人教版九年级数学上册 第23章 旋转(教师用)

合集下载

第23章旋转第1课时 旋转的概念及性质-人教版九年级数学上册讲义(机构专用)

第23章旋转第1课时 旋转的概念及性质-人教版九年级数学上册讲义(机构专用)

人教版九年级数学上册讲义第二十三章旋转第1课时旋转的概念及性质知识要点旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转特殊角度旋转60°得等边三角形。

旋转90°得等腰直角三角形。

旋转任意角度得等腰三角形。

对应练习1.如图,ΔABC 是等腰三角形,∠BAC = 36°,D 是BC 上一点,ΔABD 经过旋转后到达ΔACE 的位置,(1) 旋转中心是哪一点?(2)旋转了多少度?(3) 如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?2.如图,是ΔAOB 绕点O 按逆时针方向旋转45°所得的.点B 的对应点是点_____ 线段OB 的对应线段是线段______ 线段AB 的对应线段是线段______∠A 的对应角是______ ∠B 的对应角是______ 旋转中心是点______ 旋转的角度是______3.如图是由正方形ABCD 旋转而成.(1)旋转中心是__________(2)旋转的角度是_________ (3)若正方形的边长是1,则C ’D =_________4.ΔA'OB '是ΔAOB 绕点O按逆时针方向旋转得到的. 已知∠AOB =20°,∠A'OB =24°,AB =3,OA =5则A'B '=____,OA' =____,旋转角=______.5.如图,ΔABC绕A 逆时针旋转使得C 点落在BC 边上的F 处,则对于结论:①AC =AF;②∠FAB =∠EAB;③EF =BC;④∠EAB =∠FAC,其中正确的结论是______________6.如图E 是正方形ABCD 内一点,将ΔABE 绕点B 顺时针方向旋转到ΔCBF,其中EB =3cm,则BF =_____cm ,∠EBF =______.7.如图将RtΔABC 绕C 点逆时针旋转30°后,点B 落在B ′,点A落在A’点位置,若A’C ⊥ AB,求∠B ’A’C 的度数.8.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.课后作业1.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()• A.15° B.20° C.25° D.30°2.如图,在△ABD中,AD=BD,将△ABD绕点A逆时针旋转得到△ACE,使点C落在直线BD上.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.3.如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.4.如图,点E是正方形ABCD内的一点,连接AE、BE、CE.若AE=1,BE=2,CE=3,则∠AEB= 度.5.如图,P是等边三角形ABC内一点将△ACP绕点A顺时针旋转60°得到△ABQ,连接BP,若PA=2,PB=4,PC=2√3,则四边形APBQ的面积为.6.如图所示,点D是等边△ABC内一点,DA=15,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,当点E 在BD的延长线上时.求(1)∠BDA的度数;(2)△DEC的周长.7.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为 .8.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD、CD的长.9.正方形ABCD与正方形DEFG按如图1放置,点A、D、G在同一条直线上,点E在CD边上,AD=3,DE= √2,连接AE、CG.(1)线段AE与CG的关系为;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由.长.对应练习答案1.答案:(1)A;(2)36°;(3)AC 的中点.2.B’,OB’,A'B ',∠A’,∠B ',O,45°3.A,45°,4.3,5,44°5.①③④6.答案:3,90°.7.答案:60°.8.解答:解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,课后作业答案1.解答:解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°-∠E-∠D=80DU=(180°-∠CAE)=(180°-60°)=80°,∴∠DAC=∠DAE-∠CAE=80°-60°=20°;故选:B.2.解答:证明:(1)由旋转性质得∠BAD=∠CAE,AB=AC,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.3.解答:解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=144.解答:解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.5.解答:解:如图,连接PQ.∵△ACP绕点A顺时针旋转60°得到△ABQ,∴AP=AQ=2,PC=BQ=2√3,∠PAQ=60°,∴△PAQ是等边三角形,∴PQ=PA=2,∵PB=4,∴PB2=BQ2+PQ2,∴∠PQB=90°,∴S四边形APBQ=S△PBQ+S△APQ=•PQ•QB+•PA2=×2×2√3+×4=3√3,故答案为3√3.6.解答:解:(1)∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,点E在BD的延长线上,∴AD=AE,CE=DB=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴∠ADE=60°,DE=AD=15,∴∠BDA=120°;(2)△DEC的周长=DE+DC+CE=15+21+19=55.7.解答:连接CM,CM′,∵AC=8,BC=6,∴AB= =10,∵M是AB的中点,∴CM= AB=5,∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,∴∠A′CM′=∠ACM∵∠ACM+∠MCB=90°,∴∠MCB+∠BCM′=90°,又∵CM=C′M′,∴△CMM′是等腰直角三角形,∴MM′=CM=5 ,故答案为:5 .8.解答:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,.9.解答:解:(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;。

九年级数学上册第23章《图形的旋转》名师课件(人教版)

九年级数学上册第23章《图形的旋转》名师课件(人教版)

探究二:旋转的基本性质
重点、难点知识 ★▲
活动3 旋转性质应用
2.①如图,在△ABC中,∠CAB=65°,在同一平面内,将
△ABC绕点A旋转到△AB' C' 的位置, 使得 CC '//AB,则∠BAB' =_5__0_°___.
解:∵ ∠CAB=65°, CC'//AB , ∴∠C'CA=∠CAB=65°. ∵△ABC绕点A旋转到△AB'C'的位置 ∴AC=AC',∠C'CA=∠CC'A=65°. 所以∠BAB‘=∠CAC’=180°-∠C‘CA-∠CC’A=50°. 【思路点拨】抓住旋转过程中产生的等腰三角形.
探究一:旋转、旋转中心、旋转角、旋转方向的概念 重点知识 ★ 活动2 整合旧知,探究旋转中的相关概念




问题: (1)① ②经过了怎样的变化? 平移 (2)① ③经过了怎样的变化? 对称 (3)① ④是平移吗?是轴对称吗? 都不是,是旋转
探究二:旋转的基本性质
重点、难点知识 ★▲
活动1 大胆猜想,大胆操作,探究新知
探究二:旋转的基本性质 活动2 集思广益,探索旋转的基本性质
重点、难点知识 ★▲
旋转的性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等.
探究二:旋转的基本性质
重点、难点知识 ★▲
活动3 旋转性质应用
1.△ABC是顶角为120°的等腰三角形, △ABD旋转至 △ACE位置.
接 C′B,则∠C′BA 的度数为__3_0__°__;C′B=__3___1__.
探究二:旋转的基本性质

人教版九年级数学上册第23章:旋转课堂(教案)

人教版九年级数学上册第23章:旋转课堂(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解旋转的基本概念。旋转是物体围绕某一点或轴进行的转动。它是几何变换中的一种,对于解决实际问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。以一个图形的旋转为例,展示旋转在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调旋转的定义和旋转作图这两个重点。对于难点部分,如旋转与坐标的关系,我会通过举例和比较来帮助大家理解。
五、教学反思
在今天的旋转课堂中,我发现学生们对旋转的概念和性质掌握得还算不错,他们能够通过生活中的实例理解并运用旋转知识。然而,我也注意到在教学中存在一些问题,需要我在今后的教学中加以改进。
首先,我发现有些学生在进行旋转作图时,仍然存在一定的困难。这主要是因为他们对圆规和直尺的使用不够熟练,导致作图不准确。为了解决这个问题,我打算在接下来的课程中增加一些作图练习,让学生们多加实践,提高作图技巧。
-举例:给出一个实际情境,如旋转后的图形的面积计算,指导学生如何应用旋转知识解决问题。
2.教学难点
-空间观念的培养:学生在理解旋转变换时,往往难以在脑海中形成清晰的空间图形。
-突破方法:利用教具、多媒体等直观展示旋转过程,帮助学生建立空间观念。
-旋转与坐标的结合:理解旋转变换在坐标系中的表示方法,以及如何计算旋转后的点的坐标。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与旋转相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的旋转作图实验操作。这个操作将演示旋转的基本原理。
3.成果展示:每个小ቤተ መጻሕፍቲ ባይዱ将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

人教版九年级上册23.旋转作图课件

人教版九年级上册23.旋转作图课件

• (3)作旋转后的对应点,方法如下: •①连:连接图形的每个关键点与旋转中心; • ②转:把连线绕旋转中心按旋转方向旋转相同的角 度(作旋转角); • ③截:在作得的角的另一边截取与关键点到旋转中 心的距离相等的线段,得到各个关键点的对应点.
• (4)按原图形的顺序连接这些对应点,所得到的图形就 是旋转后的图形.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的 对应点为点B′,点C的对应点为点C′.连接BB′. 解:如图①,△AB′C′即为所求.
②在①中所画图形中,∠AB′B=___4_5____°.
(2)【问题解决】 如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点 D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接 DE,求∠ADE的度数.
B.(2,-2)
C.(3,-2) D.(-1,4)
4.把一个图案进行旋转变换,选择不同的旋转中心、不同 的旋转方向、不同的__旋__转__角__度_____,会有不同的效果.
5.(202X·赤峰)下列图形绕某一点旋转一定角度都能与原图形 重合,其中旋转角度最··小的是( C )
6.(202X·鄂尔多斯)(1)【操作发现】 如图①,在边长为1个单位长度的小正方形组成的网格中, △ABC的三个顶点均在格点上.
2.把图中的交通标志图案绕着它的中心旋转一定角度后与 自身重合,则这个旋转角度至少为( C ) A.30° B.90° C.120° D.180°
3.(202X·青岛)如图,将△ABC先向上平移1个单位长度,再
绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对
应点A′的坐标是( D)
A.(0,4)
(1)旋转中心不变,改变旋转角(如图).

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

【人教版】九年级上册数学课件:第23章《旋转》

【人教版】九年级上册数学课件:第23章《旋转》
名师解读:中心对称是针对两个图形之间的关系,是特殊的旋转, 是旋转角等于180°的旋转,理解时可与轴对称对比:
中心对称 有一个对称中心——点 图形绕中心旋转 180° 旋转后与另一个图形重合
轴对称 有一条对称轴——直线 图形沿轴折叠 折叠后与另一个图形重合
知识点一 知识点二 知识点三
教材新知精讲
例1 下列图形中哪两个图形成中心对称 ( )
综合知识拓展
拓展点一 拓展点二 拓展点三
分析:(1)根据等边三角形的性质,得到四边形ABDC是菱形,从而 再根据菱形是中心对称图形,得到旋转中心有B点、C点、BC的中 点;
(2)根据两组对边分别相等的四边形是平行四边形即可判断.
解:(1)∵等边三角形ABC和等边三角形DBC有公共的底边BC, ∴AB=AC=CD=BD,∴四边形ABDC是菱形. ∴要旋转△DBC,使△DBC与△ABC重合,旋转中心有三点,分别
教材新知精讲
名师解读:可以这样理解和识别旋转的相关概念: (1)旋转中心:旋转中心可以是平面内的任意一点. 注意:旋转中心是点,而不是直线,如生活中的开门、关门,虽然门 转动了,但它是绕轴旋转一定的角度,所以它不属于我们要研究的 绕定点旋转. (2)旋转角:因为经过旋转,图形上的每一个点都绕旋转中心沿相 同方向转动了相同的角度,所以任意一对对应点与旋转中心的连线 所成的角都是旋转角. (3)旋转方向:旋转方向通常是指顺时针旋转或逆时针旋转. 这三个方面构成的旋转的三要素,三者缺一不可.
知识点二中心对称的性质 中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过 对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等 形.
名师解读:由于成中心对称的两个图形是全等形,所以对应线段 相等、对应角相等.对称中心是对应点连线的中点.

新人教版初中数学九年级上册第23章《图形的旋转》教案

新人教版初中数学九年级上册第23章《图形的旋转》教案
二、自主
探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.
3、图案设计:(1)、如下图是菊花一叶和中心与圆圈,现以O 为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、 如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, 请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。

人教版初中数学九年级上册第二十三章:旋转(全章教案)

人教版初中数学九年级上册第二十三章:旋转(全章教案)

第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。

人教版九年级上册数学23章旋转教案

人教版九年级上册数学23章旋转教案

第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质1.掌握旋转的有关概念,理解旋转变换是图形的一种基本变换.2.理解旋转的性质.3.能综合运用旋转的性质解决有关代数、几何类问题.▲重点理解旋转的基本性质.▲难点1.探索旋转的基本性质.2.综合运用旋转的性质解决有关代数、几何类问题.◆活动1新课导入同学们,请欣赏下面几幅图案,并思考下列问题:在以前的学习中,我们已经学习了图形的平移和图形的轴对称,对于上述各图案,你能说出它们分别是由怎样的基本图形经过怎样的变换得到的吗?请同学们进入本章内容的学习.◆活动2探究新知1.教材P59思考.提出问题:(1)钟表的指针在不停地转动,指针都是绕着哪一点转动的?从3时到5时,时针由点P转到了哪一点?转动了多少度?旋转方向呢?(2)图中的风车的每一个叶片都是绕着哪一点转动的?若风车按顺时针方向转动一定的角度与自身重合,需要旋转多少度?(3)生活中还有类似的物体运动吗?观察这些现象?有什么共同特征?学生完成并交流展示.2.教材P60探究.根据探究内容,在横线上填上恰当的符号:OA__=__OA′,AB__=__A′B′,∠AOC__=__∠A′OC′,∠AOA′__=__∠BOB′,△ABC__≌__△A′B′C′.学生完成并交流展示.◆活动3知识归纳1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转.点O叫做__旋转中心__,转动的角叫做__旋转角__.2.旋转的三要素:__旋转中心__、__旋转方向__、__旋转角__.3.旋转的性质:(1)对应点到旋转中心的距离__相等__;(2)对应点与旋转中心所连线段的夹角等于__旋转角__;(3)旋转前、后的图形全等.◆活动4例题与练习例1在下列现象中,不属于旋转现象的是(C)A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动例2如图,图形甲变成图形乙,既能用平移,又能用旋转的是(C)例3如图,四边形ABCD是边长为4的正方形,DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是点A;(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°;(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17;(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.练习1.教材P59练习1,2,3题.2.教材P61练习1,2,3题.3.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是(B)A.110°B.80°C.40°D.30°◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结(1)旋转及旋转中心、旋转角的概念;(2)旋转的对应点及其应用;(3)旋转的基本性质;(4)旋转变换与平移、轴对称两种变换的共性与区别.1.作业布置(1)教材P62习题23.1第5,6题;(2)《名师测控》对应课时练习.2.教学反思第2课时旋转作图1.运用旋转的有关概念及旋转的基本性质作旋转后的图形及计算.2.经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切关系.▲重点作旋转后的图形由旋转的三个条件确定.▲难点旋转的性质与几何性质的综合运用.◆活动1新课导入如图,将△ABO绕点O旋转得到△EFO,指出图中的旋转中心、旋转角、对应线段及对应角.解:旋转中心是点O;旋转角是∠AOE或∠BOF;对应线段:OA与OE,OB与OF,AB与EF;对应角:∠AOB与∠EOF,∠A与∠E,∠B与∠F.◆活动2探究新知1.教材P60例题.提出问题:(1)旋转中心是哪个点?点A,B的对应点分别是什么?(2)如何确定点E的对应点的位置?(3)讨论是否还有其他方法能画出旋转后的图形.学生完成并交流展示.2.教材P61.提出问题:(1)由例题的作图过程可以知道旋转作图应满足哪三个要素?如果选择不同的旋转中心、不同的旋转角旋转同一个图案,出现的效果会一样吗?(2)观察图23.1-7中的两个旋转,它们的旋转中心-样吗?旋转角呢?产生的效果一样吗?图23.1-8中的两个旋转,它们的旋转中心一样吗?旋转角呢?产生的效果一样吗?(3)我们可以利用旋转设计出许多美丽的图案,你能通过改变旋转中心或旋转角设计出与图23.1-9中不同的图案吗?◆活动3知识归纳1.旋转变换作图步骤:(1)确定__旋转中心__、__旋转角__和__旋转方向__;(2)找出能确定图形的__关键点__;(3)连接图形的各关键点与旋转中心,并按旋转方向分别将它们旋转一定的角度,得到各关键点的__对应点__;(4)按原图形的顺序连接这些对应点,得到旋转后的图形.2.选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.◆活动4例题与练习例如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B,C,D的对应点的位置以及旋转后的四边形.解:如图,B,C,D的对应点分别是F,G,H,四边形EFGH是四边形ABCD旋转后得到的四边形.练习1.教材P62练习.2.在旋转过程中,确定一个三角形旋转的位置所需的条件是(A)①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角及旋转方向.A.①②④B.①②③C.②③④D.①③④3.在如图所示的网格中,画出“小旗”绕点O按顺时针方向旋转90°后得到的图案.解:如图所示.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.掌握图形旋转的基本作图,能综合运用平移、轴对称、旋转作图.2.熟练运用旋转的性质解决问题.1.作业布置(1)教材P63习题23.1第1,3,8题;(2)《名师测控》对应课时练习.2.教学反思23.2中心对称23.2.1中心对称1.认识两个图形关于某一点中心对称的本质.2.理解中心对称的性质,并可以判断两个图形是否成中心对称.3.会画某图形关于某点对称的图形,会确定对称中心.▲重点判断两个图形是否成中心对称.▲难点画某图形关于某点对称的图形,确定对称中心.◆活动1新课导入大家都知道,魔术表演很精彩.相信很多同学都看到过这样一个魔术:魔术师把三张扑克牌放在桌子上,如下图(上)所示,然后蒙住眼睛,请一个观众上台,把其中的一张旋转180°放好,魔术师解开蒙着眼睛的布后,看到四张牌如下图(下)所示,他很快确定了被旋转的那一张.聪明的同学们,你知道哪一张被观众旋转过吗?解:要确定哪张被旋转了,就要根据图形的性质进行判定,四张扑克牌中只有呈中心对称的那张牌被旋转后是看不出来的,这四张牌中只有第一张牌是中心对称图形,所以被观众旋转的牌为第一张.◆活动2探究新知1.教材P64思考.学生完成并交流展示.2.教材P64~65.提出问题:(1)图23.2-3中,△ABC与△A′B′C′全等吗?为什么?(2)分别连接对应点AA′,BB′,CC′,点O在线段AA′上吗?如果在,在什么位置?(3)由此你能得到中心对称的性质吗?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点__对称__或__中心对称__;这个点叫做__对称中心__(简称中心);这两个图形在旋转后能重合的对应点叫做关于对称中心的__对称点__.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过__对称中心__,而且被对称中心所__平分__;(2)中心对称的两个图形是__全等__图形.◆活动4例题与练习例1 如图,△A′B′C′与△ABC关于点O成中心对称,找出图中的对称点、对称线段.解:对称点:A与A′,B与B′,C与C′;对称线段:AB与A′B′,BC与B′C′,AC与A′C′.例2如图所示的四组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组例3在等腰三角形ABC中,∠ACB=90°,BC=20 cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B′处,求点B′与点B的距离.解:连接BB′,由中心对称可知,BB′必过点O.∵△ABC为等腰三角形,∴AC=BC=20 cm.∴CO=12AC=10 cm.∴在Rt△BCO中,OB=OC2+BC2=102+202=105(cm).∴BB′=2OB=2×105=205(cm).答:点B′与点B的距离为20 5 cm.练习1.教材P66练习第1,2题.2.如图,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是(D)A.AO=A′O,BC=B′C′B.AC∥A′C′C.∠BAC=∠B′A′C′D.△ABC≌△A′OC′3.如图,已知△ABC和点O,画出△A′B′C′,使它与△ABC关于点O成中心对称.解:如图,△A′B′C′就是所求的三角形.4.如图所示的两个三角形是否成中心对称?若是,请画出对称中心.解:如图,点O是其对称中心.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称及对称中心的概念.2.中心对称的基本性质.(1)教材P69习题23.2第1,6题;(2)《名师测控》对应课时练习.2.教学反思23.2.2中心对称图形1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C),A),B),C),D) 3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B),A),B),C),D) 4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)《名师测控》对应课时练习.2.教学反思23.2.3关于原点对称的点的坐标1.会求关于原点对称的点的坐标.2.能运用关于原点成中心对称的点的坐标间的关系进行中心对称图形的变换.▲重点关于原点对称的点的坐标关系.▲难点关于原点对称的点的坐标关系的探索.◆活动1新课导入1.点P(3,-6)关于x轴对称的点的坐标为(B)A.(-3,6)B.(3,6)C.(-3,-6)D.(3,-6)2.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位长度,得到线段O1A1,则点O1的坐标是__(3,0)__,点A1的坐标是__(4,3)__.3.点P(2 019,-2 020)关于y轴对称的点的坐标为__(-2__019,-2__020)__.在学习了平移变换和轴对称变换的时候,我们研究了在平面直角坐标系中点的平移规律和关于轴对称的点的坐标规律,那么关于原点对称的点的坐标有怎样的规律呢?请进入本课时的学习!◆活动2探究新知1.教材P68探究.提出问题:(1)填表:已知点的坐标A(4,0) B(0,-3) C(2,1) D(-1,2) E(-3,-4)关于原点O对称的点的坐标(2)观察上表:①它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间的符号又有什么特点?(3)你能由此归纳出关于原点对称的点的坐标特征吗? 学生完成并交流展示. 2.教材P 68 例2. 提出问题:(1)回顾不在坐标系中,作△ABC 关于点O 对称的图形是怎样作的?(2)由图可知A ,B ,C 三点的坐标分别是什么?A ,B ,C 三点关于原点对称的点的坐标分别是多少?把对称点标在坐标系内并顺次连接;(3)总结作一个图形关于原点对称的图形的步骤. 学生完成并交流展示. ◆活动3 知识归纳1.两个点关于原点对称时,它们的坐标符号相反,即P(x ,y)关于原点的对称点为__P′(-x ,-y)__. 2.在平面直角坐标系中,任一点A(x ,y)关于坐标轴、原点都存在对称点.关于x 轴的对称点的横坐标__相同__,纵坐标互为__相反数__.关于y 轴的对称点的横坐标__互为相反数__,纵坐标__相同__.关于原点对称的点的横、纵坐标都__互为相反数__.如:点A(x ,y)关于x 轴的对称点为A′__(x ,-y)__,关于y 轴的对称点为A′′__(-x ,y)__,关于原点对称的点为__(-x ,-y)__.◆活动4 例题与练习例1 (1)在平面直角坐标系中,点P(7,-8)关于原点的对称点P′的坐标是__(-7,8)__; (2)点P(2,n)与点Q(m ,-3)关于原点对称,则(m +n)2 020=__1__; (3)点M(5,-1)绕原点旋转180°后到达的位置是__(-5,1)__.例2 四边形ABCD 各顶点坐标分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD 关于原点O 对称的图形,并写出各点的对称点的坐标.解:如图,四边形A′B′C′D′即为所求.点A ,B ,C ,D 的对称点的坐标分别为:A′(-5,0),B′(2,-3),C′(1,0),D′(1,5).例3 已知点M(2-a ,b)与点N(-b -1,2)关于原点对称,求点M 的坐标. 解:∵点M(2-a ,b)与点N(-b -1,2)关于原点对称,∴⎩⎪⎨⎪⎧2-a =-(-b -1),b =-2,解得⎩⎪⎨⎪⎧a =3,b =-2.∴点M 的坐标为(-1,-2). 练习1.教材P 69 练习第1,2,3题.2.若点P(-20,a)与点Q(b ,13)关于原点对称,则a +b 的值是( D ) A .33 B .-33 C .-7 D .7。

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册
)利用动态教具或多媒体演示旋转变换过程,帮助学生形象地理解旋转变换的性质。
(2)设计实际操作活动,让学生动手测量旋转角度,加强对测量方法的掌握。
(3)通过观察和讨论,引导学生识别旋转对称图形,总结旋转对称性的特点。
(4)通过具体实例,指导学生寻找旋转对称轴,掌握寻找方法。
(3)旋转对称图形的识别:学生可能难以判断一个图形是否具有旋转对称性,尤其是复杂的图形。例如,一个五角星具有旋转对称性,但学生可能不清楚旋转角度是多少。
(4)旋转对称轴的确定:在确定旋转对称轴时,学生可能不知道如何寻找或验证。例如,一个矩形有两条旋转对称轴,学生需要学会如何找出这两条轴。
(5)旋转知识在解决实际问题中的应用:将旋转知识应用于实际问题,学生可能不知道如何入手。例如,在建筑设计中,如何运用旋转对称性来设计美观且实用的结构。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“旋转变换在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-掌握旋转角度的计算方法
3.知识点三:旋转对称图形与旋转对称轴
-认识旋转对称图形
-理解旋转对称轴的概念
-学会判断旋转对称图形及其旋转对称轴
4.知识点四:旋转的应用
-了解旋转在现实生活中的应用
-学会运用旋转变换解决实际问题
5.课堂练习:旋转相关习题练习,巩固所学知识。
二、核心素养目标
1.培养学生的空间观念:通过旋转变换的学习,使学生能够观察、想象、分析几何图形在空间中的位置关系和运动变化,提高空间想象力。

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。

本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。

但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。

此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。

2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。

四. 教学重难点1.重点:图形旋转的定义和性质。

2.难点:图形旋转在实际问题中的应用。

五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。

2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。

3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。

2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。

3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案)23.2.2 中心对称图形教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案)23.2.2 中心对称图形教案

23.2中心对称23.2.2中心对称图形一、教学目标【知识与技能】了解中心对称图形的定义及其特征,体会中心对称和中心对称图形之间的联系和区别.【过程与方法】经历观察、思考、探究、发现的过程,感受中心对称图形的特征,培养学生的观察能力和动手操作能力.【情感态度与价值观】通过对中心对称图形的探究和认知,体验图形的变化规律,感受图形的变换的美感,享受学习数学的乐趣和积累一定的审美经验.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】中心对称图形的有关概念及其性质.【教学难点】中心对称图形和中心对称的区别和联系五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问1:有四种形状的图形,将其中一个形状旋转180度后,跟原来形状一样吗?(出示课件2)学生思考并仔细分析图形特征,然后相互交流.(二)探索新知探究一中心对称图形的概念出示课件4,观察下面图形:教师问:这些图形有什么共同的特征?学生答:都是旋转对称图形.教师问:这些图形的不同点在哪?分别绕旋转中心旋转了多少度?学生答:第一个图形的旋转角度为120°或240°,第二个图形的旋转角度为72°或144°或216°或288°.后两个图形的旋转角度都为180°,第二,三个是轴对称图形.后两个图形都是旋转180°后能与自身重合.出示课件5:将下面的图形绕O点旋转,你有什么发现学生观察并口答.学生1:都绕一点旋转了180度.学生2:都与原图形完全重合.教师总结:中心对称图形的概念(出示课件6)把一个图形绕着某一个点旋转180°后,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.图中_______是中心对称图形,对称中心是_____,点A的对称点是______,点D的对称点是______.出示课件7:教师问:平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并设法验证你的结论.学生答:平行四边形是中心对称图形,对称中心是两条对角线的交点.教师问:根据上面的过程,你能验证平行四边形的哪些性质?学生答:能验证平行四边形的对边相等、对角相等、对角线互相平分等性质.出示课件8:下列图形中哪些是中心对称图形?⑴⑵⑶⑷学生观察后口答:⑴⑵⑶是,⑷不是.教师问:在生活中,有许多中心对称图形,你能举出一些例子吗?(出示课件9)出示课件10:例1(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.学生观察后尝试解决,教师举例如下:出示课件11,12:巩固练习:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形3.下列图形中,是轴对称图形但不是中心对称图形的是()4.在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个学生思考后口答:1.D 2.D 3.A 4.C出示课件13:例2如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.师生共同解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE 关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,易得阴影部分的面积为3.出示课件14:巩固练习:如图,点O是平行四边形的对称中心,点A、C关于点O对称,有AO=CO,那么OE=OF吗?学生自主解答:解:∵平行四边形是中心对称图形,O是对称中心.EF经过点O,分别交AB、CD于E、F.∴点E、F是关于点O的对称点.∴OE=OF.探究二探究中心对称图形的性质教师问:如图,你能得到什么结论?(出示课件15)学生答:(1)中心对称图形的对称点连线都经过对称中心;(2)中心对称图形的对称点连线被对称中心平分.教师归纳:中心对称图形上的每一对对称点所连成的线段都被对称中心平分.出示课件16:教师问:如何寻找中心对称图形的对称中心?学生答:连接任意两对对应点,连线的交点就是对称中心.画一画:1.下图是中心对称图形的一部分及对称中心,请你补全它的另一部分.生观察后独立操作,教师加以指导,如图所示.出示课件17:2.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎么画?生观察后独立操作,教师加以指导,如图所示.教师归纳:过对称中心的直线可以把中心对称图形分成面积相等的两部分.出示课件18-20:例请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎样画?师生共同操作如下:教师归纳:对于这种由两个中心对称图形组成的复合图形,平分面积时,关键找到它们的对称中心,再过对称中心作直线.出示课件21:巩固练习:从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有()A.1张B.2张C.3张D.4张学生观察后口答:A出示课件22,23,24:小组合作,讨论观察发现两种对称图形的区别后完成表格1、2、3.1.对比旋转对称图形与中心对称图形的异同点.2.对比中心对称与中心对称图形的异同点.3.对比轴对称图形与中心对称图形的异同点.(三)课堂练习(出示课件25-30)1.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个2.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是()A B C D3.下列图形中既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形4.观察图形,并回答下面的问题:①哪些只是轴对称图形?②哪些只是中心对称图形?③哪些既是轴对称图形,又是中心对称图形?5.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有,是中心对称图形的有.6.图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?参考答案:1.C2.B3.C4.解:①⑶⑷⑹②⑴③⑵⑸5.①②③;①③6.解:⑴如图所示:⑵如图所示,对称轴有4条;整体图形至少旋转90°与自身重合.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.2.3)的相关内容.七、课后作业1.教材67页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:本课通过学习中心对称图形,进一步认识几何图形的本质特征,通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力.。

人教版数学九年级上册第23章旋转数学活动课件(17张PPT)

人教版数学九年级上册第23章旋转数学活动课件(17张PPT)

y
6
5 P(0,5)
4 P4(0,5)
3
P3(-5,0)
2 1Leabharlann OP1(5,0)-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x
-1
-2
-3
-4
-5
-6 P2(0,-5)
把点P(x,y)绕原点分别顺时针旋转90°,180°, 270°, 360°后的对应点的坐标入下表。
y
旋转 的角

对应 点的 坐标
点P在∠α内(不在l1、l2上).小明用下
面的方法作点P的对称点:先以l1为对称
轴作点P关于l1的对称轴点P1,再以l2为
对称轴作P1关于l2的对称点P2,然后再以
l1为对称轴作P2关于l1的对称点P3,以l2
o
为对称轴作P3关于l2的对称点P4,…,如
此继续,得到一系列点P1,P2,…,Pn,
若Pn与P重合,则n的最小值是多少?能
-6
坐标互为相反数 关于原点中心对称
如果点A的坐标是(x,y),点 A与点C也有同样关系吗?你能用 本章知识解释吗?
对于任意点A(x,y),先作A关于 y轴的对称点B,再作B点关于x轴的 对称点C,则A,C两点的坐标关系 是 __坐__标__互__为__相__反__数_____________, 位置关系是___关__于__原__点__对__称________.

90°
对应
点的 坐标
P1(-y,x)
180° 270° P2(-x,-y) P3(y,-x)
360° P4(x,y)
P1(-y,x)
P(x,y) P4(x,y)
O
P2(-x,-y)
P3(y,-x)

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

23.3课题学习图案设计一、教学目标【知识与技能】赏析生活中的精美图案,探究团的组成规律,能够利用图形的平移、轴对称和旋转变换进行一些简单的图案设计。

【过程与方法】在应用图形变换进行图案设计的过程中,对所学数学知识进行“再认识”,同时进行独立的数学创造,发展形象思维和创造性思维能力.【情感态度与价值观】在经历应用数学知识进行独立的图案设计的活动中,感受到数学美与创造的同时获得自我创造的成就感,激发创造性地应用数学知识的热情.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】利用各种图形变换设计组合图案.【教学难点】将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富、美观的组合图案.五、课前准备课件、圆规、直尺、三角尺、铅笔、图片等.六、教学过程(一)导入新课让学生说一说:下列图形可以通过其中一个圆怎样变化而得到?(出示课件2)(二)探索新知探究一分析构成图案的基本图形出示课件4,例试说出构成下列图形的基本图形.学生观察后,师生共同分析:思考:成轴对称时基本图形是什么?学生思考后教师总结:对于这三种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.(出示课件5)探究二分析图形形成过程例分析下列图形的形成过程.(出示课件6)(1)(2)(3)(4)(1)(2)(3)(4)学生观察交流后,师生共同分析:(出示课件7,8)出示课件9:教师总结归纳:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计出漂亮的图案来.探究三图案的设计出示课件10:例1下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.让学生自主设计图案(应以平移、旋转、轴对称变换为基本方法),然后同学间相互交流,看看谁设计的图案最美,并由设计者说说图案设计中所运用的图形交换有哪些?出示课件11,12,13:教师展示参考图案,让学生感受数学的美.出示课件14:例2怎样用圆规画出这个六花瓣图?教师出示课件15,对学生画图进行进行启发:学生在教师的指导下进行画图.(出示课件16)教师问:图中A点的位置对六花瓣的形状有没有影响?对花瓣的位置有影响吗?(出示课件17)学生答:对形状没影响,对位置有影响.教师归纳总结:(出示课件18)在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.探究四图案设计欣赏出示课件19-22,教师引导学生反思图案设计的关键在于选取简单的基本几何图形,通过不同的变换组合出丰富的图案,在欣赏教师出示的课件中组合图案,进一步增强图案设计方法的理解和掌握.(三)课堂练习(出示课件23-28)1.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.2.图案可以通过将字母___经过______变换得到.3.图案可以通过将________经过______变换得到.4.图案可以看做将汉字___经过________变换得到.5.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果.6.如图已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.(1)填空:图中三段圆弧所围成的封闭图形的面积是.(结果保留π);(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.7.用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案.参考答案:1.解:如图所示:2.S;旋转3.正方形;平移4.弓;轴对称5.如图所示:6.解:(1)3π-6⑵如图所示:7.略.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(24.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:通过反思图案设计的过程和欣赏变换产生的美,展现了数学的应用价值和美学价值.帮助学生了解数学是图形变换的根本,了解数学在人类文明发展中的作用,促进其形成正确的数学观.。

人教版九年级数学上册 《图形的旋转》PPT课件(第一课时)

人教版九年级数学上册 《图形的旋转》PPT课件(第一课时)

问题:
1)线段OA与OA'有什么关系? 2)∠AOA'与∠BOB'有什么关系? 3)△ABC与ΔA'B'C'的形状和大小有什么关系?
相等
相等
全等
第七页,共十四页。
情景思考
如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:
(1)旋转中心?
点O
(2)旋转方向?
顺时针
(3)经过旋转,找出点A、B的对应点?
置.
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
② ∠DAE等于多少度? 60°
A
③ △DAE是什么三角形?
等边三角形
④ 如果M是AB的中点,那么经过上述旋转后,点M转到了什
M
么位置?
AC边中点
第十一页,共十四页。
BD
E C
随堂测试
如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,
P
O
如果图形上的点P经过旋转变为点P′
,那么这两个点P和P′叫做这个旋转的对
应点.
P′
旋转中心是_____O__点__,
旋转角度是_________. 120°
第四页,共十四页。
课堂测试
时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角是多少度? 从下午3时到下午5时呢?
第五页,共十四页。
(3)对应点与旋转中心所连线段的夹角等于旋转角.
第九页,共十四页。
情景思考
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
A
FB

2022年人教版九年级数学上册第二十三章旋转教案 图形的旋转 (第1课时)

2022年人教版九年级数学上册第二十三章旋转教案  图形的旋转 (第1课时)

23.1 图形的旋转(第1课时)一、教学目标【知识与技能】通过观察生活中的具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度与价值观】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.五、课前准备课件、图片等.六、教学过程(一)导入新课教师问:以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.学生思考并让学生感受到现实生活中存在着平移,轴对称变换.教师问:请观察下列图形的变化.1.新疆的风车田;(出示课件2)2.荷兰的大风车;(出示课件3)3.游乐场的摩天轮;(出示课件4)4.卫星拍摄到的台风“桑美”的中心旋涡;(出示课件5)5.钟表时针的转动;电扇上扇叶的转动.(出示课件6)(1)以上现象有什么共同特点?(2)钟表的指针、电扇的风叶在转动过程中,其形状、大小、位置是否发生变化呢?学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.(二)探索新知探究一旋转的概念教师问:1.观察下列图形的运动,它有什么特点?(出示课件8)2.钟表的指针在不停地转动,从12时到4时,时针转动了_120度.(出示课件9)3.怎样来定义这种图形变换?学生观察后思考并口答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.教师问:1.风车风轮的每个叶片在风的吹动下转动到新的位置.(出示课件10)2.怎样来定义这种图形变换?学生观察后思考并口答:把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.师生共同归纳如下:旋转的概念:把一个平面图形绕着平面内某一个定点O 转动一个角度,叫做图形的旋转.这个定点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点.线段OP与OP’叫做对应线段.出示课件12:如图点A绕_O点,往顺时针方向,转动了45度到点B.师生共同认定:旋转的三要素:旋转中心、旋转方向、旋转角度.出示课件13:例1 如图,△ABC为等边三角形,点P在△ABC中,将△ABP 旋转后能与△CBQ重合.(1)旋转中心是哪一点?(2)旋转角是多少度?(3)△BPQ是什么三角形?教师分析:(1)根据对应点到旋转中心的距离相等来确定旋转中心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)由旋转角和对应边的关系可以得到答案.师生共同解答:解:(1)旋转中心是点B.(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置时,正好转过了60°,所以旋转角的度数是60°.(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样△BPQ就是一个等边三角形.想一想:图形在旋转时,旋转的方向有几种?(出示课件15)教师提示:有两种情况,分别为逆时针方向旋转和顺时针方向旋转.出示课件16:巩固练习:若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.学生口答:O;∠AOB;60;A与B;B与C;C与D;D与E;E与F;F 与A出示课件17:师生共同认定:确定平面图形旋转时,必须明确:旋转中心,旋转方向,旋转角.教师提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素;②旋转变换同样属于全等变换.出示课件18:例2 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°教师分析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD 是对应边,∠BOD是旋转角,所以,旋转角为90°.出示课件19:巩固练习:如图,点P是正方形ABCD内一点,将△ABP绕B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是点,旋转角度为.学生思考后口答:B;90°探究二旋转的性质出示课件20:如图,△ABC是如何运动到△A′B′C的位置?学生观察后口答:绕点C逆时针旋转45°.出示课件21:学生观察并根据上图填空:旋转中心是点__________;图中对应点_______________________________________;图中对应线段有_____________________________________.每对对应线段的长度.图中旋转角等于________.教师问:观察下图,你能得到什么结论?(出示课件22)学生答:角:∠AOA'=∠BOB'=∠COC'.线:AO=A'O,BO=B'O,CO=C'O.师生共同总结:旋转的性质(出示课件23)1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,OF=OC)2.两组对应点分别与旋转中心的连线所成的角相等.(∠DOA=∠EOB=∠FOC)3.旋转中心是唯一不动的点.(旋转中心O)4.旋转不改变图形的形状和大小.出示课件24:例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.师生共同解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴∠BE'E=45°,EE′=2√2在△EE′C中,E′C=1,EC=3,EE′=2√2,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.出示课件25:巩固练习:如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.求证:△BCF≌△BA1D.教师分析:根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D.出示课件26:学生板演:证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,由旋转的性质,可得A 1B=AB=BC,∠A=∠A 1=∠C,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111∠=∠⎧⎪=⎨⎪∠=∠⎩A C A B BC A BD CBF ,,,所以△BCF ≌△BA 1D (ASA ).(三)课堂练习(出示课件27-37)1.如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A,B 不重合),连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.2.下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.53.下列说法正确的是( )A.旋转改变图形的形状和大小B.平移改变图形的位置C. 图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对应点D恰好落在BC边上.若,∠B=60°,则CD的长为()A.0.5B.1.5C.D.15.△A′OB′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20°,∠A′OB=24°,AB=3,OA=5,则A′B′= ,OA′= ,旋转角等于.6.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角7.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°8.如图,△ADE可由△CAB旋转而成,点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4).请找出旋转中心P的位置,并写出P的坐标.9.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.10.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB′,△ABB′有什么特征吗?参考答案:1.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB, ∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS).(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.2.C3.B4.D5.3;5;44°6.D7.A8.解:根据旋转中心到对应点距离相等可以知道,旋转中心P既在线段AD的垂直平分线上,又在线段BE的垂直平分线上,它们的交点就是点P.9.解:把所有的阴影部分通过旋转都转移到同一个BC所在的圆中,则有大圆的半径OC=2.π×22=π.因此:S阴影=1410.解:150°;△ABB′是等腰三角形.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.1第2课时)的相关内容.七、课后作业1.教材59页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。

人教版九年级数学上册23.1.1旋转的概念和性质课件

人教版九年级数学上册23.1.1旋转的概念和性质课件
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午9时43分22.4.1209:43April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二9时43分50秒09:43:5012 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念和性质
Hale Waihona Puke 教学重点:旋转的概念. 教学难点:能够正确地辨别出一种变换是否为旋转.
教学过程
一、创设情境,导入新课
2
大水轮在不停地转动.
时钟的分针在不停地旋转.
风车在风中转动
(1)从3时到5时,时针转动了多少度? (2)风车风轮的每个叶片在风的吹动下转动到新的 位置.每个叶子转了多少度? 学生观察分析、体会感知旋转.
二、合作探究,感受新知
1.概念的认识 (1)把一个图形绕着某一个点O转动一个角度的图形变换叫 做旋转,点O叫做旋转中心,转动的角叫做旋转角. (2)旋转对应点.
2.例题分析例如图,△OAB绕O点按顺时针方向旋转得到 △OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置?
谢谢观赏
You made my day!
我们,还在路上……
教师边讲解边演示. 教师引导学生回答这些问题,教师书写. 学生理解认识有关概念. 学生积极思考,勇于发言.
三、课堂小结,梳理新知
1.旋转的概念. 2.旋转中心、旋转角、对应点.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时43分49秒09:43:4922.4.12

人教版九年级数学上册第23章 旋转 旋转及其性质

人教版九年级数学上册第23章 旋转 旋转及其性质
∠OAB=120°, ∠AOB绕点O逆时针旋转, 每次旋转90°,则第2 024 次旋转后,
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线

第23章旋转第2课时 旋转作图-人教版九年级数学上册讲义(机构专用)

第23章旋转第2课时 旋转作图-人教版九年级数学上册讲义(机构专用)

人教版九年级数学上册讲义第二十三章旋转第2课时旋转作图旋转作图的一般步骤步 骤:(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连接对应点.网格中旋转90°的画法1.确定关键点与旋转中心所在的矩形.2.搞清楚是顺时针还是逆时针,旋转矩形,确定对应点.3.确定旋转后的图形.确定旋转中心的步骤1.连接两组对应点.2.作对应点连线的垂直平分线.3.交点就是旋转中心.旋转过程边所扫过区域的面积旋转过程边所扫过区域的面积为扇形面积面积公式为:lR R n S 213602==π扇(其中n 是旋转度数,R 是旋转的那条线也是扇形的半径)计算公式为180r n l π=(其中n 是旋转度数,r 是旋转中心到哪个点的距离也是扇形的半径) 对应练习1.画出将线段 AB 绕点 O 按顺时针方向旋转 90° 后的图形.2.画出将ΔABC 绕点C 按逆时针方向旋转150°后的对应三角形.3.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,﹣1)、B (﹣1,1)、C (0,﹣2).(1)点B 关于坐标原点O 对称的点的坐标为 ;(2)将△ABC 绕着点C 顺时针旋转90°,画出旋转后得到的△A1B1C ;(3)在(2)中,求边CA 所扫过区域的面积是多少?(结果保留π).(4)若A 、B 、C 三点的横坐标都加3,纵坐标不变,图形△ABC 的位置发生怎样的变化?4.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.5.如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.6.在平面直角坐标系中,点的坐标为,将绕原点顺时针旋转得到,求点的坐标.7.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(0,1).(1)画出△ABC向右平移3个单位长度所得的△A1B1C1;写出C1点的坐标;(2)画出将△ABC绕点B按逆时针方向旋转90°所得的△A2B2C2;写出C2点的坐标;(3)在(2)的条件下求点A所经过路径的长度.8.如图,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC以点C为旋转中心旋转180°后对应的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.课后作业1.在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点)(1)画出△ABC绕点O逆时针方向旋转90°得到的△A1B1C1;(2)求点A在(1)的图形变换过程中所经过的路径长.2.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状. (无须说明理由)3.如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(﹣4,4),B(﹣1,1),C(﹣1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)4.如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.5.如图,把直角三角形ABC按逆时针方向旋转到△EBD的位置,使得A、B、D三点在一直线上.(1)旋转中心是哪一点?旋转角是多少度?(2)AC与DE的位置关系怎样?请说明理由.6.线段AB,CD在正方形网格中的位置如图所示,将线段AB绕点O按顺时针方向旋转一定角度α,可以得到线段CD.(1)请在下图中画出点O;(2)若点A、B、C、D的坐标分别为A(-5,5)、B(1,1)、C(5,1)、D(1,-5),则点O的坐标为;(3)α=.对应练习答案1.2.3.解答:解:(1)∵B(﹣1,1),∴点B关于坐标原点O对称的点的坐标为(1,﹣1).故答案为(1,﹣1);(2)如图所示,△A1B1C即为所求作的图形;(3)∵CA==,∠ACA1=90°,∴S扇形CAA1==;(4)∵A、B、C三点的横坐标都加3,纵坐标不变,∴图形△ABC的位置是向右平移了3个单位.4.解答:解:(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.5.解答:(1)解:如图所示,△A1B1C1和△A2B2C2即为所求:(2)解:点B1坐标为(2,4)、B2坐标为(0,﹣1)(3)解:由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5)6.解答:解:轴于,轴于,如图,,,绕原点顺时针旋转得到可看作是绕原点顺时针旋转得到,则,,所以点的坐标为.7.解答:解:(1)如图所示.由图可知,C1(2,3);(2)如图所示,由图可知,C2(﹣2,0);(3)∵AB==,∴点A所经过路径的长度==.8.解答:解:(1)延长AC至A1,点B1与点O重合,连接A1C、B1C、A1B1,则△A1CB1就是所求三角形;(2)取B2(3,-2),C2(4,-3),连成△A2B2C2;(3)连接A1A2、B1B2,交于点E,则点E就是旋转中心,E(1.5,-1).课后作业答案1.解答:解:(1)如图所示:(2)点A在(1)的图形变换过程中所经过的路径是一段圆弧,其半径为2,圆心角为90°,所以长度为.2.解答:解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即,所以三角形的形状为等腰直角三角形.3.解答:解:(1)如图,△AlB1C1为所作;(2)如图,△A2BC2为所作;(3)AB==3,所以线段AB在旋转过程中扫过的图形面积==π.4.解答:解:(1)旋转中心坐标是O(0,0),旋转角是90度;(2)画出的图形如图所示;(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.∵S正方形CC1C2C3=S正方形AA1A2B+4S△ABC,∴(a+b)2=c2+4×ab,即a2+2ab+b2=c2+2ab,∴a2+b2=c2.5.解答:解:(1)直角三角形ABC按逆时针方向旋转到△EBD的位置,∴旋转中心是点B,旋转角是90°;(2)AC⊥DE,理由:延长DE交AC于F,∵把直角三角形ABC按逆时针方向旋转到△EBD的位置,∴∠C=∠D,∠DBE=∠ABC=90°,∴∠C+∠A=∠D+∠A=90°,∴∠DFA=90°,∴AC⊥DE.6.解答:解:(1)如图所示,点O即为所求;(2)观察图象可知,O(-2,-2).故答案为(-2,-2).(3)观察图象可知α=90°.故答案为90°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档