和都是5+3=7+1=8这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以可以看成这个数除以5、7、9的余数都是8,那么它减去8之后是5、7、9的公倍数.而[5,7,9]=315所以这个数最小为315+8=323.18. 一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为.【答案】323.【分析】根据总结,我们发现三个数中两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7、9]=315,所以这个数就是315+8=323.19. 红星小学组织学生划船.若乘坐大船,除1条船坐6人外,其余每船均坐17人;若乘小船,则除1条船坐2人外,其余每船均坐10人.如果学生的人数超过100、不到200,那么学生共有人.【答案】142【分析】除1条船坐6人外,其余每船均坐17人,说明总人数可以表示成17m+6的形式;除1条船坐2人外,其余每船均坐10人,说明总人数可以表示成10n+2的形式;那么有17m+6=10n+2,化简得17m+4=10n,经分析m的个位只能是8.又学生的人数超过100、不到200,所以m=8,学生的人数是17×8+6=142.20. 一个自然数能被11整除,除以13余12;除以15余13;这个数最小为.【答案】1078.【分析】n除以15余13:最小为13,通式为13+15k1;n除以13余12:k1最小为6,则有13+15×6=103,通式为103+[15,13]k2=103+195k2.n除以11余0:k2最小为5,则有103+195×5=1078.21. —个自然数被3除余2,被5除余4,并且这个数大于100且小于125,那么这个数是.【答案】104或119【分析】被3除余2,被5除余4,求出3和5的最小公倍数15,估算15的哪一个倍数大于100小于125,经计算可知,105和120介于100到125之间,再用105和120分别减1即可,这个自然数是104或119.22. 在1到100这100个数中,被2,3,5除都有非零的余数,且余数彼此不等的数有个.【答案】6【分析】根据余数不能比除数大.一个数除以2,余数只能是1.而要求余数彼此不等,所以,这些数除以3,余数只能是2.满足以上两个条件的数为6的倍数少1.有:5、11、17、23、29、35、41、47、53、59、65、71、77、83、89、95.再满足被5除有余数,且余数不为1和2,(个位不能为5、1、7).符合条件的数只有:23、29、53、59、83、89,共6个数.23. 有一个自然数用7除余3,用9除余4,请按照从小到大的顺序,将满足条件的前两个自然数写在这里.【答案】31,94【分析】除以7余3的数有:3,10,17,24,31⋯;除以9余4的数有:4,13,22,31⋯;所以满足“除以7余3,除以9余4”的数的形式为[7,9]n+31=63n+31(n为自然数)按照从小到大的顺序,将满足条件的前两个自然数为31,94.24. 有一个整数,用它分别去除157、234和324,得到的三个余数之和是100,这个整数是多少?【答案】41【分析】详解:157、234和324的和是715,减去100的差是615.615是这个整数的倍数.而615的约数有1、3、5、15、41、123、205、615,验证只有41满足余数和是100.25. 有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数.【答案】2430,2431,2432.【分析】设三个连续自然数中最小的一个为n,则其余两个自然数分别为n+1,n+2.依题意可知:15∣n,17∣(n+1),19∣(n+2),根据整除的性质对这三个算式进行变换:15∣n 17∣(n +1)19∣(n +2)→→→15∣2n 17∣(2n +2)19∣(2n +4)→→→15∣(2n −15)17∣(2n −15)19∣(2n −15)}⇒[15,17,19]∣(2n −15)从上面可以发现 2n −15 应为 15、17、19 的公倍数.由于 [15,17,19]=4845,所以 2n −15=4845(2k −1)(因为 2n −15 是奇数),可得 n =4845k −2415.当 k =1 时 n =2430,n +1=2431,n +2=2432,所以其中的一组自然数为 2430、2431、2432.26. 一个大于 10 的数,除以 3 余 1,除以 5 余 2,除以 11 余 7,问满足条件的最小自然数是多少?【答案】 172【分析】 法一:仔细分析可以发现 3×2+1=5+2=7,所以这个数可以看成被 3、5、11 除余 7,由于 [3,5,11]=165,所以这个数最小是 165+7=172.法二:事实上,如果没有“大于 10”这个条件,7 即可符合条件,所以只需要在 7 的基础上加上 3、5、11 的最小公倍数,得到 172 即为所求的数.27. 一个三位数除以 5 余 2,除以 7 余 3.这个三位数最小是多少?【答案】 122【分析】 使用逐步满足条件法,满足第一个条件的数依次为 2、7、12、17,而 17 除以 7 余 3.那么同时满足两个条件的数最小是 17.然后依次为 52、87、122.最小的三位数是 122.28. 一个布袋中装有 5000 多个小球,如果 10 个一包,最后还剩 9 个,如果 9 个一包,最后还剩 8 个 ⋯⋯ 如果 5 个一包,最后还剩 4 个,那么如果 13 个一包,最后还剩多少个?【答案】 8 个【分析】 简答:布袋中的小球数除以 10 余 9,除以 9 余 8,除以 8 余 7⋅⋯,除以 5 余 4,[5,6,7,8,9,10]=[5,7,8,9]=5×7×8×9=2520,所以,布袋中球数是 2520−1+2520=5039,5039÷13 余 8.29. (1)—个三位数除以 4 余 2,除以 6 余 2,那么这个三位数最小是多少?(2)—个三位数除以 3 余 1,除以 4 余 2,除以 6 余 4,那么这个三位数最小是多少?(3)—个数除以 9 余 2,除以 12 余 5,那么这个数最小是多少?【答案】 (1)110;(2)106;(3)29【分析】简答:(1)[4,6]=12,14+12×8=110;(2)按“差同”计算;(3)按“差同”计算.30. 一个自然数除以8、9、11后分别余2、7、3,而所得的三个商的和是622,这个数是多少?【答案】1906.【分析】设这个数为x.x除以8余2:最小为2,通式为2+8k1;x除以9余7:k1最小为4,则有2+8×4=34,通式为34+[8,9]k2=34+72k2.x除以11余3:k2最小为4,则有34+72×4=322.则x=322+[8,9,11]n=322+792n.322+792n−28+322+792n−79+322+792n−311=622 40+99n+35+88n+29+72n=622259n=518n=2x=322+792×2=1906.31. 已知自然数A除以11余5,除以9余7,除以13余3,这个数最小是多少?【答案】1303【分析】本题属于“物不知数”问题,可以运用中国剩余定理,但需要先要找出11与9的公倍数中除以13余1的数、11与13的公倍数中除以9余1的数以及9与13的公倍数中除以11余1的数.比较麻烦.实际上,观察可知11+5=9+7=13+3=16,也就是说这个数减去16后是11、9、13的公倍数,那么这个数最小就是11、9、13的最小公倍数加上16,为11×9×13+16=1303.32. 今有一堆石子,三个三个数余1个,五个五个数余3个,七个七个数余5个,这堆石子最少有多少个?【答案】103【分析】三个三个、五个五个、七个七个的数都是差两个,那借来两个石子,现在的就可以被3、5和7除得开,最小是3×5×7=105,归还那两块,总计最少103个.借来还去的思想.33. 有一个自然数,用它分别去除61、90、130都有余数,3个余数的和是26,这3个余数中最大的一个是多少?【答案】11【分析】.简答:61、90和130的和减去26得到255,255的约数中验证得满足条件的只有17,所以这个自然数是17,所以余数中最大的是130除以17的余数1134. 已知两个连续的两位数除以5的余数之和是5,除以6的余数之和是5,除以7的余数之和是1.求这两个两位数.【答案】77和78【分析】两个连续的两位数除以5的余数之和是5,则可以判断出第一个数除以5余2.除以6的余数之和是5,则可以判断出第一个数除以6余2或余5.除以7的余数之和是1,则可以判断出第一个数除以7余0.满足第一、三两个条件的数有7、42、77,再考虑第二个条件,只有77满足.因此这两个数为77和78.35. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【答案】20【分析】设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.63÷M=A⋯⋯aa+b+c=25,则(63+90+130)−(a+b+c)=(A+B+C)×M,即283−25=258=(A+B+C)×M.所以M是258的约数.258=2×3×43显然当除数M为2、3、6时,3个余数的和最大为3×(2−1)=3,3×(3−1)=6,3×(6−1)=15所以均不满足.而当除数M为43×2,43×3,43×2×3时,它除63的余数均是63,所以也不满足.那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.36. 一个小于200的数,它除以11余8,除以13余10,这个数是几?【答案】140.【分析】分析题意,我们发现这两个算式除数与余数的差都等于11−8=13−10=3,观察发现这个数加上3后就能同时被11和13整除,所以[11、13]=143,所以这个数是143−3=140.37. 有一个整数,用它去除63,90,130所得到的3个余数之和是25,那么这3个余数中最大的一个是多少?【答案】20【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}63 \div x = a \cdots {r_1} \hfill \\90 \div x = b \cdots {r_2} \hfill \\130 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 63 + 90 + 130 - 25 =258$ 为x的倍数;②258=2×3×43③枚举验证⇒x=43.所以 $\left\{ \begin{gathered}63 \div 43 \cdots 20 \hfill \\90 \div 43 \cdots 4 \hfill \\130 \div 43 \cdots 1 \hfill \\\end{gathered} \right.$,显然这3个余数中最大的一个是20.38. (1)一个三位数除以6余2,除以8余2,那么这个三位数最小是多少?(2)—个数除以3余2,除以5余4,除以7余6,那么这个数最小是多少?(3)—个数除以6余2,除以11余1,那么这个数最小是多少?【答案】(1)122;(2)104;(3)5639. 有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,除以7余6,则这个数最小是.【答案】419.【分析】分析题意知,这个数加1就能被2,3,4,5,6,7整除,所以这个数为[2、3、4、5、6、7]−1=420−1=419.40. 一个数除以3余2,除以5余3,除以7余4,问这个数是多少?【答案】53【分析】如果用剩余定理相信大家会做了,接下来看逐步满足法.第一个条件,除以3余2,最小是2;先记下2.第二个条件,除以5余3,原来已经有了2,要保持满足第一个条件不变,那么在2的基础上增加3的倍数,这样除以3余2不会变.2+3n的形式.这个数要满足第二个条件,除以5余3.在2+3n中,2已经余2了,3n需要余1,所以n=2即可.这样满足前两个条件的最小的数是8.第三个条件,除以7余4.8+3×5n的形式.3×5n=15n除以7要余4−1=3,15除以7余1,所以n最小是3,这个数是8+45=53满足题意.41. 今有物不知其数,三三数之剩一,四四数之剩三,五五数之剩二,问物几何?【答案】7【分析】40×1+45×3+36×2=247,3×4×5=60,247÷60=4⋯⋯7,最少是7.42. 一个三位数除以4余3,除以6也余3.这个三位数最大是多少?【答案】999【分析】这是一道余同的问题.满足条件的数可以表示为[4,6]×n+3,其中n为自然数.要求满足条件的最大三位数,应令n为83,即[4,6]×83+3=999.43. 一个数被5除余3,被7除余4,被9除余5,这个数最小是几?【答案】158【分析】7和9的公倍数9和5的公倍数5和7的公倍数6345351269070135105180140225175210245280⋯⋯⋯在7和9的公倍数中,除以5余1的最小数是126;在5和9的公倍数中,除以7余1的最小数是225;在5和7的公倍数中,除以9余1的最小数是280;那么126×3+225×4+280×5=2678.[5,7,9]=315.所以,最小的数为2678−315×8=158.44. 四年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?【答案】302【分析】这个题相当于是一个数被9除余5,被7除余1,被5除余2,这个数最小是几.9、7、5三个数两两互质。
二年级下册数学奥数版余数练习精选
二年级下册数学奥数版余数练习精选1. 你家有78只鸡,你想把它们平均分成9份,每份多少只鸡?还剩几只鸡?每份8只鸡,剩余6只鸡。
2. 求24÷5的余数和商。
商是4,余数是4。
3. 求135÷6的余数和商。
商是22,余数是3。
4. 求141÷12的余数和商。
商是11,余数是9。
5. 求783÷16的余数和商。
商是48,余数是15。
6. 求409÷20的余数和商。
商是20,余数是9。
7. 求650÷35的余数和商。
商是18,余数是20。
8. 求945÷48的余数和商。
商是19,余数是33。
9. 求764÷50的余数和商。
商是15,余数是14。
10. 求1001÷51的余数和商。
商是19,余数是32。
1.如果5除以2,余数是多少?答:5除以2余1。
2.如果12除以3,余数是多少?答:12除以3余0。
3.如果16除以7,余数是多少?答:16除以7余2。
4.如果24除以5,余数是多少?答:24除以5余4。
5.如果36除以9,余数是多少?答:36除以9余0。
6.如果45除以6,余数是多少?答:45除以6余3。
7.如果55除以7,余数是多少?答:55除以7余6。
8.如果65除以8,余数是多少?答:65除以8余1。
9.如果77除以9,余数是多少?答:77除以9余8。
10.如果88除以10,余数是多少?答:88除以10余8。
1. 求2367 ÷ 5 的余数。
解:将2367 分解成2000 和367 两部分,先算2000 ÷ 5 的商为400,再算367 ÷ 5 的余数为2,所以2367 ÷ 5 的余数为2。
2. 求7892 ÷ 6 的余数。
解:将7892 分解成6000、1000 和892 三部分,先算6000 ÷ 6 的商为1000,再算1000 ÷ 6 的商为166,最后算892 ÷ 6 的余数为4,所以7892 ÷ 6 的余数为4。
六年级数学思维集训 第四章 余数问题
第四章余数问题典型题训练1例有一批作业本, 无论是平均分给10人、12人还是15人, 都剩余4本。
这批作业本至少有多少本?1. 一个数, 除以8余6, 除以, 14余12, 除以100余98。
这个数最小是多少?2. 有一箱乒乓球, 每次8个8个地数、i0个10个地数、12个12个地数, 最后总是剩下3个。
这箱乒乓球最少有多少个?3. 六(3) 班学生上体育课, 排成3行少1人, 排成4行多3人, 排成5行少1人, 排成6行多5人。
上体育课的学生最少有多少人?4. 有这样的自然数: 它船卫1是2的倍数, 加上2是3的倍数, 加上3是4的倍数, 加上4是5的倍数, 加上5是6的倍数, 加上6是7的倍数。
除1外, 这种自然数最小是多少?典型题训练2例某班参加植树活动的学生人数在40~50之间, 如果6人一组, 那么有一组多4人; 如果8人一组, 那么有一组少2人。
参加植树活动的学生有多少人?1. 有一批乒乓球, 总数在3200~3500个之间, 4个、5个. 6个、7个或8个装一袋, 最后都剩3个, 这批乒乓球共有多少个?2. 一盒围棋子, 4颗4颗地数多3颗, 6颗6颗地数多5颗, 15颗15颗地数多14颗。
这盒棋子在250~300颗之间。
这盒棋子共有多少颗?3. 有一堆铅笔, 3支3支地数条1支, 4支4支地数余1支, 5支5支地数少4支, 6支6支地数少5支。
如果这堆铅笔的支数在180~200支之间, 那么这堆铅笔有多少支?4. 有一批苹果, 总数在2000~2100个之间, 若每24个装一箱, 则最后一箱差2个; 若每28个装一箱, 则最后一箱还差2个; 若每32个装一箱, 则最后一箱只有30个。
这批苹果共有多少个?。
尾数和余数问题--五年级下册思维拓展(通用版)
小学五年级数学下册思维通用版尾数和余数问题习题及答案知识点总结:自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。
尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题【经典例题1】17×17×17×…×17积的尾数是几?109个17【思路分析】若干个自然数的积的尾数等于这若干个自然数尾数之积的尾数,102个17的连来积的尾数等于102个7的连乘积的尾数。
【本题解答】我们先列举前几个7的积,看看尾数在怎样变化,1个7的尾数就是7;7×7的尾数是9;7×7×7的尾数是3;7×7×7×7 的尾数是 1;......由此可见,积的尾数以7、9、3、1这四个数字循环出现,102÷4=25……2,说明 102个7相乘,积的尾数是 9,即 102 个17 相乘,积的尾数是 9。
【扩展训练】1.9×9×9×…×9×9积的末尾数字是几?2013个92. 3×3×3×…×3×3(2009个3相乘)的积的个位数字是多少?3. 2012 个2012 相乘的末位数字是。
A.2B.4C. 6D.8【经典例题2】一个两位数除723,余数是30,满足条件的两位数共有个,分别是。
【思路分析】由题意知:723÷□□=商……30,□□×商=723-30=693,把693分解质因数 693=3×3×7×11,因为除数□□比 30 大,满足条件的两位数 3×11=33,3×3×7=63,7×11=77,3×3×11=99。
【本题解答】723-30=693把693分解质因数:693=3×3×7×11满足条件的两位数:3×11=33,3×3×7=63,7×11=77,3×3×11=99。
小学六年级奥数题及答案-余数问题
小学六年级奥数题及答案:余数问题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
以下是小编为大家整理的【小学六年级奥数题及答案:余数问题】,供大家参考!
把1至_这_个自然数依次写下来得到一个多位数_3456789....._,这个多位数除以9余数是多少?
答案与解析:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到_能被9整除。
所以答案为1
小学六年级奥数题及答案:余数问题.到电脑,方便收藏和打印:。
小学奥数题及答案余数问题
小学奥数题及答案余数问题
小学奥数题及答案余数问题
1.应用题
用一根既细又直的竹竿测量游泳池的水深,把竹竿的一端插入水中(碰到池底)后,没浸湿的部分长120厘米,把竹竿掉过头来,再插入水中(也碰到池底),此时没浸湿的'部分长30厘米,问游泳池有多深?
解答:第二次浸湿的部分就是游泳池的深度,所以游泳池深为:120-30=90(厘米)
【小结】。
第一次浸湿的长度实际上也是游泳池的深度。
2.余数问题
人教版小学五年级奥数题及答案余数问题:一批图书,数量在20到30本之间,平均分给7个同学,结果剩余的图书每比个人分到的书多2本,那么这批图书有多少本?
解答:
【小结】先估算出每个人可能分到几本,再分情况依次考虑。
小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版
数论-余数问题-带余除法-1星题课程目标知识提要带余除法•定义一般的,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是说a=b×q+r,0≦r<b,我们称上面的除法算式为一个带余除法算式。
(1)当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;(2)当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。
精选例题带余除法1. 有一个除法算式,被除数和除数的和是136,商是7,则除数是.【答案】17【分析】(1)被除数÷除数=7,因此我们能得到被除数是除数得7倍.(2)如果设除数是1份,那么被除数就是7份,它们的和是136.所以每份量为:136÷8=17.即除数是17.2. 在一个除法算式中,被除数是12,除数小于12,则可能出现的不同的余数之和是.【答案】15【分析】除数小于12且有不同余数,除数可能是11、10、9、8、7.余数分别是1、2、3、4、5.余数之和是1+2+3+4+5=15.3. 已知2008被一些自然数去除,得到的余数都是10.那么这些自然数共有个.【答案】11个【分析】2008−10=1998一定能被这些数整除,且这些数一定大于10,1998=2×3×3×3×37.1998的因数一共有:(1+1)×(3+1)×(1+1)=16个.其中小于10的有:1,2,3,6,9那么大于10的因数有16−5=11个.即这些自然数共有11个.4. 买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.【答案】8【分析】1元7角相当17角,15元相当于150角.可列出如下算式:150÷17=8⋯14.故最多可以买这样的水彩笔8支.5. 两数相除,商4余8,被除数、除数两数之和等于73,则被除数是.【答案】60【分析】被除数=4×除数+8,被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为(73−8)÷(4+1)=13,所以,被除数为13×4+8=60.6. 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是.【答案】1968【分析】设除数为a,被除数为17a+13,即可得到(17a+13)+a+17+13=2113,那么除数=115,被除数=115×17+13=1968.7. 在一个除法算式中,如果商是16,余数是8,那么被除数最小是.【答案】152【分析】根据余数小于除数,得到除数最小为9,那么被除数的最小值为16×9+8=152.8. 在一个除法算式中,如果商是16,余数是8,那么被除数与除数的和最小是.【答案】161【分析】由上题152+9=161.9. (1)34÷4=8⋯⋯2,则[34÷4]=,{34÷4}=;(2)已知a÷125=b⋯⋯10,[a÷125]=6,求{a÷125} = ;(3)已知a÷20=3⋯⋯b,{a÷20}=0.45,求[a÷20] = ,a = .【答案】(1)8,0.5;(2)0.08;(3)3,69【分析】(1)34÷4的整数部分就是商,因此为8,{34÷4}相当于余数除以4,因此为0.5.(2)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b方法1:b=6,a=6×125+10=760,{760÷125}=0.08;方法2:b=6,{a÷125}=10÷125=0.08.(3)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷20]=3,b=0.45×20=9,a=3×20+9=69.10. 用一个自然数去除另一个自然数,商为5.被除数、除数的和是36,求这两个自然数各是多少?【答案】被除数为30,除数为6.【分析】被除数÷除数=5,所以根据和倍问题可知,除数为36÷(5+1)=6,所以被除数为5×6=30.11. 若a÷b=7⋯⋯9,则a的最小值是多少?【答案】79【分析】根据余数小于除数,得到除数最小为10,那么a的最小值为7×10+9=79.12. (1)25÷6=4⋯⋯1;34÷6=5⋯⋯4,那么(25+34)÷6=( )⋯⋯( ).(2)45÷7=6⋯⋯3;26÷7=3⋯⋯5,那么(45+26)÷7=( )⋯⋯( ).(3)a÷8⋯⋯5;b÷8⋯⋯6,那么(a+b)÷8⋯⋯( ).(4)a÷8⋯⋯5;b÷8⋯⋯6;c÷8⋯⋯7,那么(a+b+c)÷8⋯⋯( ).【答案】(1)(25+34)÷6=(9)⋯⋯(5);(2)(45+26)÷7=(10)⋯⋯(1).(3)(a+b)÷8⋯⋯(3).(4)(a+b+c)÷8⋯⋯(2).【分析】(1)(25+34)÷6=9⋯⋯5;(2)(45+26)÷7=10⋯⋯1.(3)所以余数的和为5+6=11,11÷8=1⋯⋯3,余数为3.(4)余数的和为5+6+7=18,18÷8=2⋯⋯2,余数为2.13. 请在下列括号中填上适当的数.(1)a÷8⋯⋯6;b÷8⋯⋯7,那么(a+b)÷8⋯⋯( ).(2)a÷10⋯⋯5;b÷10⋯⋯6;c÷10⋯⋯7,那么(2a+b+c)÷10⋯⋯( ).【答案】(1)5;(2)3【分析】(1)余数的和为6+7=13,13÷8=1⋯⋯5,余数为5.(2)2a+b+c=a+a+b+c,所以余数的和为5+5+6+7=23,23÷10=2⋯⋯3,余数为3.14. 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.15. 1013除以一个两位数,余数是12.求出所有符合条件的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.16. 甲、乙两数的和是16,甲数除以乙数商是2余1,求甲数和乙数各是多少?【答案】乙=5,甲=11【分析】设乙数为a,即甲为2a+1,可得到(2a+1)+a=16,那么乙=5,甲=11.17. 2025除以一个两位数,余数是75,这个两位数是多少?【答案】78【分析】这个两位数是2025−75=1950的约数,其中比75大的只有78.18. 一个数除以另一个数,商是3,余数是3.如果除数和被除数都扩大10倍,那么被除数、除数、商、余数的和是263,求这2个自然数各是多少?【答案】5、18【分析】设除数为a,被除数为3a+3,即可得到10(3a+3)+10a+3+30=263,那么除数=5,被除数=5×3+3=18.19. 甲、乙两数的差是113,甲数除以乙数商7余5,则甲数和乙数各是多少?【答案】乙=18,甲=131【分析】设乙数为a,即甲为7a+5,可得到(7a+5)−a=113,那么乙=18,甲= 131.20. 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【答案】324【分析】设被除数和除数分别为x,y,可以得到\[ \begin{cases} x = 4y + 8\hfill \\ x + y + 4 + 8= 415 \hfill \\ \end{cases} \]解方程组得\[ \left\{ \begin{gathered} x = 324 \hfill\\ y = 79 \hfill\\ \end{gathered} \right. \]即被除数为324.21. 78除以一个数得到的商是8,并且除数与余数的差是3,求除数和余数.【答案】除数为9,余数为6.【分析】78÷除数=8⋯⋯(余数−3),81÷除数=9⋯⋯0被除数加上除数与余数的差3的和刚好是除数的9倍,则除数为(78+3)÷9=9,余数为6.22. 用某自然数a去除1992,得到商是46,余数是r,求a和r.【答案】a=43,r=14【分析】由1992是a的46倍还多r,得到1992÷46=43......14,得1992=46×43+ 14,所以a=43,r=14.23. 甲、乙两个数,甲数除以乙数商2余17,乙数的10倍除以甲数商3余45.求甲、乙二数.【答案】乙=24,甲=65【分析】设乙数为a,即甲为2a+17,可得到10a÷(2a+17)=3⋯⋯45,整理为10a= 3(2a+17)+45,那么乙=24,甲=65.24. 一个三位数除以43,商是a余数是b,求a+b的最大值.【答案】64【分析】试除法:999÷43=23⋯⋯10;999−10−1=988;988÷43=22⋯⋯42.余数最大为42,所以a+b的最大值为42+22=64.25. (1)82÷6=13⋯⋯4;50÷6=8⋯⋯2,那么(82−50)÷6=( )⋯⋯( ).(2)74÷6=12⋯⋯2;22÷6=3⋯⋯4,那么(74−22)÷6=( )⋯⋯( ).(3)a÷6余5;b÷6余1,那么(a−b)÷6余几呢?(4)a÷6余3;b÷6余5,那么(a−b)÷6余几呢?【答案】(1)(82−50)÷6=(5)⋯⋯(2).(2)(74−22)÷6=(8)⋯⋯(4).(3)余4.(4)余4.【分析】(1)(82−50)÷6=5⋯⋯2.(2)(74−22)÷6=8⋯⋯4.(3)余数的差是4,所以余数是4.(4)余数不够减时借1当6用来减,3+6=9,9−5=4,所以余数是4.26. 用一个自然数去除另一个自然数,商为8,余数是3.被除数、除数的和是48,求这两个自然数各是多少?【答案】被除数为43,除数为5.【分析】因为被除数减去3后使除数的8倍,所以根据和倍问题可知,除数为(48−3)÷(8+1)=5,所以被除数为5×8+3=43.27. 50除以一个一位数,余数是2.求出符合条件的一位数.【答案】3,4,6,8【分析】50÷除数=商⋯⋯2,50−2=48,48=除数×商,48=1×48=2×24=3×16=4×12=6×8,因为“余数小于除数且除数是一位数“那么符合条件的所有的数有3,4,6,8.28. 一个两位数除310,余数是37,求这样的两位数.【答案】39;91【分析】本题为余数问题基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310−37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的两位数有39,91.29. 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【答案】83【分析】因为一个两位数除以13的商是6,所以这个两位数一定大于78,并且小于13×(6+1)=91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78+5=83.30. 43除以一个数得到的商是8,并且除数与余数的差是2,求除数和余数.【答案】除数为5,余数为3.【分析】43=8×除数+余数,被除数加上除数与余数的差2的和刚好是除数的9倍,则除数为(43+2)÷(8+1)=5,余数为3.31. 用一个自然数去除另一个自然数,商为7.被除数、除数的和是48,求这两个自然数各是多少?【答案】除数为6,被除数为42.【分析】被除数÷除数=7,所以根据和倍问题可知,除数为48÷(7+1)=6,所以被除数为6×7=42.32. 计算:(1)已知a÷25=b⋯⋯5,[a÷20]=4,求a=;(2)已知a÷10=7⋯⋯b,{a÷10}=0.5,求[a÷10]=,a=.【答案】(1)105;(2)7,75【分析】(1)b =4,a=4×25+5=105(2)a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷10]=7,b=0.5×10=5,a=7×10+5=75.33. 46除以一个一位数,余数是1.求出符合条件的一位数.【答案】3,5,9【分析】46÷除数=商⋯⋯1,46−1=45,45÷除数=商⋯⋯0,45=除数×商,45=3×15=5×9,因为“余数小于除数且除数是一位数”那么符合条件的所有的一位数有3,5,9.34. 博士要给小朋友们分糖,一共128块,如果每人分5块,最多可以分给几个小朋友?【答案】25【分析】128÷5=25⋯⋯3,最多分给25个小朋友,还剩3块.35. 128除以一个数得到的商是9,并且除数与余数的差是2,求除数和余数.【答案】除数为13,余数为11.【分析】128÷除数=9⋯⋯(余数−2),130÷除数=10⋯⋯0被除数加上除数与余数的差2的和刚好是除数的10倍,则除数为(128+2)÷10=13,余数为11.36. 有一个整数,39,51,147被它除所得的余数都是3,求这个数.【答案】4;6;12【分析】方法一:39−3=36,147−3=144,(36,144)=12,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12.方法二:由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51−39=12,147−39=108,(12,108)=12,所以这个数是4,6,12.37. 一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是多少?【答案】46【分析】设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c⋯⋯c,即b×c+c=47;c×(b+1)=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.38. 已知2012被一些正整数去除,得到的余数为10,则这样的正整数共有多少个?【答案】13个【分析】2012−10=2002一定能被这些数整除,2002=2×7×11×13.因为2002中一共有(1+1)×(1+1)×(1+1)×(1+1)=16个,排除小于10的因数1、2、7,满足条件的正整数共有16−3=13个.39. 188+288+388+…+2088除以9、11的余数各是多少?【答案】8;11.【分析】根据等差数列求和列式:188+288+388+…+2088=22760,所以22760÷9⋯⋯8;22760÷11⋯1.40. 著名的斐波那契数列是这样的:1,1,2,3,5,8,13,21,⋯,这串数列当中第2008个数除以3所得的余数为多少?【答案】0【分析】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将斐波那契数列转换为被3除所得余数的数列:1,1,2,0,2,2,1,0,1,1,2,0,⋯,第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以斐波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数为0.。
小学奥数数论问题余数问题练习题【五篇】
小学奥数数论问题余数问题练习题【五篇】分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是因为所得的余数相同,根据性质2,我们能够得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.2.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.3.除以99,余数是______.分析:所求余数与19×100,即与1900除以99所得的余数相同,所以所求余数是19.4.求下列各式的余数:(1)2461×135×6047÷11(2)19992000÷7分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000÷3 余2 能够得到42000除以7 的余数是2,故19992000÷7的余数是2 .【第二篇】(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数为多少,我们能够根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .【第三篇】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是因为所得的余数相同,根据性质2,我们能够得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.【第四篇】1.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.2.除以99的余数是______.分析:所求余数与19×100,即与1900除以99所得的余数相同,所以所求余数是19.【第五篇】。
小学奥数题库《数论》余数问题余数的判定5星题(含解析)全国通用版
数论-余数问题-余数的判定-5星题课程目标知识提要余数的判定•概念当一个数不能被另一个数整除时,虽然可以用长除法求得余数,但当被除数位数较多时,我们可以找到一个较简单的数,通过这个较简单的数除以除数得到的余数来得原来的数的余数的方法叫做余数的判定。
•判定方法1、末位判定法整数N被2或5除的余数等于这个数的个位数被2或5除的余数;整数N被4或25除的余数等于这个数的末两位数被4或25除的余数;整数N被8或125除的余数等于这个数的末三位数被8或125除的余数;2、数字求和法整数N被3除的余数等于这个数的各位数字之和被3除的余数;;整数N被9除的余数等于这个数的各位数字之和被9除的余数;3、奇偶位求差法整数N被11除的余数等于这个数的奇数位上的数字之和与偶数位上的数字之和的差被11除的余数(如果不够减,适当加11的倍数再减);4、截断作和整数N被99除的余数等于这一个数从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和被99除的余数;5、截断作差整数N被7、11、13除的余数等于这一个整数,从个位开始每三位一截,奇数段之和与偶数段之和的差被7、11或13整除的余数(如果不够减,适当加7、11、13的倍数再减)精选例题余数的判定1. 11+22+33+44+⋯+20052005除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1+4+7+6+5=23的个位数3,所以原式的个位数字是3,即除以10的余数是3.2. ab21是一个四位数,由四个阿拉伯数字a,b,1,2组成的其他23个四位数的和等于90669,求a和b的值.【答案】a=9,b=3【分析】所有24个四位数的和等于6666(a+b+3),因此,除ab21外,其余23个四位数的和为666(a+b+3)−1000a−10b−21=5666a+6566b+19977.所以5666a+6566b=70692,即2833a+3283b=35346. ①因为3283a+3283b⩾35346,即a+b⩾353463283=1025163283,即a+b⩾11.同理得a+b⩽12.所以11⩽a+b⩽12.因为2833≡1(mod3) 3283≡1(mod3) 35346≡0(mod3)即a+b≡0(mod3).所以a+b=12. ②解由①和②联立的方程组得a=9,b=3.3. 试求不大于100,且使3n+7n+4能被11整除的所有自然数n的和.【答案】1480【分析】通过逐次计算,可以求出3n被11除的余数,依次为:31为3,32为9,33为5,34为4,35为1,⋯,因而3n被11除的余数5个构成一个周期:3,9,5,4,1,3,9,5,4,1,⋯;类似地,可以求出7n被11除的余数10个构成一个周期:7,5,2,3,10,4,6,9,8,1,⋯;于是3n+7n+4被11除的余数也是10个构成一个周期:3,7,0,0,4,0,8,7,5,6,⋯;这就表明,每一个周期中,只有第3、4、6个这三个数满足题意,即n=3,4,6,13,14,16,⋯,93,94,96时3n+7n+4能被11整除,所以,所有满足条件的自然数n的和为:3+4+6+13+14+16+⋯+93+94+96=13+43+⋯+283=1480.4. 在等差数列1,8,15,22,29,36,43,⋯中,如果前n个数乘积的末尾0的个数比前n+1个数乘积的末尾0的个数少3个,那么n最小是多少?【答案】107【分析】末尾0是由因子2和因子5的乘积得到的.数列中因子2的个数足够多,因此第n+1个数应为53的倍数,并且除以7余1.满足条件的最小数为750.而(750−1)÷7+1=108,因此n最小是107.。
(完整版)小学奥数数论问题余数问题练习题.doc
小学奥数数论问题余数问题练习题【五篇】分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 ,根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有 1,2,7,14,所以这个数可能为 2,7,14.2.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.3.除以 99,余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.4.求下列各式的余数:(1)2461 × 135× 6047 ÷ 11(2)19992000 ÷ 7分析: (1)5;(2)1999÷7的余数是4,19992000与42000除以7的余数相同.然后再找规律 ,发现 4 的各次方除以 7 的余数的排列规律是4,2,1,4,2,1......这么 3 个一循环 ,所以由 2000÷3 余 2 能够得到 42000 除以 7 的余数是 2,故 19992000÷7的余数是 2.【第二篇】(小学数学奥林匹克初赛 )有苹果 ,桔子各一筐 ,苹果有 240 个,桔子有 313 个,把这两筐水果分给一些小朋友 ,已知苹果等分到最后余 2 个不够分 ,桔子分到最后还余 7 个桔子不够再分 ,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说 ,已知一个数除 240 余 2,除 313 余7,求这个数为多少,我们能够根据带余除法的性质把它转化成整除的情况,从而使问题简化 ,因为 240 被这个数除余 2,意味着 240-2=238恰被这个数整除 ,而 313被这个数除余 7,意味着这 313—7=306 恰为这个数的倍数 ,我们只需求 238 和 306 的公约数便可求出小朋友最多有多少个了 .240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .【第三篇】有一个大于 1 的整数 ,除 45,59,101 所得的余数相同 ,求这个数 .分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 , 根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为 2,7,14.【第四篇】1.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.2.除以 99 的余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.【第五篇】199419941994(1994个 1994)除以 15 的余数是 ______.分析:法 1:从简单情况入手找规律,发现 1994÷15余14,19941994 ÷ 15余 4,199419941994 ÷余15 9,1994199419941994 ÷ 15余 14,......,发现余数 3 个一循环,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是 4;法 2:我们利用最后一个例题的结论能够发现199419941994能被 3 整除 ,那么19941994199400 0能被 15 整除 ,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是4.。
小学奥数数论问题之余数问题练习题【三篇】
【导语】芬芳袭⼈花枝俏,喜⽓盈门捷报到。
⼼花怒放看通知,梦想实现今⽇事,喜笑颜开忆往昔,勤学苦读最美丽。
在学习中学会复习,在运⽤中培养能⼒,在总结中不断提⾼。
以下是⽆忧考为⼤家整理的《⼩学奥数数论问题之余数问题练习题【三篇】》供您查阅。
【第⼀篇】1.已知三个数127,99和⼀个⼩于30的两位数a除以⼀个⼀位数b的余数都是3,求a和b的值. 分析:127-3=124,99-3=96,则b是124和96的公约数.⽽(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27. 2.除以99的余数是______. 分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.【第⼆篇】19941994…1994(1994个1994)除以15的余数是______. 分析:法1:从简单情况⼊⼿找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9, 1994199419941994÷15余14,......,发现余数3个⼀循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利⽤最后⼀个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.【第三篇】求下列各式的余数: (1)2461×135×6047÷11 (2)19992000÷7 分析:(1)5; (2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次⽅除以7的余数的排列规律是4,2,1,4,2,1......这么3个⼀循环,所以由2000÷3 余2 可以得到42000除以7 的余数是2,故19992000÷7的余数是2 .。
二年级下册数学试题-奥数思维拓展:第四讲 余数的妙用(解析版)全国通用
第四讲余数的妙用认识余数1. ①体育课上王老师把30个皮球,平均分给6个小组的小朋友,怎样分?②体育课上王老师把32个皮球,平均分给6个小组的小朋友,怎样分?【分析】①把30个皮球平均分给6个小组,每个小组分几个皮球,应该用除法计算.列式:30÷6=5(个)②把32个皮球平均分给6个小组,每个小组分几个皮球,也应该用除法计算,但是除不尽,还余2个.因为二年级的学生还没有接触过有余数的除法,所以这时老师可引导学生比较这两个算式的异同,引导学生认识有余数的除法,以及各部分的名称和书写格式.列式:32÷6=5(个)……2(个)在这个有余数的除法算式中,32是被除数,6是除数,5是商,2是余数.2. ①把25个面包,平均装在7个盒子里,每个盒子装几个面包?还剩几个?②43个小朋友做游戏,如果5个小朋友分一组,可以分几组?还剩几个小朋友?【分析】这道题是学生在认识了有余数除法后的一个巩固.①25÷7=3(个)……4(个)②43÷5=8(组)……3(个)我们已经学习了余数不为0的除法,如:37÷5=7……2.这个算式表示把37个物体平均分成5份,每份7个物体,还余下2个物体,不够每份再分1个;也可以表示把37个物体,每5个分1份,只能分7份,还余下2个物体,不够再分1份. 必须注意,在除法里,余数要比除数小.利用除法里的余数,可以解决许多有趣的实际问题.我们可以利用“余数的学问”,解决数学中出现“周期”知识的问题,从而拓宽解题思路.下面我们就一起来看看余数有哪些妙用吧!实际应用【例1】填空,并写出算理.(1) ( )÷3=2......1 ( )÷2=4 (1)(2 )25÷( )=6......1 30÷( )=4 (2)【分析】(1)被除数是2×3+1=7,在括号里填上7.被除数是2×4+1=9,在括号里填上9.小结:在有余数的除法中,商乘除数加余数就等于被除数.(2)除数是25-1=24 24÷6=4除数是30-2=28 28÷4=7小结:求有余数除法里的除数,我们可以分两步计算,先用被除数减去余数,再用差除以商.【例2】在算式( )÷8=3……( )中被除数最大是几?最小是几?【分析】这是一道有余数的除法算式,余数最大时,被除数最大;余数最小时,被除数最小.因为除数是8,所以余数最大就是7,余数最小是0(没有余数).( 31)÷8=3……(7 ),(24)÷8=3.拓展训练1、计算出下面各题的被除数,并填在( )里.( 19 )÷5=3......4 ( 24 )÷9=2 (6)( 49 )÷6=8......1 ( 44 )÷7=6 (2)( 22 )÷4=5......2 ( 69 )÷8=8 (5)2、计算出下面各题的除数,并填在()里.19÷(3 )=6......1 45÷(7 )=6 (3)45÷(6 )=7......3 57÷(9 )=6 (3)47÷(5 )=9......2 74÷(8 )=9 (2)3、在算式( )÷7=4……( )中,被除数最大是(34 ),最小是(28 ).【例3】有31个苹果,最少拿走几个,就使得9个小朋友分得一样多?每个小朋友分几个?【分析】要求31个苹果里最少拿走几个,就使得9个小朋友分得一样多,就是把31个苹果平均分给9个小朋友后,求余下的人数.31 9=3(个)……4(个) 最少拿走4个,每个小朋友分3个.【例4】找出下面图形的排列规律,根据规律算出第16个图形是什么?【分析】⑴这一排图形是一个△,两个○,这样三个图形为一个组,不断重复出现的.先算16个图形里面有几组这样的图形,16÷3=5(组)……1(个),余数是1,这一个图形是第6组的第一个,应该是△.⑵这一排图形是一个○,一个△,两个□,这样四个图形为一个组,不断重复出现的.先算16个图形里面有几组这样的图形,16÷4=4(组),没有余数,那么第16个图形是第4组的第四个,应该是□.【例5】有一堆围棋子,按“二黑三白”的顺序排列起来(如下页图),想一想,第31个是白子还是黑子?第40个呢?●●○○○●●○○○●●○○○……延伸:同学们,你能算出第52和第63个是白子还是黑子吗?【分析】52÷5=10(组)……2(个),第52个棋子是黑色的.63÷5=12(组)……3(个),第63个棋子是白色的.拓展训练按下面图形的排列情况,算出第24个图形是什么?○○△□○○△□○○△□……☆◇◇△△☆◇◇△△☆◇◇△△……【分析】⑴这一排图形是两个○,一个△,一个□,这样四个图形为一组,不断重复出现的.先算24个图形里面有几组这样的图形,24÷4=6(组),没有余数,这一个图形是第6组的第四个,应该是□.⑵这一排图形是一个☆,两个◇,两个△,这样五个图形为一组,不断重复出现的.先算24个图形里面有几组这样的图形,24÷5=4(组)……4(个),余数是4,那么第24个图形是第5组的第四个,应该是△.【例6】国庆节挂灯,按“红、黄、蓝、白、绿、紫”的顺序挂,一共有58只灯,其中红、黄、蓝、白、绿、紫灯各有多少只?拓展训练1、二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是男同学还是女同学?第39个同学是男同学还是女同学?【分析】这一队是按“三男二女”5人一组不断重复的排列的,26÷5=5(组)……1(个),第26个同学是第6组的第一个,是一个男同学.39÷5=7(组)……4(个),第39个同学是第8组的第四个,是一个女同学.2、园林工人在公园里的花坛里种菊花,他们按一棵白、两棵黄、两棵红的顺序来种,一共种了有63棵菊花,那么白菊花、黄菊花、红菊花各几棵?【分析】这些菊花是按“一棵白、两棵黄、两棵红“五棵一组为一个周期来排列的.63÷5=12(组)……3(棵),这余下的3棵是1棵白菊花和2棵黄菊花.所以白菊花是12+1=13(棵),黄菊花是12+2=14(棵),红菊花是12棵.【例7】有一列数:“2,3,1,2,3,1,2,3,1……”(1)第28个数是几?(2)这28个数的和是多少?延伸:算一算,第45个数是几?这45个数的和是多少?拓展训练1、有一列数:1,3,5,1,3,5,1,3,5……第35个数字是几?这35个数的和是多少? 【分析】这列数是按“1,3,5”三个数为一组,不断重复出现的.35÷3=11(组)……2(个),第35个数应该是第12组的第2个,应该是“3”.每组数的和是1+3+5=9,那么这35个数的和是11×9+(1+3)=103.2、一列数按“3,8,5,1,6,1,7,1,3,8,5,1,6,1,7,1,3,8,5,1,6,1,7,1……”排列,第40个数字是几?第71个数字是几?【分析】这列数是按“3,8,5,1,6,1,7,1”八个数为一组,不断重复出现的.40÷8=5(组),没有余数,那么第40个数应该是第5组的第8个数,应该是“1”.每组数的和是3+8+5+1+6+1+7+1=32,那么这40个数的和是32×5=160.【例8】明明问芳芳:“今天是星期二,再过22天是星期几?”解:22÷7=3 (1)余数是1,是第四组的星期三,所以今天是星期二,再过22天是星期三.拓展训练1、今天是星期日,再过28天是星期几?【分析】今天是星期日,从明天开始排就是星期一、星期二、星期三、星期四、星期五、星期六、星期日,每七天为一组重复排列.28÷7=4,没有余数,那么再过28天应该是第4组的最后一天,应该是星期日.2、今年“六一”儿童节是星期五,再过19天是星期几?【分析】今年“六一”儿童节是星期五,从“六一”后一天开始排列是星期六、星期日、星期一……,每七天为一组重复排列.19÷7=2……5,余数是5,那么再过19天就应该是第八组的第5个,应该是星期三.【例9】老师有1~53号卡片,依次发给小红、冬冬、兰兰和小林四个人,问第38张卡片应发给谁?【分析】38÷4=9……2,余数是2,所以第38张卡片应发给冬冬.延伸:想一想,最后一张属于谁?【分析】53÷3=17……2,余数是2,所以最后一张卡片应该发给冬冬.拓展训练1.按“从小爱数学从小爱数学从小爱数学……”依次排列,第56个字是什么?【分析】这一列数字是按“从小爱数学”每五个字一组重复出现的,56÷5=11……1,那么第56个字应该是第12组的第一个字是“从”.2.胡老师把1~40号拼音卡片,依次发给小伟、小冬、小军、小辉、小燕,问第27张卡片应发给谁?【分析】这些卡片按从小到大,每5个数为一个周期.27÷5=5……2,余数是2,也就是说,第27张卡片发给小冬.解答这一类问题,首先要找出题目中的周期是几,再求出这些数中包含有几个这样的周期,余数是几,最后再分析最后一个周期的最后一个数是几,或者分析余数中最后一个数是几,从而求出题目的答案.附加题(以下提供的内容,供老师参考使用)1.二年级(1)班的第2小队在课外进行报数游戏.他们9个人排成一圈,从左到右依次报数,王燕报“1”,张华报“2”,宋娟报“3”,林红报“4”,朱桂芳报“5”,秀秀报“6”,钱晨报“7”,夏婷报“8”,孙亮报“9”,这样每一个人报的数总比前一个多1.第55是谁报的?第74是谁报的?【分析】一共有9个同学重复报数,55÷9=6……1,那么报55的应该第一同学是王燕.74÷9=8……2,那么报74的应该是第二个同学是张华.2.甲、乙、丙、丁四人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗? (这道题具有趣味性,建议可以选讲)【分析】“大王”是第37张牌,甲、乙、丙、丁四人轮流摸牌,37÷4=9……1,那么“大王”会在第10轮时被第一个人摸到,明白了一个道理,丙就第一个摸牌,就能拿到大王.3. 下面的表格中,每一列的两个数组成一组,如第一组是由“甲A”组成,第二组是由“乙B”组成……问:第十七组是由哪两个字组成?甲乙丙甲乙丙甲乙……A B C D A B C D ……【分析】(1)求第17组是甲、乙、丙中的哪一字?17÷3=5(周期) (2)所以第17组上面横排中是“乙”字.(2)求第17组中的字母是A B C D中的哪一个?17÷4=4(周期) (1)所以第17组下面横排中是“A”字.(3)根据上面的推理知道,第17组是由“乙A”两字组成的.练习四1.(1)○□□△○□□△○□□△……第22个图形是().(2)○◎□○◎□○◎□○……第20个图形是().【答案】(1)22÷4=5……2,第22个图形应该是□.(2)20÷3=6……2,第20个图形应该是◎.2.一串珠子,按下图这样排列,那么第32颗是什么颜色,第44颗呢?【答案】32÷5=6……2,第32颗是白色的珠子.44÷5=8……4,第44颗是黑色的珠子.3. 电视塔上有一串彩灯,按“红、黄、绿、白”的顺序排列起来,请你算一算,第14盏彩灯是什么颜色?第27盏、第36盏彩灯又是什么颜色?【答案】14÷4=3……2,第14盏彩灯是黄色的.27÷4=6……3,第27盏彩灯是绿色的.36÷4=9,第36盏彩灯是白色的.4.运动场上有一排彩旗,共34面,按三面红旗,一面黄旗依次排列着,这些彩旗中,红旗有几面? 黄旗有几面?【答案】34÷(3+1)=8 (2)红旗有:3×8+2=26(面)黄旗有1×8=8(面)5.一列数按“1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7…”排列,问第50个数字是几?第96个数字是几?【答案】50÷6=8……2,第50个数字是4;96÷6=16,第96个数字是7;6.2007年5月1日是星期三,再过20天是星期几?【答案】20÷7=2……6,从星期四开始算,第20天应该是第三周的第6天,应该是星期二.7.王老师把1~64号拼音卡片依次发给甲、乙、丙、丁四个小朋友,第59号卡片应发给谁?【答案】59÷4=14……3,第59号卡片应发给丙.趣味数学小熊打水熊奶奶生病了,她自己不能打水.小熊说自己长大了,应该帮奶奶做点事.于是,他就包下了打水的任务.熊奶奶家的水缸可以盛8桶水.小熊每天早晨提4桶水.熊奶奶全家每天要用3桶水.熊奶奶躺在床上,问小熊:“这样下去,到第几天,我们家的水缸会盛满水?”小熊说:“这不是很简单吗?我每天打4桶水,每天用3桶,还余1桶,8÷1=8,到第8天,水缸就会盛满了水.”熊奶奶却说小熊算错了.小朋友.你说呢?。
小学奥数思维训练余数_通用版
2022年五年级数学思维训练:余数1.〔4分〕72除以一个数,余数是7.商可能是多少?2.〔4分〕100和84除以同一个数,得到的余数一样,但余数不为0.这个除数可能是多少?3.〔4分〕20220808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4.〔4分〕4个运发动进展乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运发动打了多少盘?5.〔4分〕某工厂有128名工人消费零件,他们每个月工作23天,在工作期间每人每天可以消费300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.〔4分〕〔1〕220除以7的余数是多少?〔2〕1414除以11的余数是多少?〔3〕28121除以13的余数是多少?7.〔4分〕8+8×8+…+除以5的余数是多少?8.〔4分〕一个三位数除以21余17,除以20也余17.这个数最小是多少?9.〔4分〕有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?10.〔4分〕100多名小朋友站成一列,从第一人开场依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;假如按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?11.〔4分〕1111除以一个两位数,余数是66.求这个两位数.12.〔4分〕〔1〕除以4和125的余数分别是多少?〔2〕除以9和11的余数分别是多少?13.〔4分〕一年有365天,轮船制造厂每天都可以消费零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?14.〔4分〕自然数的个位数字是.15.〔4分〕算式12022+22022+32022+…+20222022计算结果的个位数是多少?16.〔4分〕一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?17.〔4分〕一个自然数除以19余9,除以23余7.这个自然数最小是多少?18.〔4分〕刘叔叔养了400多只兔子,假如每3只兔子关在一个笼子里,那么最后一个笼子里有2只;假如每5只兔子关在一个笼子里,那么最后一个笼子里有4只;假如每7只兔子关在一个笼子里,那么最后一个笼子里有6只.请问:刘叔叔一共养了多少只兔子?19.〔4分〕除以99的余数是多少?20.〔4分〕把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?21.〔4分〕有一个大于l的整数,用它除300、262、205得到一样的余数,求这个数.22.〔4分〕用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,假如这个数大于1,那么这个数是多少?23.〔4分〕从l依次写到99,可以组成一个多位数12345…979899.这个多位数除以第 1 页11的余数是多少?24.〔4分〕算式计算结果的末两位数字是多少?25.〔4分〕算式1×3×5×7×…×2022计算结果的末两位数字是多少?26.〔4分〕有5000多根牙签,按以下6种规格分成小包:假如10根一包,最后还剩9根;假如9根一包,最后还剩8根;假如依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?27.〔4分〕有三个连续自然数,它们小道大依次是5、7、9的倍数,这三个连续自然数最小是多少?28.〔4分〕请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.29.〔4分〕21!=.那么四位数是多少?30.〔4分〕有一些自然数n,满足:2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,请问:这样的,n中最小的是多少?参考答案1.商可能是5.【解析】试题分析:根据在有余数的除法中,余数总比除数小,即除数最小为:余数+1,进而根据“被除数﹣余数=商×除数〞解答即可.解:72﹣7=6565=13×5,所以,72除以一个数,余数是7.商可能是5.点评:解答此题的关键:根据在有余数的除法中,余数总比除数小,得出余数最大为:除数﹣1,然后被除数、除数、商和余数四个量之间的关系进展解答即可.2.这个除数可能是8或16.【解析】试题分析:要求这个除数可能是多少,根据同余定理,先求出100和84这两个数的差,再求出这三差的公约数,然后找出不能整除100和84的数,即为这个除数.解:余数一样,那么除数是100﹣84=16的约数,除数可能是1,2,4,8,16其中不能整除100和84的有8和16所以除数是8或者16.答:这个除数可能是8或16.点评:解答此题的关键是理解同余定理,求出两个数之差的公因数,进而解决问题.3.20220808除以9的余数是1807280;除以25的余数是8;除以8和11没有余数.【解析】试题分析:根据在有余数的除法中,“被除数=商×除数+余数〞解答即可.解:20220808÷9=2231200 (1807280)20220808÷8=251010120220808÷25=803232 (8)20220808÷11=1825528答:20220808除以9的余数是1807280;除以25的余数是8;除以8和11没有余数.点评:解答此题根据被除数、除数、商和余数四个量之间的关系进展解答即可.4.打球盘数最多的运发动是126号,打了5盘.【解析】试题分析:能被3整除的条件是:这个整数的各位数字和是3的整数倍;如15,1+6=6,6=3×2,所以15能被3整除;再如19,1+9=10,10÷3=3…1,那么19不能被3整除,19÷3=6…1,通过此题说明了一个问题:数字和除以3余数是几,那么这个数字除以3就余数是几;此题从101、126、173、193中任意选出2个数有6种,求和,除以3,再看和的数字除以3余数是几,再分别求出每个运发动打球的盘数,即可得解.解:101+126=227,2+2+7=11,11÷3=3…2;101+173=274,2+7+4=13,13÷3=4…1;101+193=294,2+9+4=15,15÷3=5;126+173=299,2+9+9=20,20÷3=6…2;126+193=319,3+1+9=13,13÷3=4…1;173+193=366,3+6+6=15,15÷3=5;101号运发动打球的盘数为:2+1+0=3〔盘〕,126好运发动打球的盘数为:2+2+1=5,第 1 页173号运发动打球的盘数为:1+2+0=3〔盘〕,193号运发动打球的盘数为:0+1+0=1〔盘〕,答:打球盘数最多的运发动是126号,打了5盘.点评:完成此题关键是根据题意,得出每个运发动打球的盘数,然后得出答案.5.16个零件.【解析】试题分析:用每人每天可以消费的零件个数乘以人数,乘以天数得到零件的总个数,用零件的总个数除以每包的个数,得到的商是包数,余数是剩下的零件个数,最后一包有的零件个数.解:300×128×23÷17=38400×23÷17=883200÷17=51952〔包〕…16〔个〕答:最后一包有16个零件.点评:此题关键弄清得到商表示量是什么,得到的余数表示什么量.6.〔1〕4;〔2〕4;〔3〕2.【解析】试题分析:〔1〕分别求出23、24、25、26…除以7的余数,总结出规律,然后判断出所求的余数是多少即可;〔2〕首先根据1414=〔11+3〕14,可得1414除以11同余314除以11;然后分别求出33、34、35、36…除以11的余数,总结出规律,然后判断出所求的余数是多少即可;〔3〕首先根据28121=〔13×2+2〕121,所以28121除以13同余2121,然后分别求出24、25、26、27…除以13的余数,总结出规律,然后判断出所求的余数是多少即可.解:〔1〕因为23÷7=1…1,24÷7=2…2,25÷7=4…4,26÷7=9…1,…所以从23开场,除以7的余数分别是1、2、4、1、2、4…,每3个一循环,分别是1、2、4,因为〔20﹣2〕÷3=6,所以220除以7的余数是4;〔2〕根据1414=〔11+3〕14,可得1414除以11同余314除以11,因为33÷11=2…5,34÷11=7…4,35÷11=22…1,36÷11=66…3,37÷11=198…9,38÷11=596…5,…所以从33开场,除以11的余数分别是5、4、1、3、9、5…,每5个一循环,分别是5、4、1、3、9,因为〔14﹣2〕÷5=2…2,所以1414除以11的余数是4;〔3〕根据28121=〔13×2+2〕121,所以28121除以13同余2121,因为24÷13=1…3,25÷13=2…6,26÷13=4…12,27÷13=9…11,28÷13=19…9,29÷13=39…5,210÷13=78…10,211÷13=157…7,212÷13=315…1,213÷13=630…2,214÷13=1260…4,215÷13=2520…8,216÷13=5041…3,所以从24开场,除以13的余数分别是3、6、12、11、9、5、10、7、1、2、4、8、3…,每12个一循环,分别是3、6、12、11、9、5、10、7、1、2、4、8,因为〔121﹣3〕÷12=9…10,所以28121除以13的余数是2.点评:此题主要考察了带余除法的性质的应用,以及同余定理的应用.7.2.【解析】试题分析:被5整除的数的特点是个位数字是0和5,所以只要看个位数字,即可,余数只能是0、1、2、3、4中的一个.解:乘积的个位数字分别是8,4,2,6,8,4,2,6,8,4;所以8+8×8+8×8×8+…+8×8×8×8…×8〔10个8〕的个位数字和是:8+4+2+6+8+4+2+6+8+4=52,所以8+8×8+8×8×8+…+8×8×8×8…×8〔10个8〕的个位数字是2,2即为余数;答:除以5的余数是2.点评:解决此题的关键是理解被5整除的特征.8.437.【解析】试题分析:因为这个数除以21,除以20都余17,要求这个数最小是多少,就是用20、21的最小公倍数加上17即可.解:21和20的最小公倍数是21×20=420420+17=437所以这个数最小是437.答:这个数最小是437.点评:此题考察了带余除法,根据题目特点,先求2个数的最小公倍数,然后加上余数,解决问题.9.5.【解析】试题分析:利用带余数的除法运算性质,将这个数看成A+B,A为可以被12整除的局部,B 那么为除以12的余数,得出A可以被3或4整除,再结合这个数除以3余2,除以4余1,得出B也一样,归纳出符合要求的只有5.解:将这个数看成A+B,A为可以被12整除的局部,B那么为除以12的余数.A可以被12整除,那么也可以被3或4整除.因为这个数“除以3余2,除以4余1〞,所以B也是“除以3余2,除以4余1〞,又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.答:这个数除以12余数是5.点评:此题主要考察了带余数的除法运算,假设出这个数,分析得出符合要求的数据.10.141.【解析】试题分析:由题意知,一共有多少名小朋友,也就是求11和13的最小倍数,由此解答问题.解:因为9=11﹣2,11=13﹣2,所以只要再多2个人,人数就是11与13的公倍数,11与13的公倍数为143,所以共有143﹣2=141人,符合题意;而143×2>100,不符合题意.答:共有141人.点评:此题主要把实际问题转化为求最小倍数的数学问题,解决数学问题,回到实际问题,这是数学中常用的一种方法.11.95.第 3 页【解析】试题分析:因为1111﹣66=1045,1045=5×11×19,所以两位因数有:11,19,55,95;又因为余数小于除数,但是11,19,55<66,所以只有95符合题意,即这个两位数是95,此时1111÷95=11…66.解:因为1111﹣66=1045,1045=5×11×19,所以两位因数有:11,19,55,95;∵余数小于除数,但是11,19,55<66,∴只有95符合题意,即这个两位数是95,此时1111÷95=11…66.答:这个两位数是95.点评:此题主要考察了带余除法的性质的应用,解答此题的关键是求出1111与66的差,进而将其分解质因数.12.〔1〕除以4和125的余数分别是1和46.〔2〕除以9和11的余数分别是3和5.【解析】试题分析:〔1〕421被4除后余数是1,放到下一个421,得到1421,除以4,余数仍然是1,再放到下一个421里,又得到1421,余数还是1,依此类推,无论多少个421,余数都是1.同理421除以125余数是46,放到下一个421中,得到46421,除以125,余数仍然是46,以此类推,无论多少个421,余数都是46.〔2〕被9整除的数的特点是数字和是9的倍数,所以9个808一定被9整除,18个808同样被9整除,还有3个808,数字和是〔8+8〕×3=48,48÷9=5…3,所以余数是3;一个808除以11余数是5,与下一个808得到5808,除以11,结果余数是0,所以每两个808可以被整除11,那么20个808被11整除,只要看最后一个808除以11余数为几,即可得解.解:〔1〕421÷4=105 (1)1421÷4=355 (1)再放到下一个421里,又得到1421,余数还是1,依此类推,无论多少个421,余数都是1.421÷125=3 (46)46421÷125=371 (46)放到下一个421中,得到46421,除以125,余数仍然是46,以此类推,无论多少个421,余数都是46.答:除以4和125的余数分别是1和46.〔2〕被9整除的数的特点是数字和是9的倍数,所以9个808一定被9整除,18个808同样被9整除,还有3个808,数字和是〔8+8〕×3=48,48÷9=5…3,所以余数是3;808÷11=73 (5)5808÷11=528一个808除以11余数是5,与下一个808得到5808,除以11,结果余数是0,所以每两个808可以被整除11,那么20个808被11整除,只要看最后一个808除以11余数为5.答:除以9和11的余数分别是3和5.点评:完成此题要根据余数的不同分别讨论解决.13.15个零件【解析】试题分析:用每天消费的零件个数乘以天数得到零件的总个数,用零件的总个数除以每包的个数,得到的商是包数,余数是剩下的零件个数就是最后一包有的零件个数.解:1234×365÷19=450410÷19=23705〔包〕…15〔个〕答:最后一包有15个零件.点评:此题关键弄清得到商表示量是什么,得到的余数表示什么量.14.7.【解析】试题分析:除去第一个2外,其余的每4个2相乘都有个位数字是4、8、6、2的循环出现,故用〔67﹣1〕除以4,得出是16组余2,所以个位数字是8,最终确定自然数的个位数字是7.解:除去第一个2外,其余的每4个2相乘都有个位数字是4、8、6、2的循环出现,为一组;〔67﹣1〕÷4=16〔组〕…2〔个〕;所以67个2相乘的个位数字是8,那么自然数的个位数字是 8﹣1=7.故答案为:7.点评:此题考察乘法中的巧算,关键是找出2连乘时积的变化规律,再进一步求得解.15.1.【解析】试题分析:12022的个位数是1,22022的个位数是8,32022的个位数是7,42022的个位数是4,52022的个位数是5,62022的个位数是6,72022的个位数是3,82022的个位数是2,92022的个位数是9,102022的个位数是0,112022的个位数是1…,每10个数一循环,依次为1,8,7,4,5,6,3,2,9,0;1+8+7+4+5+6+3+2+9+0=45,2022÷10=200…6,所以算式12022+22022+32022+…+20222022计算结果的个位数同算式200×45+1+8+7+4+5+6=931的个位数一样,即它的个位数是1,据此解答即可.解:12022的个位数是1,22022的个位数是8,32022的个位数是7,42022的个位数是4,52022的个位数是5,62022的个位数是6,72022的个位数是3,82022的个位数是2,92022的个位数是9,102022的个位数是0,112022的个位数是1…,每10个数一循环,依次为1,8,7,4,5,6,3,2,9,0;因为1+8+7+4+5+6+3+2+9+0=45,2022÷10=200…6,所以算式12022+22022+32022+…+20222022计算结果的个位数同算式200×45+1+8+7+4+5+6=931的个位数一样,即它的个位数是1.点评:此题主要考察了乘积的个位数问题的应用,解答此题的关键是判断出:12022、22022、32022、…的个位数依次为1,8,7,4,5,6,3,2,9,0,每10个数一循环.16.9.【解析】试题分析:一个自然数除以49余23,除以48也余23,那么这个自然数是49和48的最小公倍数加23,因为48和49互质,所以这个数是49×48+23,然后除以14,49×48÷14=7×24整除,只要看23除以14的余数,即可得解.解:23÷14=1 (9)答:这个自然数被14除的余数是9.第 5 页点评:关键是明白这个自然数是49×48+23,49×48能被14整除.17.237.【解析】试题分析:设这个自然数为x,根据这个自然数除以19余9,除以23余7,列出方程,求解即可.解:设这个自然数为x,根据题意,可得x=19m+9=23n+7〔m、n都是自然数〕,整理得:x﹣7=19m+2=23n,因为23×10=19×12+2,所以x﹣7=230,解得x=237,即这个自然数最小是237.答:这个自然数最小是237.点评:此题主要考察了有余数的除法各局部之间的关系的应用.18.419只.【解析】试题分析:求3、5、7的最小公倍数,进一步找出比400多一些的公倍数,用这个公倍数减去1即可得到答案.解:3、5、7这三个数两两互质,所以它们的最小公倍数是这三个数的乘积,3×5×7=105105×2=210105×3=315105×4=420420﹣1=419答:刘叔叔一共养了419只兔子.点评:此题关键理解好“每3只兔子关在一个笼子里,那么最后一个笼子里有2只〞可以理解为“每3只兔子关在一个笼子里,那么最后一个笼子里少1只〞由此理解后面的内容,即求出3,5,7的公倍数减去1即可得到答案.19.90.【解析】试题分析:6个123除以99刚好整除,这样求出123里有多少个6,余数是几,就看几个123并列除以99的余数,即可得解.解:123123123123123123÷99=1243667910334577每6个整除1次,123÷6=20 (3)前120个123并列能整除99,123123123÷99=1243667 (90)答:123个123并列除以99的余数是90.点评:找到几个123并列可以被99整除,是解决此题的关键.20.20.【解析】试题分析:求出苹果、梨、橘子的总个数,然后用水果的总个数减去25即可得到剩下的水果的总数,然后把水果的总个数分解质因式,确定出学生的人数,然后进一步求出剩下水果的个数,进一步确定剩下个数最多的水果.解:63+90+130﹣25=258258=2×3×43由此可知学生的人数是43人,余下的苹果的个数:63﹣1×43=20〔个〕余下橘子的个数:90﹣2×43=4〔个〕余下梨的个数:130﹣3×43=1〔个〕20>4>1所以余下的苹果最多,剩下20个.答:剩下个数最多的水果剩下20个.点评:此题关键求出发给的学生的人数,然后确定出余下水果最多的是那种水果.21.19.【解析】试题分析:a,b数被一个数d去除,有一样的余数,那么d可以整除〔a﹣b〕,由此找出300与262的差,以及262与205的差,它们的非1的公约数就是要求的数.解:这个数除300、262,得到一样的余数,所以这个数整除300﹣262=38,同理,这个数整除262﹣205=57,因此,它是38、57的公约数19.点评:此题利用同余定理的性质,得出要求的数是被除数两两之间差的公约数,从而得解.22.17.【解析】试题分析:假设这个数是a,61除以a余数是2c;90除以a余数是c,那么180除以a的余数就是2c;那么两个等式左右相减,余数被减去了,即得到的被除数能被a整除,所以只要把180减去61,分解质因数,即可得解.解:假设这个数是a,61除以a余数是2c;90除以a余数是c,那么:61÷a=b…2c90×2÷a=d…2c那么90×2﹣61=119=17×7因为61÷17=3 (10)90÷17=5 (5)10=5×2符合题意;答:这个数为17.点评:解决此题的关键是理解90的2倍减去61就是所求的数的整数倍,从而转化为求90×2﹣61的因数.23.4.【解析】试题分析:被11整除的数,奇数位和与偶数位和的差能被11整除,因此可以先求出此数奇数位上的和以及偶数位上的和.解:在此数前补一位0不影响.即01 23 45 ...67 89 10 11 (99)如上每两位一段.易知,被11整除的数,奇数位和,与偶数位和的差,能被11整除.那么上数,从10往后,偶数位上,数字1到9均出现10次.奇数位上,0到9出现9次.因此奇数位和=〔0+1+2+3…+9〕×9+〔1+3+5+7+9〕=45×9+25偶数位和=〔1+2+3…+9〕×10+〔0+2+4+6+8〕=45×10+20那么他们的差,偶﹣奇第 7 页=45×10+20﹣45×9﹣25=45﹣5=40 不能被11整除,而要是调整奇数位的最后一位〔99的个位9〕,减少4的话.这个差将被11整除.意味着01 23 45 …95 能被11整除,那么原数被11除余4.答:这个多位数除以11的余数是4.点评:解决此题的关键是理解被11整除的数,奇数位和与偶数位和的差能被11整除.24.00.【解析】试题分析:要求算式计算结果的末两位数字是多少,只要求出的和除以100的余数,即为其末两位数字,据此解答即可.解:7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7×7×7×7除以100的余数等于43×7除以100的余数为1;而7×7×7×7×7除以100的余数等于7,…那么7+7×7+…+7×7×…除以100所得的余数,4个数一循环,依次为7,49,43,1,因为2022÷4=502,所以算式计算结果除以100的余数同余502×〔7+49+43+1〕=50200,又因为50200除以100余数为0,所以算式计计算结果的末两位数字是00.点评:此题主要考察了乘积的个位数问题的应用,解答此题的关键是分析出:7+7×7+…+7×7×…除以100所得的余数,4个数一循环,依次为7,49,43,1.25.75.【解析】试题分析:因为是奇数相乘,有下面这个规律:25〔2n+1〕〔2n+3〕=100n2+200n+75〔25经过相邻的两个奇数相乘后变成75〕,75〔2n+1〕〔2n+3〕=300n2+600n+225〔75经过相邻的两个奇数相乘后变成25〕,这个规律是从15开场的,也就是当n>2时,〔8n+1〕!和〔8n﹣1〕!最后两位是25,〔8n+3〕!和〔8n+5〕!最后两位是75;又因为2022=251×8+5,所以计算结果的末两位数字是75.解:因为是奇数相乘,有下面这个规律:25〔2n+1〕〔2n+3〕=100n2+200n+75〔25经过相邻的两个奇数相乘后变成75〕,75〔2n+1〕〔2n+3〕=300n2+600n+225〔75经过相邻的两个奇数相乘后变成25〕,这个规律是从15开场的,也就是当n>2时,〔8n+1〕!和〔8n﹣1〕!最后两位是25,〔8n+3〕!和〔8n+5〕!最后两位是75;又因为2022=251×8+5,所以计算结果的末两位数字是75.答:算式1×3×5×7×…×2022计算结果的末两位数字是75.点评:此题主要考察了乘积的个位数问题的应用,解答此题的关键是分析出:当n>2时,〔8n+1〕!和〔8n﹣1〕!最后两位是25,〔8n+3〕!和〔8n+5〕!最后两位是75.26.5039根.【解析】试题分析:根据10根一包,最后还剩9根,9根一包,最后还剩8根,分别以8、7、6、5根为一包,最后也分别剩7、6、5、4根,可以推知此数加上1就是8、7、6、5的公倍数,再求出8、7、6、5的公倍数减去1得解.解:这个数+1=8、7、6、5的公倍数8、7、6、5的最小公倍数为:2×4×7×3×5=840满足5000多这个条件的公倍数是840×6=5040牙签的数量就是5040﹣1=5039〔根〕答:原来一共有牙签 5039根.点评:解决此题关键在于求出符合条件〔5000多〕的8、7、6、5的公倍数,再用它减去1即可.27.160.【解析】试题分析:17,19和21这三个数都是奇数,且相邻的两个数都相差2,所以它们的最小公倍数仍然是一个奇数,这个最小公倍数分别加上5、7、9所得到的和都是偶数,且相邻的两个数仍然相差2,我们把这三个和分别除以2,就可以得到一组符合题目要求的连续自然数.5、7、9最小公倍数是5×7×9=315,315+5=320能被5整除,315+7=322能被7整除,315+9=24能被9整除,所以320,322,324分别能被5、7、9整除,这三个数都是偶数,且都相差2,把这三个数分别除以2,得到160,161,162,它们也一定能分别被5、7、9整除,又因为160小于最小公倍数315,所以160,161,162是符合题目要求的最小的一组,因此这三个连续自然数中最小的那个数最小是160.解:5、7、9最小公倍数是5×7×9=315,315+5=320能被5整除,315+7=322能被7整除,315+9=24能被9整除,所以320,322,324分别能被5、7、9整除,这三个数都是偶数,且都相差2,把这三个数分别除以2,得到160,161,162,它们也一定能分别被5、7、9整除,又因为160小于最小公倍数315,所以160,161,162是符合题目要求的最小的一组,因此这三个连续自然数中最小的那个数最小是160.点评:完成此题是在理解5、7和9这一组数的根底上求出最小公倍数,然后用最小公倍数分别加上5、7、9所得到的和都是偶数,且相邻的两个数仍然相差2,我们把这三个和分别除以2,就可以得到一组符合题目要求的连续自然数,从而求出三个连续自然数中最小的那个数.28.三位数285、636除以7、11、13的余数之和最大.【解析】试题分析:根据题意,要使余数之和最大,三个余数只能分别为 6、10、12,那么这个三位数加上1就能同时被7、11、13整除,所以所求的三位数为7、11、13的公倍数减去1,那么它最小是:7×11×13﹣1=1000,它是一个四位数,不符合题意,因此,余数之和最大时,三个余数分别为 5、10、12 或6、9、12或6、10、11;然后分类讨论,求出满足题意的三位数即可.解:根据题意,要使余数之和最大,三个余数只能分别为 6、10、12,那么这个三位数加上1就能同时被7、11、13整除,第 9 页所以所求的三位数为7、11、13的公倍数减去1,那么它最小是:7×11×13﹣1=1000,它是一个四位数,不符合题意,因此,余数之和最大时,三个余数分别为 5、10、12 或6、9、12或6、10、11;〔1〕当三个余数分别为5、10、12时,那么这个数加1后能被11、13整除,且它被7除后余5,所以所求的三位数为:11×13k﹣1,它被7除的余数为:3k﹣1=5,解得k=2,所以这个三位数是:11×13×2﹣1=285;〔2〕当三个余数分别为6、9、12时,那么这个数加1后能被7、13 整除,且它被11除后余9,所以所求的三位数为:7×13k﹣1,它被11除的余数为3k﹣1=9+11,解得k=7,所以这个三位数是:7×13×7﹣1=636;〔3〕当三个余数分别为6、10、11,那么这个数加1后能被 7、11整除,且它被13除后余11,所以所求的三位数为:7×11k﹣1,它被13除的余数为:12k﹣1=11,解得k=1,所以这个数是:7×11﹣1=76,它是一个两位数,不符合题意;综上,三位数285、636除以7、11、13的余数之和最大.点评:此题主要考察了最大与最小问题的应用,考察了分类讨论思想的应用,解答此题的关键是判断出余数和最大的情况.29.5140.【解析】试题分析:21!=21×20×19×…×15×14×…×11×10×9×8×…5×4×…×1;通过21!分解后的数字,根据数的整除的特点解答即可.解:21!=21×20×19×...×15×14×...×11×10×9×8×...5×4× (1)显然21!末尾有4个0,故D=0;又21!含有质因子2的个数超过7个,所以去掉末尾4个0后,得到的新数后三位是8的倍数,即94C是8的倍数,可得C=4;由于21!能被9整除,所以各位数字之和能被9整除,可得A+B=6或15;由于21!能被11整除,所以奇数位数字和与偶数位数字之差能被11整除,可得:A﹣B=4或B﹣A=7;由于A+B与A﹣B奇偶性一样,所以有:或;解得:或显然只有符合题意.所以四位数是5140.答:四位数是5140.点评:解答此题的关键是灵敏运用数的整除的特点.30.15.【解析】试题分析:因为2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,所以n是3的倍数,2n是5的倍数,4n是2的倍数,又因为2n是5的倍数,所以n的个位是0或5;然后分类讨论,求出n中最小的是多少即可.解:因为2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,所以n是3的倍数,2n是5的倍数,4n是2的倍数,因为2n是5的倍数,所以n的个位是0或5;〔1〕当n的个位是0时,它是3的倍数,所以n最小是30;〔2〕当n的个位是5时,它是3的倍数,所以n最小是15;综上,可得n中最小的是15.答:n中最小的是15.点评:此题主要考察了最大与最小问题的应用,解答此题的关键是纯熟掌握是2、3、5的倍数的特征.第 11 页。
小学奥数数论专题--余数(六年级)竞赛测试.doc
小学奥数数论专题--余数(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【答案】5【解析】因为两个数和的余数同余与余数的和.有101,126,173,193除以3的余数依次为2,0,2,1.则101号运动员与126,173,193号运动员依次进行了2,1,0盘比赛,共3盘比赛;26号运动员与101,173,193号运动员依次进行了2,2,1盘比赛,共5盘比赛;173号运动员与101,126,193号运动员依次进行了1,2,0盘比赛,共3盘比赛;193号运动员与101,126,173号运动员依次进行了0,1,0盘比赛,共1盘比赛.所以,打球盘数最多的运动是126号,打了5盘.【题文】自然数-1的个位数字是多少?【答案】7【解析】我们先计算出的个数数字,再减去1即为所求.(特别的如果是0,那么减去1后的个位数字因为借位为9)将一个数除以10,所得的余数即是这个数的个位数字.而积的余数等于余数的积.有2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以10的余数为6;2×2×2×2×2除以10的余数为2,除以10的余数为4,除以10的余数为8,除以10的余数为6;…… ……也就是说,n个2相乘所得的积除以10的余数每4个数一循环.因为67÷4=16……3,所以除以10的余数同余与2×2×2,即余数为8,所以-1除以8的余数为7.即-1的个位数字为7.评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.【题文】算式7+7×7+…+计算结果的末两位数字是多少?【答案】56【解析】我们只用算出7+7×7+…+的和除以100的余数,即为其末两位数字.7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7×7×7×7除以100的余数等于43×7除以100的余数为1;而除以100的余数等于×7的余数,即为7,……这样我们就得到一个规律除以100所得的余数,4个数一循环,依次为7,49,43,1.1990÷4=497……2,所以7+7×7+…+的和除以100的余数同余与:497×(7+49+43+1)+7+49=49756,除以100余56.所以算式7+7×7+…+计算结果的末两位数字是56.【题文】除以9的余数是多少?【答案】2【解析】能被9整除的数的特征是其数字和能被9整除,如果这个数的数字和除以9余a,那么我们在减去a而得到的新数一定能被9整除,那么这个新数加上a后再除以9,所得的余数一定为a,即一个数除以9的余数等于其数字和除以9的余数.的数字和为20×(1+9+9+0)=380,380的数字和又是3+8=11,11除以9的余数为2,所以除以9的余数是2.【题文】将1,2,3,…,30从左往右依次排列成一个5l位数,这个数被11除的余数是多少?【答案】8【解析】1,2,3,...,30这30个数从左往右依次排列成一个51位数为:123456...910...17...192021...25 (2930)记个位为第1位,十位为第2为,那么:它的奇数位数字和为:0+9+8+7+6+…+1+9+8+7+6+…+1+9+7+5+3+1=115;它的偶数位数字和为:3+++8+6+4+2=53;它的奇数位数字和与偶数位数字和的差为115-53=62.而62除以11的余数为7.所以将原来的那个51位数增大4所得到的数123456…910…17…192021…25…2934就是11倍数,则将123456…910…17…192021…25…2934减去4所得到数除以11的余数为7.即这个51位数除以11的余数是7.评注:如果记个位为第1位,十位为第2位,那么一个数除以11的余数为其奇数位数字A和减去偶数位数字和B的差A-B=C,再用C除以11所得的余数即是原来那个数的余数.(如果减不开可将偶数位数字和B 减去奇数位数字和A,求得B-A=C,再求出C除以11的余数D,然后将11-D即为原来那个数除以11的余数) .如:123456的奇数位数字和为6+4+2=12,偶数位数字和为5+3+1=9,奇数位数字和与偶数位数字和的差位12-9=3,所以123456除以11的余数为3.又如:654321的奇数位数字和为1+3+5=9,偶数位数字和位2+4+6=12,奇数位数字和减不开偶数位数字和,那么先将12-9=3,显然3除以11的余数为3,然后再用11-3=8,这个8即为654321除以11的余数.【题文】一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?【答案】2,7【解析】这个数即为,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数.显然有能够被13类整除,而1994÷6=332……2,即==+33,而是13的倍数,所以除以13的余数即为33除以13的余数为7.有÷13=25641,而÷13=25641025641,所以除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0.200÷6=33……2,所以除以13所得商的第23位为5.除以13的个位即为33除以13的个位,为2.即商的第23位(从左往右数)数字是5,商的个位数字是2,余数是7.【题文】己知:a=.问:a除以13的余数是几?【答案】8【解析】因为199119911991能被13整除,而1991÷3=663……2.有a==199119911991×+199119911991×+199119911991×++199119911991×+…+199119911991×+19911991.所以a除以13的余数等于19911991除以13的余数8.【题文】有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?【答案】5【解析】我们将这个数加上7,则这个数能被3整除,同时也能被4整除,显然能被12整除,所以原来这个数除以12的余数为12-7=5.【题文】某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?【答案】11【解析】我们将这个数减去63,则得到的新数能被247整除,也能被248整除,而相邻的两个整数互质,所以得到的新数能被247×248,显然能被26整除.于是将新数加上63除以26的余数等于63除以26的余数为11.所以这个自然数被26除余数是11.【题文】一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?【答案】237【解析】这个自然数可以表达为19m+9,也可以表达为23n+7,则有19m+9=23n+7,即23n-19m=2,将未知数系数与常数对19取模,有4n≡2(mod 19) .n最小取10时,才有4n≡2(mod 19) .所以原来的那个自然数最小为23×10+7=237.评注:有时往往需要利用不定方程来清晰的表示余数关系,反过来不定方程往往需要利用余数的性质来求解.【题文】如图,在一个圆圈上有几十个孔(不到100个).小明像玩跳棋那样从A孔出发沿着逆时针方向,每隔几个孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好回到A孔.问这个圆圈上共有多少个孔?【答案】91【解析】设这个圆圈有n个圆孔,那么有n除以3余1,n除以5余1,n能被7整除.则将n-1是3、5的倍数,即是15的倍数,所以n=15t+1,又因为n是7的倍数,即15t+1=7A,将系数与常数对7取模,有t-1≡0(mod 7),所以t取6或6与7的倍数和.对应孔数为15×6+1=91或91与105的倍数和,满足题意的孔数只有91.即这个圆圈上共有91个孔.【题文】某住宅区有12家住户,他们的门牌号分别是l,2,3,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除.已知这些电话的首位数字都小于6,并且门牌号码是9的这一家的电话号码也能被13整除,问这一家的电话号码是什么数?【答案】388089【解析】设这12个连续的自然数为n+1,n+2,n+3,…,n+12,那么有它们依次能被1,2,3,…,12整除,显然有n能同时被1,2,3,…,12整除.即为1,2,3,…,12的公倍数.[1,2,3,…,12]=23×32×5×7×11=27720,所以n是27720的倍数,设为27720k.则有第9家的门牌号码为27720k+9为13的倍数,即27720k+9=13A,将系数与常数对13取模有:4k+9≡0(mod 13),所以k可以取1或1与13的倍数和.有要求n+1,n+2,n+3,…,n+12,为六位数,且首位数字都小于6,所以k只能取14,有n=27720×14=388080.那么门牌号码是9的这一家的电话号码是388080+9=388089.【题文】有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【答案】5039【解析】设这包牙签有n根,那么加上1根后为n+1根,此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,5]=23×32×5×7=2520,即n+1是2520的倍数,在满足题意下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.【题文】有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【答案】20【解析】设这个自然数为☆,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.显然有63+90+130=☆×(A+B+C)+(a+b+c)=☆×(A+B+C)+25,所以☆×(A+B+C)=(63+90+130)-25=258,所以☆是258的约数.258=2×3×43,显然当除数☆为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不满足.而当除数☆为43×2,43×3,43×2×3时,它除以63的余数均是63,所以也不满足.那么除数☆只能是43,它除以63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.【题文】一个数去除55l,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【答案】194【解析】这个数A除55l,745,1133,1327,所得的余数相同,所以有55l,745,1133,1327两两做差而得到的数一定是除数A的倍数.1327-1133=194,1133-745=388,745-551=194,1327-745=582,1327-551=776,1133-551=582.这些数都是A的倍数,所以A是它们的公约数,而它们的最大公约数(194,388,194,582,776,582)=194.所以,这个数最大可能为194.【题文】用某自然数去除,得到商是46,余数是,求和.【答案】43,14【解析】因为是的倍还多,得到,得,所以,.【题文】甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【答案】1000,88【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从中减掉以后,就应当是乙数的倍,所以得到乙数,甲数.【题文】一个两位数除310,余数是37,求这样的两位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年五年级数学思维训练:余数1.(4分)72除以一个数,余数是7.商可能是多少?2.(4分)100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3.(4分)20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4.(4分)4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.(4分)某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(4分)(1)220除以7的余数是多少?(2)1414除以11的余数是多少?(3)28121除以13的余数是多少?7.(4分)8+8×8+…+除以5的余数是多少?8.(4分)一个三位数除以21余17,除以20也余17.这个数最小是多少?9.(4分)有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?10.(4分)100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?11.(4分)1111除以一个两位数,余数是66.求这个两位数.12.(4分)(1)除以4和125的余数分别是多少?(2)除以9和11的余数分别是多少?13.(4分)一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?14.(4分)自然数的个位数字是.15.(4分)算式12007+22007+32007+…+20062007计算结果的个位数是多少?16.(4分)一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?17.(4分)一个自然数除以19余9,除以23余7.这个自然数最小是多少?18.(4分)刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有6只.请问:刘叔叔一共养了多少只兔子?19.(4分)除以99的余数是多少?20.(4分)把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下2521.(4分)有一个大于l的整数,用它除300、262、205得到相同的余数,求这个数.22.(4分)用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?23.(4分)从l依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?24.(4分)算式计算结果的末两位数字是多少?25.(4分)算式1×3×5×7×…×2007计算结果的末两位数字是多少?26.(4分)有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?27.(4分)有三个连续自然数,它们小道大依次是5、7、9的倍数,这三个连续自然数最小是多少?28.(4分)请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.29.(4分)已知21!=.那么四位数是多少?30.(4分)有一些自然数n,满足:2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,请问:这样的,n中最小的是多少?参考答案1.商可能是5.【解析】试题分析:根据在有余数的除法中,余数总比除数小,即除数最小为:余数+1,进而根据“被除数﹣余数=商×除数”解答即可.解:72﹣7=6565=13×5,所以,72除以一个数,余数是7.商可能是5.点评:解答此题的关键:根据在有余数的除法中,余数总比除数小,得出余数最大为:除数﹣1,然后被除数、除数、商和余数四个量之间的关系进行解答即可.2.这个除数可能是8或16.【解析】试题分析:要求这个除数可能是多少,根据同余定理,先求出100和84这两个数的差,再求出这三差的公约数,然后找出不能整除100和84的数,即为这个除数.解:余数相同,那么除数是100﹣84=16的约数,除数可能是1,2,4,8,16其中不能整除100和84的有8和16所以除数是8或者16.答:这个除数可能是8或16.点评:解答此题的关键是理解同余定理,求出两个数之差的公因数,进而解决问题.3.20080808除以9的余数是1807280;除以25的余数是8;除以8和11没有余数.【解析】试题分析:根据在有余数的除法中,“被除数=商×除数+余数”解答即可.解:20080808÷9=2231200 (1807280)20080808÷8=251010120080808÷25=803232 (8)20080808÷11=1825528答:20080808除以9的余数是1807280;除以25的余数是8;除以8和11没有余数.点评:解答此题根据被除数、除数、商和余数四个量之间的关系进行解答即可.4.打球盘数最多的运动员是126号,打了5盘.【解析】试题分析:能被3整除的条件是:这个整数的各位数字和是3的整数倍;如15,1+6=6,6=3×2,所以15能被3整除;再如19,1+9=10,10÷3=3…1,则19不能被3整除,19÷3=6…1,通过此题说明了一个问题:数字和除以3余数是几,则这个数字除以3就余数是几;此题从101、126、173、193中任意选出2个数有6种,求和,除以3,再看和的数字除以3余数是几,再分别求出每个运动员打球的盘数,即可得解.解:101+126=227,2+2+7=11,11÷3=3…2;101+173=274,2+7+4=13,13÷3=4…1;101+193=294,2+9+4=15,15÷3=5;126+173=299,2+9+9=20,20÷3=6…2;126+193=319,3+1+9=13,13÷3=4…1;173+193=366,3+6+6=15,15÷3=5;101号运动员打球的盘数为:2+1+0=3(盘),126好运动员打球的盘数为:2+2+1=5,173号运动员打球的盘数为:1+2+0=3(盘),193号运动员打球的盘数为:0+1+0=1(盘),答:打球盘数最多的运动员是126号,打了5盘.点评:完成本题关键是根据题意,得出每个运动员打球的盘数,然后得出答案.5.16个零件.【解析】试题分析:用每人每天可以生产的零件个数乘以人数,乘以天数得到零件的总个数,用零件的总个数除以每包的个数,得到的商是包数,余数是剩下的零件个数,最后一包有的零件个数.解:300×128×23÷17=38400×23÷17=883200÷17=51952(包)…16(个)答:最后一包有16个零件.点评:本题关键弄清得到商表示量是什么,得到的余数表示什么量.6.(1)4;(2)4;(3)2.【解析】试题分析:(1)分别求出23、24、25、26…除以7的余数,总结出规律,然后判断出所求的余数是多少即可;(2)首先根据1414=(11+3)14,可得1414除以11同余314除以11;然后分别求出33、34、35、36…除以11的余数,总结出规律,然后判断出所求的余数是多少即可;(3)首先根据28121=(13×2+2)121,所以28121除以13同余2121,然后分别求出24、25、26、27…除以13的余数,总结出规律,然后判断出所求的余数是多少即可.解:(1)因为23÷7=1…1,24÷7=2…2,25÷7=4…4,26÷7=9…1,…所以从23开始,除以7的余数分别是1、2、4、1、2、4…,每3个一循环,分别是1、2、4,因为(20﹣2)÷3=6,所以220除以7的余数是4;(2)根据1414=(11+3)14,可得1414除以11同余314除以11,因为33÷11=2…5,34÷11=7…4,35÷11=22…1,36÷11=66…3,37÷11=198…9,38÷11=596…5,…所以从33开始,除以11的余数分别是5、4、1、3、9、5…,每5个一循环,分别是5、4、1、3、9,因为(14﹣2)÷5=2…2,所以1414除以11的余数是4;(3)根据28121=(13×2+2)121,所以28121除以13同余2121,因为24÷13=1…3,25÷13=2…6,26÷13=4…12,27÷13=9…11,28÷13=19…9,29÷13=39…5,210÷13=78…10,211÷13=157…7,212÷13=315…1,213÷13=630…2,214÷13=1260…4,215÷13=2520…8,216÷13=5041…3,所以从24开始,除以13的余数分别是3、6、12、11、9、5、10、7、1、2、4、8、3…,每12个一循环,分别是3、6、12、11、9、5、10、7、1、2、4、8,因为(121﹣3)÷12=9…10,所以28121除以13的余数是2.点评:此题主要考查了带余除法的性质的应用,以及同余定理的应用.7.2.【解析】试题分析:被5整除的数的特点是个位数字是0和5,所以只要看个位数字,即可,余数只能是0、1、2、3、4中的一个.解:乘积的个位数字分别是8,4,2,6,8,4,2,6,8,4;所以8+8×8+8×8×8+…+8×8×8×8…×8(10个8)的个位数字和是:8+4+2+6+8+4+2+6+8+4=52,所以8+8×8+8×8×8+…+8×8×8×8…×8(10个8)的个位数字是2,2即为余数;答:除以5的余数是2.点评:解决此题的关键是理解被5整除的特征.8.437.【解析】试题分析:因为这个数除以21,除以20都余17,要求这个数最小是多少,就是用20、21的最小公倍数加上17即可.解:21和20的最小公倍数是21×20=420420+17=437所以这个数最小是437.答:这个数最小是437.点评:此题考查了带余除法,根据题目特点,先求2个数的最小公倍数,然后加上余数,解决问题.9.5.【解析】试题分析:利用带余数的除法运算性质,将这个数看成A+B,A为可以被12整除的部分,B 则为除以12的余数,得出A可以被3或4整除,再结合已知这个数除以3余2,除以4余1,得出B也相同,归纳出符合要求的只有5.解:将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数.A可以被12整除,则也可以被3或4整除.因为这个数“除以3余2,除以4余1”,所以B也是“除以3余2,除以4余1”,又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.答:这个数除以12余数是5.点评:此题主要考查了带余数的除法运算,假设出这个数,分析得出符合要求的数据.10.141.【解析】试题分析:由题意知,一共有多少名小朋友,也就是求11和13的最小倍数,由此解答问题.解:因为9=11﹣2,11=13﹣2,所以只要再多2个人,人数就是11与13的公倍数,11与13的公倍数为143,所以共有143﹣2=141人,符合题意;而143×2>100,不符合题意.答:共有141人.点评:此题主要把实际问题转化为求最小倍数的数学问题,解决数学问题,回到实际问题,这是数学中常用的一种方法.11.95.【解析】试题分析:因为1111﹣66=1045,1045=5×11×19,所以两位因数有:11,19,55,95;又因为余数小于除数,但是11,19,55<66,所以只有95符合题意,即这个两位数是95,此时1111÷95=11…66.解:因为1111﹣66=1045,1045=5×11×19,所以两位因数有:11,19,55,95;∵余数小于除数,但是11,19,55<66,∴只有95符合题意,即这个两位数是95,此时1111÷95=11…66.答:这个两位数是95.点评:此题主要考查了带余除法的性质的应用,解答此题的关键是求出1111与66的差,进而将其分解质因数.12.(1)除以4和125的余数分别是1和46.(2)除以9和11的余数分别是3和5.【解析】试题分析:(1)421被4除后余数是1,放到下一个421,得到1421,除以4,余数仍然是1,再放到下一个421里,又得到1421,余数还是1,依此类推,无论多少个421,余数都是1.同理421除以125余数是46,放到下一个421中,得到46421,除以125,余数仍然是46,以此类推,无论多少个421,余数都是46.(2)被9整除的数的特点是数字和是9的倍数,所以9个808一定被9整除,18个808同样被9整除,还有3个808,数字和是(8+8)×3=48,48÷9=5…3,所以余数是3;一个808除以11余数是5,与下一个808得到5808,除以11,结果余数是0,所以每两个808可以被整除11,则20个808被11整除,只要看最后一个808除以11余数为几,即可得解.解:(1)421÷4=105 (1)1421÷4=355 (1)再放到下一个421里,又得到1421,余数还是1,依此类推,无论多少个421,余数都是1.421÷125=3 (46)46421÷125=371 (46)放到下一个421中,得到46421,除以125,余数仍然是46,以此类推,无论多少个421,余数都是46.答:除以4和125的余数分别是1和46.(2)被9整除的数的特点是数字和是9的倍数,所以9个808一定被9整除,18个808同样被9整除,还有3个808,数字和是(8+8)×3=48,48÷9=5…3,所以余数是3;808÷11=73 (5)5808÷11=528一个808除以11余数是5,与下一个808得到5808,除以11,结果余数是0,所以每两个808可以被整除11,则20个808被11整除,只要看最后一个808除以11余数为5.答:除以9和11的余数分别是3和5.点评:完成本题要根据余数的不同分别讨论解决.13.15个零件【解析】试题分析:用每天生产的零件个数乘以天数得到零件的总个数,用零件的总个数除以每包的个数,得到的商是包数,余数是剩下的零件个数就是最后一包有的零件个数.解:1234×365÷19=450410÷19=23705(包)…15(个)答:最后一包有15个零件.点评:本题关键弄清得到商表示量是什么,得到的余数表示什么量.14.7.【解析】试题分析:除去第一个2外,其余的每4个2相乘都有个位数字是4、8、6、2的循环出现,故用(67﹣1)除以4,得出是16组余2,所以个位数字是8,最终确定自然数的个位数字是7.解:除去第一个2外,其余的每4个2相乘都有个位数字是4、8、6、2的循环出现,为一组;(67﹣1)÷4=16(组)…2(个);所以67个2相乘的个位数字是8,则自然数的个位数字是 8﹣1=7.故答案为:7.点评:此题考查乘法中的巧算,关键是找出2连乘时积的变化规律,再进一步求得解.15.1.【解析】试题分析:12007的个位数是1,22007的个位数是8,32007的个位数是7,42007的个位数是4,52007的个位数是5,62007的个位数是6,72007的个位数是3,82007的个位数是2,92007的个位数是9,102007的个位数是0,112007的个位数是1…,每10个数一循环,依次为1,8,7,4,5,6,3,2,9,0;1+8+7+4+5+6+3+2+9+0=45,2006÷10=200…6,所以算式12007+22007+32007+…+20062007计算结果的个位数同算式200×45+1+8+7+4+5+6=931的个位数相同,即它的个位数是1,据此解答即可.解:12007的个位数是1,22007的个位数是8,32007的个位数是7,42007的个位数是4,52007的个位数是5,62007的个位数是6,72007的个位数是3,82007的个位数是2,92007的个位数是9,102007的个位数是0,112007的个位数是1…,每10个数一循环,依次为1,8,7,4,5,6,3,2,9,0;因为1+8+7+4+5+6+3+2+9+0=45,2006÷10=200…6,所以算式12007+22007+32007+…+20062007计算结果的个位数同算式200×45+1+8+7+4+5+6=931的个位数相同,即它的个位数是1.点评:此题主要考查了乘积的个位数问题的应用,解答此题的关键是判断出:12007、22007、32007、…的个位数依次为1,8,7,4,5,6,3,2,9,0,每10个数一循环.16.9.【解析】试题分析:一个自然数除以49余23,除以48也余23,则这个自然数是49和48的最小公倍数加23,因为48和49互质,所以这个数是49×48+23,然后除以14,49×48÷14=7×24整除,只要看23除以14的余数,即可得解.解:23÷14=1 (9)答:这个自然数被14除的余数是9.点评:关键是明白这个自然数是49×48+23,49×48能被14整除.17.237.【解析】试题分析:设这个自然数为x,根据这个自然数除以19余9,除以23余7,列出方程,求解即可.解:设这个自然数为x,根据题意,可得x=19m+9=23n+7(m、n都是自然数),整理得:x﹣7=19m+2=23n,因为23×10=19×12+2,所以x﹣7=230,解得x=237,即这个自然数最小是237.答:这个自然数最小是237.点评:此题主要考查了有余数的除法各部分之间的关系的应用.18.419只.【解析】试题分析:求3、5、7的最小公倍数,进一步找出比400多一些的公倍数,用这个公倍数减去1即可得到答案.解:3、5、7这三个数两两互质,所以它们的最小公倍数是这三个数的乘积,3×5×7=105105×2=210105×3=315105×4=420420﹣1=419答:刘叔叔一共养了419只兔子.点评:本题关键理解好“每3只兔子关在一个笼子里,那么最后一个笼子里有2只”可以理解为“每3只兔子关在一个笼子里,那么最后一个笼子里少1只”由此理解后面的内容,即求出3,5,7的公倍数减去1即可得到答案.19.90.【解析】试题分析:6个123除以99刚好整除,这样求出123里有多少个6,余数是几,就看几个123并列除以99的余数,即可得解.解:123123123123123123÷99=1243667910334577每6个整除1次,123÷6=20 (3)前120个123并列能整除99,123123123÷99=1243667 (90)答:123个123并列除以99的余数是90.点评:找到几个123并列可以被99整除,是解决此题的关键.20.20.【解析】试题分析:求出苹果、梨、橘子的总个数,然后用水果的总个数减去25即可得到剩下的水果的总数,然后把水果的总个数分解质因式,确定出学生的人数,然后进一步求出剩下水果的个数,进一步确定剩下个数最多的水果.解:63+90+130﹣25=258258=2×3×43由此可知学生的人数是43人,余下的苹果的个数:63﹣1×43=20(个)余下橘子的个数:90﹣2×43=4(个)余下梨的个数:130﹣3×43=1(个)20>4>1所以余下的苹果最多,剩下20个.答:剩下个数最多的水果剩下20个.点评:本题关键求出发给的学生的人数,然后确定出余下水果最多的是那种水果.21.19.【解析】试题分析:a,b数被一个数d去除,有相同的余数,那么d可以整除(a﹣b),由此找出300与262的差,以及262与205的差,它们的非1的公约数就是要求的数.解:这个数除300、262,得到相同的余数,所以这个数整除300﹣262=38,同理,这个数整除262﹣205=57,因此,它是38、57的公约数19.点评:本题利用同余定理的性质,得出要求的数是被除数两两之间差的公约数,从而得解.22.17.【解析】试题分析:假设这个数是a,61除以a余数是2c;90除以a余数是c,则180除以a的余数就是2c;那么两个等式左右相减,余数被减去了,即得到的被除数能被a整除,所以只要把180减去61,分解质因数,即可得解.解:假设这个数是a,61除以a余数是2c;90除以a余数是c,则:61÷a=b…2c90×2÷a=d…2c则90×2﹣61=119=17×7因为61÷17=3 (10)90÷17=5 (5)10=5×2符合题意;答:这个数为17.点评:解决此题的关键是理解90的2倍减去61就是所求的数的整数倍,从而转化为求90×2﹣61的因数.23.4.【解析】试题分析:被11整除的数,奇数位和与偶数位和的差能被11整除,因此可以先求出此数奇数位上的和以及偶数位上的和.解:在此数前补一位0不影响.即01 23 45 ...67 89 10 11 (99)如上每两位一段.易知,被11整除的数,奇数位和,与偶数位和的差,能被11整除.则上数,从10往后,偶数位上,数字1到9均出现10次.奇数位上,0到9出现9次.因此奇数位和=(0+1+2+3…+9)×9+(1+3+5+7+9)=45×9+25偶数位和=(1+2+3…+9)×10+(0+2+4+6+8)=45×10+20则他们的差,偶﹣奇=45×10+20﹣45×9﹣25=45﹣5=40 不能被11整除,而要是调整奇数位的最后一位(99的个位9),减少4的话.这个差将被11整除.意味着01 23 45 …95 能被11整除,则原数被11除余4.答:这个多位数除以11的余数是4.点评:解决此题的关键是理解被11整除的数,奇数位和与偶数位和的差能被11整除.24.00.【解析】试题分析:要求算式计算结果的末两位数字是多少,只要求出的和除以100的余数,即为其末两位数字,据此解答即可.解:7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7×7×7×7除以100的余数等于43×7除以100的余数为1;而7×7×7×7×7除以100的余数等于7,…则7+7×7+…+7×7×…除以100所得的余数,4个数一循环,依次为7,49,43,1,因为2008÷4=502,所以算式计算结果除以100的余数同余502×(7+49+43+1)=50200,又因为50200除以100余数为0,所以算式计计算结果的末两位数字是00.点评:此题主要考查了乘积的个位数问题的应用,解答此题的关键是分析出:7+7×7+…+7×7×…除以100所得的余数,4个数一循环,依次为7,49,43,1.25.75.【解析】试题分析:因为是奇数相乘,有下面这个规律:25(2n+1)(2n+3)=100n2+200n+75(25经过相邻的两个奇数相乘后变成75),75(2n+1)(2n+3)=300n2+600n+225(75经过相邻的两个奇数相乘后变成25),这个规律是从15开始的,也就是当n>2时,(8n+1)!和(8n﹣1)!最后两位是25,(8n+3)!和(8n+5)!最后两位是75;又因为2013=251×8+5,所以计算结果的末两位数字是75.解:因为是奇数相乘,有下面这个规律:25(2n+1)(2n+3)=100n2+200n+75(25经过相邻的两个奇数相乘后变成75),75(2n+1)(2n+3)=300n2+600n+225(75经过相邻的两个奇数相乘后变成25),这个规律是从15开始的,也就是当n>2时,(8n+1)!和(8n﹣1)!最后两位是25,(8n+3)!和(8n+5)!最后两位是75;又因为2013=251×8+5,所以计算结果的末两位数字是75.答:算式1×3×5×7×…×2007计算结果的末两位数字是75.点评:此题主要考查了乘积的个位数问题的应用,解答此题的关键是分析出:当n>2时,(8n+1)!和(8n﹣1)!最后两位是25,(8n+3)!和(8n+5)!最后两位是75.26.5039根.【解析】试题分析:根据10根一包,最后还剩9根,9根一包,最后还剩8根,分别以8、7、6、5根为一包,最后也分别剩7、6、5、4根,可以推知此数加上1就是8、7、6、5的公倍数,再求出8、7、6、5的公倍数减去1得解.解:这个数+1=8、7、6、5的公倍数8、7、6、5的最小公倍数为:2×4×7×3×5=840满足5000多这个条件的公倍数是840×6=5040牙签的数量就是5040﹣1=5039(根)答:原来一共有牙签 5039根.点评:解决此题关键在于求出符合条件(5000多)的8、7、6、5的公倍数,再用它减去1即可.27.160.【解析】试题分析:17,19和21这三个数都是奇数,且相邻的两个数都相差2,所以它们的最小公倍数仍然是一个奇数,这个最小公倍数分别加上5、7、9所得到的和都是偶数,且相邻的两个数仍然相差2,我们把这三个和分别除以2,就可以得到一组符合题目要求的连续自然数.5、7、9最小公倍数是5×7×9=315,315+5=320能被5整除,315+7=322能被7整除,315+9=24能被9整除,所以320,322,324分别能被5、7、9整除,这三个数都是偶数,且都相差2,把这三个数分别除以2,得到160,161,162,它们也一定能分别被5、7、9整除,又因为160小于最小公倍数315,所以160,161,162是符合题目要求的最小的一组,因此这三个连续自然数中最小的那个数最小是160.解:5、7、9最小公倍数是5×7×9=315,315+5=320能被5整除,315+7=322能被7整除,315+9=24能被9整除,所以320,322,324分别能被5、7、9整除,这三个数都是偶数,且都相差2,把这三个数分别除以2,得到160,161,162,它们也一定能分别被5、7、9整除,又因为160小于最小公倍数315,所以160,161,162是符合题目要求的最小的一组,因此这三个连续自然数中最小的那个数最小是160.点评:完成此题是在了解5、7和9这一组数的基础上求出最小公倍数,然后用最小公倍数分别加上5、7、9所得到的和都是偶数,且相邻的两个数仍然相差2,我们把这三个和分别除以2,就可以得到一组符合题目要求的连续自然数,从而求出三个连续自然数中最小的那个数.28.三位数285、636除以7、11、13的余数之和最大.【解析】试题分析:根据题意,要使余数之和最大,三个余数只能分别为 6、10、12,那么这个三位数加上1就能同时被7、11、13整除,所以所求的三位数为7、11、13的公倍数减去1,则它最小是:7×11×13﹣1=1000,它是一个四位数,不符合题意,因此,余数之和最大时,三个余数分别为 5、10、12 或6、9、12或6、10、11;然后分类讨论,求出满足题意的三位数即可.解:根据题意,要使余数之和最大,三个余数只能分别为 6、10、12,那么这个三位数加上1就能同时被7、11、13整除,所以所求的三位数为7、11、13的公倍数减去1,则它最小是:7×11×13﹣1=1000,它是一个四位数,不符合题意,因此,余数之和最大时,三个余数分别为 5、10、12 或6、9、12或6、10、11;(1)当三个余数分别为5、10、12时,则这个数加1后能被11、13整除,且它被7除后余5,所以所求的三位数为:11×13k﹣1,它被7除的余数为:3k﹣1=5,解得k=2,所以这个三位数是:11×13×2﹣1=285;(2)当三个余数分别为6、9、12时,则这个数加1后能被7、13 整除,且它被11除后余9,所以所求的三位数为:7×13k﹣1,它被11除的余数为3k﹣1=9+11,解得k=7,所以这个三位数是:7×13×7﹣1=636;(3)当三个余数分别为6、10、11,则这个数加1后能被 7、11整除,且它被13除后余11,所以所求的三位数为:7×11k﹣1,它被13除的余数为:12k﹣1=11,解得k=1,所以这个数是:7×11﹣1=76,它是一个两位数,不符合题意;综上,三位数285、636除以7、11、13的余数之和最大.点评:此题主要考查了最大与最小问题的应用,考查了分类讨论思想的应用,解答此题的关键是判断出余数和最大的情况.29.5140.【解析】试题分析:21!=21×20×19×…×15×14×…×11×10×9×8×…5×4×…×1;通过21!分解后的数字,根据数的整除的特点解答即可.解:21!=21×20×19×...×15×14×...×11×10×9×8×...5×4× (1)显然21!末尾有4个0,故D=0;又21!含有质因子2的个数超过7个,所以去掉末尾4个0后,得到的新数后三位是8的倍数,即94C是8的倍数,可得C=4;由于21!能被9整除,所以各位数字之和能被9整除,可得A+B=6或15;由于21!能被11整除,所以奇数位数字和与偶数位数字之差能被11整除,可得:A﹣B=4或B﹣A=7;由于A+B与A﹣B奇偶性相同,所以有:或;解得:或显然只有符合题意.所以四位数是5140.答:四位数是5140.点评:解答本题的关键是灵活运用数的整除的特点.30.15.【解析】试题分析:因为2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,所以n是3的倍数,2n是5的倍数,4n是2的倍数,又因为2n是5的倍数,所以n的个位是0或5;然后分类讨论,求出n中最小的是多少即可.解:因为2n﹣n是3的倍数,3n﹣n是5的倍数,5n﹣n是2的倍数,所以n是3的倍数,2n是5的倍数,4n是2的倍数,因为2n是5的倍数,所以n的个位是0或5;(1)当n的个位是0时,它是3的倍数,所以n最小是30;(2)当n的个位是5时,它是3的倍数,所以n最小是15;综上,可得n中最小的是15.答:n中最小的是15.点评:此题主要考查了最大与最小问题的应用,解答此题的关键是熟练掌握是2、3、5的倍数的特征.。