新课标人教版九年级上册图形的旋转教案
人教版数学九年级上册23.1.1《图形的旋转》教学设计
人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。
本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。
图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。
通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。
但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。
因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。
三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。
2.教学难点:旋转的计算方法,旋转在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。
2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。
2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。
3.计算器:为学生提供计算器,便于进行旋转的计算练习。
七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。
2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。
本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。
通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。
二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。
但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。
三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。
2.能够运用图形旋转的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形旋转的性质的理解和运用。
2.旋转的表示方法的掌握。
五. 教学方法采用问题驱动法和案例教学法进行教学。
通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。
六. 教学准备1.多媒体教学设备。
2.图形旋转的实例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。
3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。
4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。
5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。
新人教版九年级上《23.1图形的旋转》教案
23.1 图形的旋转教学目标1. 通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2. 探索旋转的性质,会画出旋转后的图形.3. 理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.4. 掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点1. 旋转、对应点的有关概念及其应用.2.用旋转的有关知识画图.教学难点发现“对应角到旋转中心的夹角相等”的性质.课时安排2课时.1 / 10教案A第1课时教学内容23.1 图形的旋转(1).教学目标1.通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2.探索旋转的性质,会画出旋转后的图形.教学重点旋转、对应点的有关概念及其应用.教学难点发现“对应角到旋转中心的夹角相等”的性质.教学过程一、导入新课教师指导学生复习平移、轴对图形的概念及有关性质,导入新课的教学.二、新课教学1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角2 / 10形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′)移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考:(1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?通过思考、讨论,归纳出旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.3.通过实例画出旋转后的图形.例如下图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△AD E三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,∠DAB =90°,所以旋转后点D与点B重合.设点E的对应点为点E′.因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE.因此,在CB的延长线上取点E',使BE′=DE,则△ABE′为旋转后的图形(下图).三、巩固练习教材第59、61页练习.四、课堂小结本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.对应点到旋转中心的距离相等.4.对应点与旋转中心所连线段的夹角等于旋转角.5.旋转前、后的图形全等及其它们的应用.五、布置作业习题23.1 第1、2、3、4题.3 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2.掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.3.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.教学重点用旋转的有关知识画图.教学难点根据需要设计美丽图案.教学过程一、导入新课1.学生活动:老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、新课教学1.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角,会出现不同的效果.4 / 10上图的两个旋转中,旋转中心不变.旋转角改变了,产生了不同的旋转效果.(2)旋转角不变,改变旋转中心,会出现不同的效果.上图的两个旋转中,旋转角不变.旋转中心改变了,产生了不同的旋转效果.2.设计美丽图案从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案(下图).三、巩固练习1.例如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA.(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A点.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.2.教材第62页练习.四、归纳小结本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.五、布置作业习题23.1 第5、6题.5 / 10教案B第1课时教学内容23.1 图形的旋转(1).教学目标1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.教学重点旋转及对应点的有关概念及其应用.教学难点从活生生的数学中抽出概念.教具准备小黑板、三角尺.教学过程一、导入新课学生活动:请同学们完成下面各题.1.将左图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如右图,已知△ABC和直线l,请你画出△ABC关于l对称图形△A′B′C′.教师指导学生复习平移的概念及有关性质.如何画一个图形关于一条直线(对称轴)的对称图形和它既有的一些性质.导入新课的教学.二、新课教学思考:如左图,钟表的指针在不停地转动,从3时到0时,时针转动了多少度?6 / 10如右图,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?我们可以把上面问题中的指针、叶片等看作平面图形.像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.例如,做左图中,时针在旋转,表盘的中心是旋转中心,旋转角是60°,时针的端点在3时的位置P与在5时的位置P′是对应点.下面我们来运用这些概念来解决一些问题.例 1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2 如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?教师点评:(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、B、C、D移到的位置是点E、F、G、H.强调:这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.三、巩固练习教材第59页练习1、2、3.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第1、2、3题.7 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.2.用操作几何、实验,探究图形的旋转的基本性质.3.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点图形的旋转的基本性质及其应用.教学难点运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、导入新课学生活动:老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、新课教学1.上面的解题过程中,能否得出什么结论,请回答下面的问题:(1)A、B、C、D、E、F到O点的距离是否相等?(2)对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA 是否相等?(3)旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OF A全等吗?点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.2.探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?8 / 10教师引导学生归纳旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.实例分析.例如右下图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′.则△DB′C就是△ABC绕C点旋转后的图形.4.旋转图形.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角.画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.(2)旋转角不变,改变旋转中心.画出以下图,四边形ABCD分别为O1、O2为中心,旋转角都为30°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、巩固练习1.教材第61页练习1、2.9 / 102.教材第62页练习.四、归纳小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第5、6题.10 / 10。
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。
人教版数学九年级上册23.1《图形的旋转(3)》教学设计
人教版数学九年级上册23.1《图形的旋转(3)》教学设计一. 教材分析人教版数学九年级上册23.1《图形的旋转(3)》是本册教材的一个重点章节。
在此之前的章节中,学生已经学习了图形的旋转、平移等基本知识。
本节课将继续深入学习图形的旋转,通过实例让学生理解旋转的性质,掌握旋转的计算方法,并能应用于实际问题中。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于图形的旋转、平移等基本概念有一定的了解。
但是,对于图形的旋转性质和计算方法,部分学生可能还较为模糊。
因此,在教学过程中,需要结合学生的实际情况,通过实例和练习来引导学生理解和掌握。
三. 教学目标1.让学生理解旋转的性质,掌握旋转的计算方法。
2.培养学生运用图形旋转解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.旋转的性质和计算方法。
2.将旋转应用于实际问题中。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题来理解和掌握旋转的性质和计算方法。
2.利用多媒体和实物模型,帮助学生直观地理解旋转的概念和性质。
3.采用小组合作和讨论的方式,培养学生的团队协作能力和沟通能力。
4.通过大量的练习和实际问题,巩固学生对旋转的理解和应用能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和几何画板。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如地图上的两个城市如何通过旋转来观察,引发学生对旋转的兴趣和思考。
2.呈现(15分钟)利用多媒体和实物模型,呈现旋转的概念和性质,引导学生直观地理解旋转。
同时,介绍旋转的计算方法,如旋转角度的计算、旋转后图形的位置和大小变化等。
3.操练(15分钟)学生分组进行练习,运用旋转的性质和计算方法解决实际问题。
教师巡回指导,解答学生的疑问,并给予反馈。
4.巩固(10分钟)学生独立完成一些关于图形旋转的练习题,巩固对旋转的理解和应用能力。
九年级数学上册 23.1 图形的旋转教案 新人教版
(1)旋转中心是哪一点?
(2) 如何确定△ADE三个顶点的对应点,即它们旋转后的位置.
小结
提高
通过这节课的学习,你们有什么收获吗
作业
教科书习题23.1第1、2、3、4题
教学
反
思
重点
难点
熟悉旋转中的一些概念,以及通过实验,探索出中心旋转的基本特征。
通过观察、实验、发现旋转的基本特征,根据旋转图形找对应点。
程序
教师活动
学生活动
备注
创设
问题
情景
在日常生活中,除了物体的平行移动外,我们还可以看到许多如图所示的物体的旋转的现象:时钟上的秒针在不停的转动;大风车的转动给人们带来快乐;飞速转动的电风扇叶片给人们带来一丝丝的凉意……它们把我们带进了一个旋转的世界,让我们走进这个旋转的世界,探索其中的奥秘吧!
教师设计数学探究实验:
用课件操作图形的旋转变换后,指出进一步探究的方向:
师生共同归纳出图形旋转的特征:
巩固练习
1、E是正方形ABCD中CD边上任意一点,
(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
(2).以点A为中心,把△ADE逆时针旋转90°,画出旋转后的图形
2、教科书P64练习1、2、3
23.1图形的旋转
课题
课时
本学期第 课时
日期
本单元第 课时
感
知
目
标
学
习
目
标
让学生通过欣赏、观察、操作图形的旋转变换,了解旋转中的一些概念及探究它的基本特征。
能在观察图片资料和图片现象中发现事物的内在本质。
通过对生活中的旋转现象有关图形进行观察分析、欣赏等过程,培养初步的审美能力,增强对图形的欣赏意识,培养学生合作学习、探索学习的意识。
九年级上册《图形的旋转》教案范文
九年级上册《图形的旋转》教案范文一、教学目标:知识与技能:让学生理解旋转的定义,掌握旋转变换的性质和规律,能够运用旋转变换解决实际问题。
过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
情感态度与价值观:激发学生对几何图形的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。
二、教学重点与难点:重点:旋转变换的定义及其性质。
难点:旋转变换在实际问题中的应用。
三、教学过程:1. 导入新课:利用多媒体展示生活中常见的旋转现象,如车轮转动、风扇旋转等,引导学生关注旋转变换在现实生活中的应用。
2. 探究新知:(1)引导学生观察、分析旋转现象,总结旋转变换的定义。
(2)讲解旋转变换的性质和规律,如旋转变换不改变图形的大小和形状,只改变图形的位置。
(3)通过实例演示,让学生理解旋转变换在实际问题中的应用。
3. 巩固练习:(1)设计一些有关旋转变换的练习题,让学生独立完成,检验对旋转变换的理解和掌握程度。
(2)引导学生运用旋转变换解决实际问题,如计算旋转后的图形面积、位置等。
四、课堂小结:本节课通过观察、操作、思考、交流等活动,使学生掌握了旋转变换的定义、性质和规律,并能够运用旋转变换解决实际问题。
培养了学生的空间想象能力、逻辑思维能力和创新能力。
五、课后作业:1. 完成练习册中有关旋转变换的练习题。
2. 结合生活实际,找一些旋转变换的应用实例,下节课分享给大家。
六、教学反思:1. 强调旋转变换的定义和性质,让学生清晰地理解旋转变换的概念。
2. 注重培养学生的空间想象能力,通过直观的演示和实例,帮助学生建立旋转变换的形象。
3. 鼓励学生积极参与课堂讨论,提高学生的逻辑思维能力和创新能力。
4. 关注学生的个体差异,针对不同程度的学生给予适当的指导和支持。
七、教学评价:本节课结束后,对学生进行旋转变换的知识点测试,了解学生对旋转变换的掌握程度。
观察学生在课堂上的表现,如参与程度、思考能力和合作意识等,全面评价学生的学习效果。
2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案
23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。
23.1图形的旋转 教案- 2022-2023学年人教版九年级数学上册
23.1 图形的旋转教案- 2022-2023学年人教版九年级数学上册一、教学目标1.理解图形的旋转概念,能够描述旋转的方向和角度;2.掌握图形旋转的基本性质,能够判断旋转后图形是否重合;3.运用旋转的性质解决相关问题。
二、教学准备1.教材:人教版九年级数学上册;2.工具:直尺、铅笔、量角器。
三、教学过程步骤一:导入与引入1.引入问题:小明在画画时,想把一个图形旋转90度,你能告诉他应该怎么做吗?2.学生回答后,引导学生思考旋转的概念。
步骤二:旋转的概念1.定义旋转:将一个图形按照一定的方式和角度,沿着一个固定的点旋转。
2.引导学生找出旋转中的三个要素:旋转中心、旋转方向和旋转角度。
3.通过示例和讲解,让学生理解旋转的基本概念。
步骤三:旋转的性质1.引导学生观察并总结旋转的性质:–旋转前后,线段的长度保持不变;–旋转前后,线段的平行关系保持不变;–旋转前后,角的度数保持不变。
2.通过练习题,让学生巩固旋转的性质。
步骤四:判断旋转后图形的重合性1.如果两个图形旋转后重合,我们称它们是旋转同一图形。
2.引导学生思考如何判断旋转后的两个图形是否重合:–比较线段的长度和角的度数是否相等。
3.通过练习题,让学生练习判断旋转后图形的重合性。
步骤五:解决问题1.给学生设计一些实际问题,要求运用旋转的概念解决问题,如:根据指定旋转角度和顺时针/逆时针方向,求旋转后图形的坐标。
2.引导学生分析问题,并逐步解决。
3.鼓励学生自主思考和讨论,提供帮助和指导。
四、教学延伸1. 图形的旋转应用图形的旋转在现实生活中有着广泛的应用,比如旋转扇叶、旋转木马等。
通过图形旋转的相关知识,我们能够更好地理解和应用这些实际问题。
2. 旋转的其他性质在进一步学习中,学生可以了解到旋转还有其他的性质,比如: - 旋转的合成:将一个图形先按一定角度旋转,然后再按另一个角度旋转,可以用一个旋转的角度表示这两次旋转的合成。
- 旋转的反运算:旋转后再按相反的角度旋转,可以得到旋转前的图形。
九年级数学人教版上册第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质优秀教学案例
1.教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。
2.组织学生进行课堂小测,检测学生对旋转知识的掌握程度,及时发现和解决问题。
3.鼓励学生积极参加数学竞赛、实践活动等,让学生在实践中不断提高自己的数学素养。同时,教师要关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习中取得更好的成绩。
二、教学目标
(一)知识与技能
1.理解旋转的概念,掌握图形旋转的性质,能够用语言和数学符号描述旋转的过程和特点。
2.能够通过实际操作,观察和分析图形在旋转过程中的变化,提高空间想象能力和逻辑思维能力。
3.学会运用旋转知识解决实际问题,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.通过观察、操作、思考、交流等活动,经历旋转概念的形成和性质的探索过程,培养学生的动手操作能力和问题解决能力。
1.教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。度,及时发现和解决问题。
3.鼓励学生积极参加数学竞赛、实践活动等,让学生在实践中不断提高自己的数学素养。
(五)作业小结
1.布置具有挑战性和实际意义的作业,让学生在完成作业的过程中,进一步巩固旋转知识,提高解决问题的能力。
4.反思与评价的教学环节:教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。这种反思与评价的教学环节有助于学生培养批判性思维和自我改进的能力,提高学习效果。
3.通过对旋转知识的学习,使学生体会到数学与现实生活的紧密联系,提高他们的应用意识。
三、教学策略
(一)情景创设
1.利用多媒体展示生活中的旋转现象,如摩天轮、风车等,引导学生关注旋转现象在现实生活中的应用,激发学生的学习兴趣。
新人教版九年级上册数学《23.1图形的旋转》教案
d.探索旋转对称图形的特点及其性质;
e.学会使用旋转变换工具,如量角器、圆规等。
3.教学目标:
a.理解并掌握旋转的定义及性质;
b.能够运用旋转解决实际问题;
c.培养学生的空间想象能力和动手操作能力。
二、核心素养目标
新人教版九年级上册数学《23.1图形的旋转》核心素养目标:
3.逻辑思维:运用旋转性质进行问题分析,培养学生的逻辑推理能力,使其能够准确、有序地解决问题。
4.数学应用:将旋转知识应用于解决实际问题,提高学生的数学应用能力和创新意识,增强其对数学学科的实际运用价值认识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,ቤተ መጻሕፍቲ ባይዱ天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”(如旋转门、风车等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指在平面上,将一个图形绕着某一点按一定角度进行旋转。它是几何变换中的一种,具有重要的实际应用价值。
2.案例分析:接下来,我们来看一个具体的案例。通过分析旋转门的工作原理,了解图形旋转在实际中的应用,以及它如何帮助我们解决问题。
1.培养学生的空间观念:通过观察、操作、探索,使学生理解旋转的内涵,感知旋转在现实生活中的应用,发展空间想象力;
2.提高学生的几何直观能力:借助旋转变换,培养学生对几何图形的观察、分析、判断及推理能力;
3.增强学生的逻辑思维能力:运用旋转性质解决问题,锻炼学生逻辑思维,提高解决问题的能力;
人教版数学九年级上册图形的旋转教学设计(通用7篇)
人教版数学九年级上册图形的旋转教学设计(通用7篇)人教版数学九年级上册图形的旋转教学设计(通用7篇)作为一无名无私奉献的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
那么问题来了,教学设计应该怎么写?下面是小编精心整理的人教版数学九年级上册图形的旋转教学设计,希望能够帮助到大家。
数学九年级上册图形的旋转教学设计篇1教学目标:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、能在方格纸上将简单图形旋转90°。
教学重难点:能在方格纸上将简单图形旋转90°。
教学器具:多媒体教学系统,卡纸,小三角形,90度扇形。
教学课时:1课时。
教学过程:一、回忆旧知识、导入新课教师:同学们,你们喜欢看大风车这个节目吗?老师带来(风车),你们喜欢玩吗?(教师前后拉动,使得风车依次顺时针,逆时针的旋转)提问:同学们,风车有时向这边转,有时向那边转,这两个方向我们在三年级的时候叫做什么呢?(顺时针方向,逆时针方向)(课件展示顺时针,逆时针旋转的图片)设问:我们看到风车旋转的时候非常漂亮,那如果我们用一些图形来旋转的话,情况又会怎样呢?(图形器材展示出来)这节课我们就来学习:图形的旋转(板书)二、创设情景,进入新课内容在生活中,有各种美丽的图案,但其中有很多图案是由简单的图形经过平移或旋转获得。
今天,老师给同学们带来了一些,请欣赏!(课件展示图片)教师:这些图片有什么特点呢?(由一个图形经过旋转变化而成的)学生:漂亮,正方形,旋转等等。
教师:取出一个大图形,其中的一小部分放在黑板方格子上。
你们看看,这个小图形怎样才可以变成上面的大图形呢?学生:观察,讨论,回答。
教师:进行旋转,逐步展示简单图形经过旋转后形成复杂图案的过程。
当然,每一次的旋转,都要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?学生:0点,90度┈┈教师:(课件展示两个图形各形成两个大图形的过程。
人教初三数学上图形的旋转教案
人教初三数学上231、教学内容所属模块:初中数学2、年级:九年级上册3、所用教材出版单位:人民教育出版社4、所属的章节:第二十三章旋转(23.1 图形的旋转)5、类型:课堂教学设计6、学时数:45分钟7、课型:新授课二、教学设计问题:线段OA与线段OA′间有什么关系?∠AOA′与∠BOB′间有什么关系?△ABC与△A′B′C′形状和大小有什么关系?归纳旋转的性质:对应点到旋转中心的距离相等。
对应点与旋转中心所连线段的夹角等于旋转角。
旋转前、后的图形全等。
例题示范学以致用例1 E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90 °,画出旋转后的图形.教师提出问题引导学生摸索:(1)旋转中心是哪一点?(2) 如何确定△ADE三个顶点的对应点,即它们旋转后的位置。
教师适当点拨后,找几名同学上台板演。
教师巡堂,个别指导,做好后,依照做题情形,适当点评。
教师强调规范小组成员互评。
范例点击活学活用教科书P61练习1、2、31.举出一些现实生活中旋转的实例,并指出旋转中心和旋转角。
2.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?引导学生分析问题,请各小组长总结在每个解题过程中遇到的问题学生独立完成,小组成员互评,教师加以指导,并用展台展现学习成果。
拓广探究合作学习1.如图,假如把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在那个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)通过旋转,点A、B分别移动到什么位置?2.如图,四边形ABCD、四边形EFGH差不多上边长为1的正方形.(1)那个图案能够看做是哪个“差不多图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,通过旋转,点A、B、C、D分别移到什么位置?引导学生小组合作交流,在本次活动中,教师应重点关注:(1) 学生画出图形后,能否准确地运用旋转的差不多特点表达出画图的理论依据;(2) 学生画图的不同方法(3)以点A为中心,把△ADE逆时针旋转90°,画出旋转后的图形.小组内学生互改互评,展台展现学生的作业同时整理错题集。
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。
本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。
但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。
此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。
2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。
四. 教学重难点1.重点:图形旋转的定义和性质。
2.难点:图形旋转在实际问题中的应用。
五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。
2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。
3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。
2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。
3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。
人教版数学九年级上册23.1《图形的旋转》教学设计
人教版数学九年级上册23.1《图形的旋转》教学设计一. 教材分析人教版数学九年级上册23.1《图形的旋转》是本册教材的重要内容,主要让学生理解旋转的性质,学会用旋转来解决实际问题。
本节内容是在学生已经掌握了图形的平移、轴对称等知识的基础上进行学习的,为学生提供了丰富的现实背景和广阔的思考空间。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于图形的平移、轴对称等知识有了较为深入的理解。
但是,对于图形的旋转,部分学生可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。
三. 教学目标1.让学生理解旋转的性质,掌握旋转的定义和特点。
2.培养学生用旋转解决实际问题的能力。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.旋转的定义和性质。
2.用旋转解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究旋转的性质。
2.采用实例分析法,让学生通过观察、分析实际问题,理解旋转的应用。
3.采用合作学习法,让学生在小组讨论中,共同解决问题,提高解决问题的能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际问题,用于引导学生用旋转解决。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生观察并思考:什么是旋转?旋转有哪些特点?2.呈现(10分钟)教师通过课件展示旋转的定义和性质,让学生初步理解旋转的概念。
同时,教师可以通过一些实例,如将一个正方形绕某一点旋转90度,让学生观察旋转前后的变化,进一步理解旋转的性质。
3.操练(10分钟)教师提出一些有关旋转的问题,让学生动手操作,如:将一个正方形绕某一点旋转90度,求旋转后的位置。
通过操作,让学生加深对旋转的理解。
4.巩固(10分钟)教师给出一些实际问题,让学生用旋转的知识解决,如:一个木块从平面上的一个点出发,绕某一点旋转,求木块旋转到一定位置时的坐标。
初中数学人教九年级上册(2023年新编)第二十三章 旋转2《图形的旋转》教案
《图形的旋转》教案教学内容掌握旋转的定义和基本性质,经历对具有旋转特征的图形的观察、操作、画图等过程,理解旋转的概念及基本性质.教学目标(1)经历实验、猜测、操作、分析、交流等活动了解旋转的概念,通过图形的运动变化去探索发现旋转的基本性质;会画出平面图形经过旋转变换后的图形(2)经历生活实际、具体图形的旋转,抽象出数学上旋转的概念,学会数学抽象.在多种数学活动中,初步建立旋转变换的几何直观,养成独立思考与合作探索的习惯.(3)初步学会从数学的角度发现问题和提出问题,通过思考和交流,形成自己对旋转变换的理解.(4)认识并欣赏自然界和现实生活中的旋转图形,欣赏数学的美;主动参与数学学习过程;通过实践操作、观察、讨论,培养学生合作学习的意识、乐于思考、勇于探索的精神,培养自信心.目标解析(1)学生通过自己举出的的生活中旋转的实例,说明学习旋转的重要性;(2)学生能从生活中的旋转抽象出旋转的定义;通过亲自动手操作探究旋转的性质.教学过程设计1.创设情境,引入新知问题1 在生活中,我们经常能见到旋转现象,例如风车,在风的吹动下能不停地转动;如钟表的指针、电风扇的扇叶等都给我们以旋转的印象,你还能举出一些与旋转有关的实际例子吗?师生活动:学生回答.教师补充说明,展示相应图片.【设计意图】让学生想一想,说一说,调动学生学习的积极性,激发学生的学习兴趣;感受旋转和实际生活的密切联系,认识研究图形旋转的价值.问题2风车的旋转,吊扇的转动,表针的转动,方向盘的转动等生活中的这些不同的转动现象,它们有什么共同特征吗?仿照平移、轴对称的定义,你能试着给出旋转的定义吗?师生活动:学生回答.教师补充说明,及时地给予肯定或鼓励.【设计意图】让学生从生活中的旋转现象中发现旋转现象的本质特征,抽象出数学概念,培养数学思维能力.这些转动现象,特征比较明显,共同特点是如果我们把时针、风车等当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.比如钟表的指针,固定在一个点上,指针绕着这个点转动;再如方向盘,它中间的轴也可以看成一个固定的点,方向盘绕着它转动;风车的叶轮也是绕中间的固定点转动,这样就得出旋转的第一个特征:绕一个定点,再来分析一下钟表的转动,如果把其中一个指针看成一条线,可以清楚地看到它沿着某个方向转动一个角度.同样,也可以把指针看成一个四边形,复杂的图形的转动也是如此,这就得到旋转的第二个特征;沿某个方向转动一个角度,然后鼓励学生自己总结出图形的旋转的定义:在平面内,将一个图形绕一个定点旋转一定角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.2.动手操作,理解概念问题3已知线段AB,画出线段AB绕点A按顺时针方向旋转60°后的图形.【设计意图】以A为旋转中心,只需转动点B一个点就行了,通过最简单的图形让学生自己画图感知图形旋转的本质,加深对旋转概念的理解,并进一步探究图形旋转的性质.如对应点到旋转中心的距离相等;一对对应点与旋转中心的连线所成的角就是旋转角等.问题4已知△ABC和点O,画出△ABC 绕点O按逆时针方向旋转100°后的图形.【设计意图】帮助学生理解如何实现图形的旋转.由简单问题即画出线段AB绕点A按顺时针旋转作图导入,是符合学生的认知规律的,由点的旋转到线段的旋转再到复杂图形的旋转,这种由简单到复杂的的认知方式是学生易于接受和理解的,帮助学生理解复杂图形的旋转最终可归于点的旋转.通过亲自操作,学生可以直观地感知到自己的发现,这样就能够比较自然地得到旋转的性质:旋转前后的图形全等,即旋转不改变图形的大小、形状;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等,都等于旋转角.图形的旋转是由旋转中心和旋转的角度决定.问题5 在上面的问题3和问题4中,线段AB和△ABC在旋转过程中,你发现了什么?你能得出哪些结论?仿照轴对称变换的性质,你能试着说出图形旋转的性质吗?师生活动:师生共同归纳出图形旋转的特征:旋转前、后的图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.【设计意图】通过类比轴对称的知识,结合自己的探索发现,进一步加深对旋转的认识,在研究发现的过程中锻炼学生的观察能力和语言表达能力;让学生主动参与数学知识的“再发现”,培养学生观察、分析、比较、抽象、概括的数学思维能力.老师可以借助三角板、几何画板等画图工具演示画图过程.将图形旋转任意角度后观察旋转的性质.3.例题示范,学会应用例如图,四边形ABCD是正方形,E是边CD上一点,△ADE经旋转后与△ABF重合.请回答下列问题:(1)旋转中心是点;(2)顺时针旋转了度;(3)如果连结EF,那么△AEF的形状是三角形.师生活动:学生填空,说明理由,老师总结补充.老师还可以请学生将此题拓展:如果点E在直线CD上呢?逆时针旋转呢?例如(4)如果点M是AD的中点,经上述旋转后,点M落到什么位置?(5)若正方形ABCD的边长是2,①则点M在旋转时经过的路径长是多少?②四边形AFCE的面积是多少?【设计意图】在学生初步掌握了旋转性质的基础上,让学生学着运用学过的知识解决相关问题.同时加深对正方形这个基本图形的认识,感悟旋转90°后会出现的特殊图形──等腰直角三角形,为后续的用旋转变换解决综合题的学习打下一定的基础.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生简述这节课的收获.可引导学生从以下几个方面进行小结:对这节课所学知识进行归纳小结.对自己的学习情况进行评价.根据学生的总结将重点内容写出板书.6.布置作业:教科书习题第1,4,5题.五、目标检测设计练习1 如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于().练习2 如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB.(1)如图中所示,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变换到△ADF的位置?(2)指出图中所示的线段BE与DF之间的关系.解答:(1)△ABE绕点A逆时针旋转90度后与△ADF重合.(2)线段BE与DF之间的关系是相等且互相垂直.【设计意图】理解旋转的概念,加深对旋转性质的认识,理解旋转的适用条件.。
人教版九年级上册23.1图形的旋转教学设计
人教版九年级上册23.1图形的旋转教学设计1. 教学目标•了解图形的旋转概念与性质。
•掌握图形顺时针、逆时针旋转的方法与规律。
•认识旋转成像及其特点。
2. 教学准备•课件、PPT或黑板。
•图形卡片或手绘图形。
•透明纸、透镜等教具。
3. 教学过程3.1 导入(5分钟)通过展示一些有趣的旋转图片或引入一个旋转问题,引起学生兴趣。
例如,一只青蛙在往哪个方向跳跃?3.2 概念讲解(20分钟)引入向量的旋转概念,解释顺时针旋转与逆时针旋转的概念。
然后,简要介绍一形的旋转,如旋转角度、旋转方向和旋转中心等概念。
通过实际动手操作,使学生可以更好地理解旋转相应的规律和方法。
3.3 讲解重点/难点(30分钟)教师从以下几个方面进行讲解:3.3.1 旋转方法•顺时针/逆时针旋转:将旋转方向作为参照系,右侧的方向为顺时针,左侧的方向为逆时针。
•旋转角度:旋转所转过角度,角度单位为度。
•旋转中心:旋转点会围绕旋转中心旋转,可以是任意一点。
选择不同的旋转中心将会产生不同的旋转结果。
•旋转轴:旋转围绕的轴线,可以是直线,也可以是平面上的任意一条轴线。
3.3.2 旋转规律•相邻两个旋转是可嵌套的,旋转结果将会叠加。
•旋转角度为360度时,图形仍处于原来的位置不变。
•同一条旋转轴旋转不同的角度,结果一定是相似的。
3.4 案例演示与练习(30分钟)引导学生用透明纸实现图形的旋转,让学生自由选择旋转中心、旋转轴和旋转角度,从而掌握图形旋转的方法和规律,或者通过分组为学生分发手绘图形进行实际操作,达到学习旋转成像的目的。
3.5 总结与归纳(15分钟)对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。
4. 课堂作业完成教师分配的习题并对整个过程进行总结。
5. 教学反思本节课的主要内容是图形的旋转,着重从旋转概念、方法、规律以及旋转成像四个方面进行讲解,先通过引入开篇引起学生兴趣;再通过实际动手操作来使学生更好地理解旋转相应的规律和方法;然后对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。
九年级数学上册23.1图形的旋转教案(新版)新人教版
自学互帮导学法
教 学 过 程
教学内容
教师活动
学生活动
效果预测(可能出现的问题)
补救措施
修改意见
展示生活中美丽图案
2、观察图案形成过程
出示结果
图片欣赏
再次观察图形形成过程
怎样用圆规画出这个六花瓣图?
随堂练习
小结
作业
出示幻灯片2、3
出示幻灯片4
出示幻灯片5、6
出示幻灯片7-15
出示幻灯片16-17
出示幻灯片18-22
学生欣赏
独立思考,小组讨论
看自己想的与结果是否一样,小组讨论
学生动手操作,小组一起完成
小组成员共同完成
板书设计
参考书目及思
图形的旋转
课 题
23.图形的旋转
课时
2课时
课 型
新授课
修改意见
教学目标
1.通过观察具体实例认识旋转,理解旋转的基本涵义;
2.探索旋转的基本性质;
⒊利用旋转的性质解决数学问题
教学重点
图形的旋转相关概念,及旋转性质。
教学难点
图形旋转的性质。
学情分析
学生已经学习了平移轴、对称这些图形变换的基础知识,也能够简单的运用,但还欠缺对知识的系统化和灵活运用还要进一步加强知识的运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
唐娟
一、教学目标
(1)了解生活中旋转现象的广泛存在;
(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;
(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;
(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;
二、重点与难点
本节课的重点是旋转的有关概念及性质。
难点是概念的形成过程与性质的探究过程。
三.教学过程
(一)创设情景,引入新知
现代教学认为,在正式进行发现过程前要让学生对探索的目标,意义认识得十分明确,并从内心产生巨大的动力,做好探索的物质和精神准备.
情景创设:(用课件显示现实生活中部分物体的旋转现象)
通过这些画面的展示
(1)切身感受到我们身边除了平移、轴对称变换之外,生活中还广泛存在着
转动现象,从而产生对这种变换进一步探究的强烈欲望;
(2)为本节课探究问题作好铺垫。
情景问题:这些情景中的转动现象,有什么共同特征?
(二)探索新知,形成概念
1.建立旋转的概念
(1)试一试,请同学们尝试用自己的语言来描述以下旋转.
观察了上面图形的运动后,引导学生进入本课第一个学习目标:图形旋转的概念;
(本环节学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,随后,给出旋转的定义:)
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
2.应用旋转的概念解决问题:
(本环节教学中,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。
)
(三)实践操作,再探新知
做一做:
如图,在硬纸板上,挖出一个三角形A’B’C’,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸。
先在纸上描出这个挖掉的三角形图案(△A’B’C’),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△ABC),移开硬纸板。
问题:请指出旋转中心和各对应点,哪一个角是旋转角?
1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?
2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?
量一量线段OA与线段OA’的关系怎样,线段OB和OB’,OC和OC’呢?AB与A’B’呢?
3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?
(本环节让学生在独立思考的基础上,再进行小组合作交流,利用度量等方法发现规律。
教师提供给学生动态的旋转图形,进行指导并参与讨论交流,而后归纳出旋转的特征。
)
1.旋转前后的图形全等;
2.对应点到旋转中心的距离相等;
3.对应点与旋转中心所连线段的夹角等于旋转角。
(四)巩固新知,形成技能
根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步形成技能。
(五)回顾反思,深化提高
利用提问、解说形式,师生共同进行小结。
学生小结:自主小结和交流知识学习的收获,过程经历的感受,数学思想的感悟,学习方法的体会等,或提出疑问进行讨论;
教师小结:帮助学生整理所学知识,引导学生进一步体会探究学习的过程和方法,领会数学的思想。
(六)分层作业,促进发展
最后布置作业,结合学生的实际水平,为了更好的因材施教,我准备了两部分作业:必做题和探究题。
教学设计说明
我按以下思路设计本课:
以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。
教学过程突出以下构想:
(1)创设情景,引人入胜
首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。
(2)过程凸现,紧扣重点
旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。
(3)动态显现,化难为易
教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。
(4)例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,
培养学生的发散思维,也增强学生用数学的意识。