(完整版)小学希望杯全国数学邀请赛六年级第二试附答案.doc
第十一届小学“希望杯”全国数学邀请赛 六年级 第Ⅱ试试题 解析版
第十一届小学“希望杯”全国数学邀请赛六年级 第Ⅱ试试题一、填空题(每题5分,共60分)1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷= 解析:原式3452012201323420112012=⨯⨯⨯⨯⨯ 20132= 110062= 2.计算:11.5 3.1657.0512+++= 解析:原式111.5357.05612=+++ 1.58.257.05=+++16.8=3.地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米。
(答案取整数) 解析:行程问题,类追及问题。
11.5×3.87÷(5.94-3.87)×5.94≈128km或用方程解,设距离是x ,列方程得:11.53.87 5.94x x -=。
整理得:5.94 3.8711.5 3.87 5.94x x -=⨯⨯,解得:128x =。
4.宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋。
解析:分数应用题。
已售出的占全部的:33134=+; 超市购进的这批食盐有:342040%12004⎛⎫÷-= ⎪⎝⎭(袋)。
5.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有 个。
解析:(1)422,224,=⨯+=符合条件; (2)3222222,2222232=⨯⨯⨯⨯++++≠+,不符合条件。
第八届希望杯-六年级-第2试试卷及解析
第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.2.已知,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=( )3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是( )4.王老师在黑板上写了这样的乘法算式:12345679×()=□□□□□□□□□,然后说道:只要同学们告诉我你喜欢1,2,3,4,5,6,7,8,9中的哪个数,我在括号里填上适当的乘数,右边的积一定全是你喜欢的数字组成.小明抢着说:我喜欢3.王老师填乘数“27”,结果12345679×(27)=333333333;小宇说:我喜欢7,只见王老师在乘数上填“63”,结果是12345679×(63)=777777777.小丽说:我喜欢8,那么在乘数上应填( )5.如图,三角形ABC中,点E在AB上,点F在AC上,BF与CE交于点P上,如果四边形AEPF与三角形BEP、三角形CFP的面积都是4,则三角形BPC的面积是( )6.张老师带六一班学生去种树,学生恰好可以平均分成5组,已知师生每人种的树一样多,共种树527棵,问六一班学生有( )人.7.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,已知在电梯静止时,男孩每秒走3米,女孩每秒走2米,则该自动扶梯长( )米8.有7根直径都是5厘米的圆柱形木头,现在用绳子分别在两处把它们捆在一起,则至少需要绳子( )分米(结头处绳子不计,Л取3.14)9. 一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装深27.5厘米的水.现放入一个底面直径10厘米,高30厘米的圆锥形铁块,则将有( )立方厘米的水溢出?10.新年联欢会共有8个节目,其中有3个非歌唱类节目.排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目是歌唱类节目,则节目单有( )种不同的排法.11.有一水池,单开进水管3小时可把水池注满,单开出水管4小时把排空满池水.水池建成后,发现水池漏水,这时,若同时打开进水管与出水管14小时才能把水池注满,当水池注满后,并且关闭进水管与出水管,经过( )小时水池会漏完.12.甲乙两人分别从A、B两地同时出发,相向而行,已知甲、乙两人的速度比是6:5,他们相遇时距AB两地的中点5千米,当甲到达B时,乙距A还有( )千米二、解答题(每题15分,共60分)每题都要写出推算过程.13.有一个电子计算器的数字显示屏坏了,有部分区域在该亮时不亮,使原本的一道一位数乘以一位数,积是两位数的乘法算式,出现如图1所示怪样(不妨用火柴棒来表示),小明对此用火柴棒摆出可能算式如图2请问,图中所示的算式有哪几种?14.修一条高速公路,若甲、乙、丙合作,90天可完工;若甲、乙、丁合作,120天可完工;若丙、丁合作,180天完工;若甲、乙合作36天后,剩下的工程由四人合作,还需要多少天完工?15.甲乙两辆车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/小时的速度与甲同向前进,火车从追上甲车到遇上乙车,相隔5分钟,若火车从追上并超过甲车用时30秒,从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多长时间与甲车相遇?16.定义:f(n)=k(其中n是自然数,k是0.987651234658、、、、的小数点后的第n位数字),如f(1)=9,f(2)=8,f(3)=7,求5f (……f ( f ( 5 ) ) )+2f (……f ( f ( 8 ) ) )的值.505个f 2010个f862参考答案。
第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
(完整版)小学希望杯全国数学邀请赛六年级第二试附答案.doc
学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第八届小学“希望杯”全国数学邀请赛六年级 第 2 试一、填空题(每小题 5 分,共 60 分)330.21.45.4 =。
1.352.已知 111 ,其中 A 、 B 、 C 都是大于 0 但互不相同的自然数,则116 A11B616CC(A+B) ÷C =。
3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是 。
第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析
六年级 第2试试题
一、填空题.
1.计算: ________.
【答案】6
【考点】计算,提取公因数
【解析】
2.已知 , ,则 是 的_______倍.
【答案】13
【考点】计算,分数
【解析】 ,
3.若 ,则自然数 的最小值是_______.
【答案】3
【考点】计算,分数
【解析】 , ,则 最小为3.
【答案】5:12
【考点】几何,比例模型
【解析】设正方形面积ABCD为1,连接BD、AC, , ,
, , .
9.如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率 取3)
【答案】4.5
【考点】几何,圆的面积
【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.
,较长那根还能燃烧: (分钟)
二、解答题
13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:
(1)图⑥由多少个棱长为1的小正方体堆成?
(2) 图⑩所示的立体图形的表面积.
①②③
【答案】(1)91;(2)420
【考点】几何,正方体
【解析】(1)图⑥正方体个数为: (个)
(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;
前后左右:
上下:
总表面积:
14.解方程: ,其中 表示 的整数部分, 表示 的小数部分,如 , .(要求写出所有的解)
【答案】 、 、 、
【考点】计算
第六“希望杯”全国数学邀请赛 六年级第2试
数学竞赛第六届“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=__________2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
第四届第2试小学希望杯试题及答案
第四届小学“希望杯”全国数学邀请赛六年级第2试一、填空题。
(每小题4分,共60分。
)1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
2.一个数的比3小,则这个数是________。
3.若a=,b=,c=,则a,b,c中最大的是________,最小的是________。
4.牧羊人赶一群羊过10条河,每过一条河时都有三分之一的羊掉人河中,每次他都捞上3只,最后清查还剩9只。
这群羊在过河前共有________只。
5.如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。
6.磁悬浮列车的能耗很低。
它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。
7.“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。
如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
8.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。
9.如果a,b均为质数,且3d+7b=41,则a+b=________。
10.如图,三个图形的周长相等,则a∶b∶c=________。
11.如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体术块,木块浮出水面的高度是2厘米。
若将木块从容器中取出,水面将下降________厘米。
12.如图,正方形ABCD和正方形ECGF并排放置,BF与EC相交于点H,已知AB=6厘米,则阴影部分的面积是________平方厘米。
13.圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
小学六年级“希望杯”第1-10届试题及详解(第一试和第二试)
第四届小学“希望杯”全国数学邀请赛六年级第1试以下每题5分,共120分。
1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A 的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
(完整word版)2007第五届小学数学希望杯六年级第二试试题及答案,推荐文档
第五届小学“希望杯”全国数学邀请赛六年级第2试3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测 4月份甲、乙、丙三种品牌彩电的销售量将分别增长 5%, 10%和2O %。
根据预测,甲、丙两种品牌彩电4月份的销售量之和为 _______ 台。
定的整数)。
如果14 2 3,那么3416 . 丄 的整数部分是1 1 1 1 2005 2006200720087 •在一次动物运动会的 60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为 5分钟。
请问,小鸭在这项比赛中用时 ______ 分钟。
8 . 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4X 15天是星期 _______ 。
9 •将16个相同的小正方体拼成一个体积为16立方厘米的长方体, 表面涂上漆,然一、填空题(每小题5分,共60分。
) 1.小华拿一个矩形木框在阳光下玩, 她看到矩形木框在地面上形成的影子不可能是图中的 ② 2 .气象台预报“本市明天降水概率是 。
(填序号) ①本市明天将有 80%的地区降水。
③明天肯定下雨。
80%”。
对此信息,下列说法中正确的是②本市明天将有80%的时间降水。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次, 个圆洞,再展开正方形纸片,得到下图中的 然后在得到的三角形的三个角上各挖去 。
(填序号)4 .下图是华联商厦 O5 .对于非零自然数后分开,则3个面涂漆的小正方体最多有________ 个,最少有________ 个。
10 .已知n 个自然数之积是2007,这n 个自然数之和也是 2007,那么n 的值最大是O11 .如图,三角形田地中有两条小路 AE 和CF,交叉处为D,张大伯常走这两条小路,他知道DM DC 且AD= 2D 巳则两块田地 ACF 和 CFB 的面积比是A 、B 两地相对开出,两车第一次在距 A 地32千米处相遇,B 、A 两地后,立即沿原路返回,第二次在距 A 地64千米处千米。
第六届小学“希望杯”全国数学邀请赛六年级第2试.doc
第六届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)
六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)六年级(特1) 第2试试题一、填空题(每题5分,共60分)1、2017=AAA +AAA +AA +AA +A +A +A +A +A +A +A +B,字母“A ,B”均代表一个非零数字,则B = 。
2、将一个两位数ab 的个位数字和十位数字交换,得到两位数ba ,若ba —ab =63,则满足条件的两位数ab 有 个。
3、如图1,一只青蛙从五边形ABCDE 的顶点A 出发顺时针跳跃,每步从五边形的一个顶点跳到另一个顶点,A B C D E,若这只青蛙第一次跳1步,第二次跳2步,……,第n 次跳n 步,则它在跳完10次时,到达顶点 。
4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x,如23.067823••,678.230678••等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。
5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。
6、电视机厂接到生产一批电视机的订单,订单价每台2000元,预计可以获利30万元,实际上,由于生产成本提高了16,所以利润减少了25%,则此次订单需要电视机 台。
7、已知某些两位数,若把它分解成两个自然数的乘积可以有5种方法(a ×b 与b×a算一种方法),则这样的两位数有个。
8、A、B两个健步行走着,沿围绕旗杆的同心圆跑道行走,旗杆刚好位于两圆的圆心,沿外跑道走的人五分钟走完一圈,沿内跑道走的人三分钟走完一圈,如图3,O,A,B在同一条半径上,A,B反向而行,则他们下一次与旗杆又在同一半径上时,所需要的时间是分钟。
9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。
10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。
最新希望杯六年级二试试题及答案资料
第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷=2. 计算:11.5 3.1657.0512+++=3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。
(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有个。
6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。
7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。
8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 2013201320132013201312345++++除以5,余数是。
(注:2013a表示2013个a相乘)10. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是1527,那么去掉的数是。
11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。
第十四届小学“希望杯”全 国数学邀请赛六年级第二试试 题及解析
第十四届小学“希望杯”全国数学邀请赛六年级 第2试试题1、 填空题.1. 计算:________.【答案】6【考点】计算,提取公因数【解析】2. 已知,,则是的_______倍.【答案】13【考点】计算,分数【解析】,3. 若,则自然数的最小值是_______.【答案】3【考点】计算,分数【解析】,,则最小为3.4. 定义:如果,那么称为和的比例中项.如,则2是1和4的比例中项.已知0.6是0.9和的比例中项,是和的比例中项,则=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:,,解得:,,则5. A、B、C三人单独完成一项工程所用的时间如图所示.若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工程的时刻是______时______分.Image【答案】9时57分【考点】应用题,工程问题【解析】如图得A、B、C的工作效率分别是,27分钟为小时,则A单独的工作量:,三人合作时间:(小时),共花时间:(小时),(分钟),即完成这工程时刻为9时57分.6. 如图,A,B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A盘的数字是,指针指向B盘的数字是b,则两位数是质数的概率是________.Image【答案】【考点】数论,质数【解析】根据乘法原理可得:组成两位数共有:(个),两位数是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数是质数的概率为:.7. 在算式“”中,不同的汉字代表不同的数字,则所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】,,所以得:当时,结果不是六位偶数,当,符合要求;当扩大4倍时,出现重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:.8. 如图,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是_______.Image【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD为1,连接BD、AC,,,,,.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:;剩余阴影面积:阴影部分面积:10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是.则在这三个最简真分数中,最大的数是_______.【答案】【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为,则三个最简真分数为, ,,则分析得三个最简真分数为:,最大为.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,,将100个乒乓球分成6组余2个盒子,,.12. 两根粗细相同,材料相同的蜡烛,长度比是,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的原来现在原来现在第一根2115第二根1611差542020,较长那根还能燃烧:(分钟)2、 解答题13. 如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1) 图⑥由多少个棱长为1的小正方体堆成?(2) 图⑩所示的立体图形的表面积.① ② ③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:(个)(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;前后左右:上下:总表面积:14. 解方程:,其中表示的整数部分,表示的小数部分,如,.(要求写出所有的解)【答案】、、、【考点】计算【解析】 因,原式可化简为:,整理得,,,因为,则,.当,;当;当;当;当不满足;则符合题意取值有:.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16. 甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走,乙以上山的速度可以走,则;在第二个过程中,甲下山的S可以转化成上山的,则甲以上山的速度可以走,乙以上山的速度可以走,则.,计算得,米.。
2016年第十四届小学希望杯全国数学邀请赛六年级第2试试题及答案
2016年第十四届小学六年级“希望杯”全国数学邀请赛第2试一、填空题8、如图3,在正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC。
则△BEF的面积与正方形ABCD的面积比值为______。
9、图4是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图4中的阴影部分面积是_______。
(π=3)10、已知三个最简真分数的分母分别是6,15和20,它们的乘积是1/30,则在这三个最简真分数中,最大的数是_____________.11、将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球________个.12、两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧__________分钟.二、解答题,每题都要写出推算过程.13、如图5所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.13、阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的2/3.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16、甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.1462参考答案12345678 61330.489,577/202564105/12 9101112131415164.55/6615091,42033/5,22/3,57/7,94,161550。
第四届小学“希望杯”全国数学邀请赛六年级第二试试题及答案解析
第四届小学“希望杯”全国数学邀请赛 六年级 一、填空题(每小题 4 分,共 60 分) 第2试
1. 8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
【解析】:原式=(8.1+1.9)×1.3+(11.9-8)÷1.3 =13+3 =16
【解析】 :若每个正方形中数的和都是 18, 那么总和为 54, 而这 10 个数的和为 45, 其中 A、
B 各多算了一次,故 A+B=9。
6.磁悬浮列车的能耗很低。它的每个座位的平均能耗是汽车的 70%,而汽车每个座位的平 均能耗是飞机的 ________倍。 【解析】:磁悬浮列车每个座位的平均耗能是飞机每个座位的平均耗能的 每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的 3 倍。
小书灯家长社区整理发布
3/7
小书灯家长社区
【解析】:
如图,连结 DF、CF,那么显然△DHG 与△DHF 同底等高,两者面积相等,我们容易知道又四 边形 BCFD 是平行四边形, 由蝴蝶定理可知△DHF 与△BHC 面积相等, 那么阴影部分的面积恰 好为正方形 ABCD 的一半即 18 平方厘米。
19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。这 40 名学生可分为甲、乙、 丙三类, 每类学生的劳动效率如下表所示。 如果他们的任务是: 挖树坑 30 个, 运树苗不限, 那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
【解析】:比较一下甲乙丙三人运树苗与挖树坑的效率比:
小书灯家长社区整理发布
7/7
2 3 2. 一个数的 比 3 小 ,则这个数是________。 3 7
3 2 27 6 【解析】:该数为 (3 ) 3 。 7 3 7 7
第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析
第十四届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题.1.计算:323 1.33243⨯+÷=________.【答案】6【考点】计算,提取公因数【解析】32 3 1.332 43⨯+÷=3.75 1.330.375⨯+⨯0.375(133)=⨯+6=2.已知0.5a=,13b=,则a b-是178的_______倍.【答案】13【考点】计算,分数【解析】110.536a b-=-=,1113678÷=3.若111123452x+++<,则自然数x的最小值是_______.【答案】3【考点】计算,分数【解析】1111773023456060x+++=<,3077x >,则x 最小为3.4. 定义:如果::a b b c =,那么b 称为a 和c 的比例中项.如1:22:4=,则2是1和4的比例中项.已知0.6是0.9和x 的比例中项,15是12和y 的比例中项,则x y +=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:0.60.60.9x ⨯=,111552y ⨯=,解得:0.4x =,0.08y =,则0.40.080.48x y +=+=5. A 、B 、C 三人单独完成一项工程所用的时间如图所示.若A 上午8:00开始工作,27分钟后,B 和C 加入,三人一起工作,则他们完成这项工程的时刻是______时______分.【答案】9时57分【考点】应用题,工程问题【解析】如图得A 、B 、C 的工作效率分别是111645、、,27分钟为920小时,则A 单独的工作量:19362040⨯=,三人合作时间:31113(1)()406452-÷++=(小时),共花时间:933920220+=(小时),396011720⨯=(分钟),即完成这工程时刻为9时57分.6. 如图,A ,B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A 盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率是________.【答案】720【考点】数论,质数【解析】根据乘法原理可得:组成两位数ab 共有:4520⨯=(个),两位数ab 是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数ab 是质数的概率为:720. 7. 在算式“8=5⨯⨯希望杯就是好就是好希望杯”中,不同的汉字代表不同的数字,则希望杯就是好所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】(1000)8(1000)5⨯+⨯=⨯+⨯希望杯就是好就是好希望杯8000850005⨯+⨯=⨯+⨯希望杯就是好就是好希望杯79954992⨯=⨯希望杯就是好,205128⨯=⨯希望杯就是好,所以得:当128,205==希望杯就是好时,结果不是六位偶数,当1282256,2052410=⨯==⨯=希望杯就是好,符合要求;当扩大4倍时,出现753213521重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:256410=希望杯就是好.8. 如图,正方形ABCD 中,点E 在边AD 上,点F 在边DC 上,AE =2ED ,DF =3FC ,则△BFE的面积与正方形ABCD 的面积的比值是_______.【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD 为1,连接BD 、AC ,121233AEB S ∆=⨯=,11312348EDF S ∆=⨯⨯=,111248BFC S ∆=⨯=,1115138812BEF S ∆=---=,5::15:1212BEF ABCD S S ∆==正方形.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率π取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:422=4⨯÷;剩余阴影面积:2r 221231210.5π÷-⨯÷=⨯÷-=阴影部分面积:40.5=4.5+10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是130.则在这三个最简真分数中,最大的数是_______.【答案】56【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为a b c ,,,则三个最简真分数为61520a b c、、,160615201800301800a b c abc ⨯⨯===,602235=⨯⨯⨯,则分析得三个最简真分数为:54361520、、,最大为56.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,264=62÷,将100个乒乓球分成6组余2个盒子,100156=10-⨯,104=6-.12. 两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的8475180.5-÷=(),较长那根还能燃烧:750.5150÷=(分钟)二、解答题13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.①②③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:222222+++++=(个)12345691(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;+++++++++前后左右:12345678910=55⨯上下:1010=100总表面积:5541002420⨯+⨯=14. 解方程:[]{}{}29x x x x ⨯+=+,其中[]x 表示x 的整数部分,{}x 表示x 的小数部分,如[]3.143=,{}3.140.14=.(要求写出所有的解)【答案】9.0、187、173、365【考点】计算【解析】 因[]{}x x x =+,原式可化简为:[]{}[]{}{}29x x x x x ⨯++=+,整理得,[]{}[]{}+9x x x x ⨯-=,[]{}(1)(+1)8x x -⨯=,因为{}1+12x ≤≤,则[]418x ≤-≤,[]59x ≤≤.当[]9x =,9.0x =;当[]18,87x x ==;当[]17,73x x ==;当[]36,65x x ==;当[]45,54x x ==不满足;则符合题意取值有:1139.0876735x x x x ====、、、.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的23.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有12+3=15(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16.甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S ,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走50S +,乙以上山的速度可以走150S -,则50150V S V S 甲乙+=-; 在第二个过程中,甲下山的S 可以转化成上山的3S ,则甲以上山的速度可以走43S ,乙以上山的速度可以走1766S S S +=,则483776S V V S 甲乙==. 5081507S S +=-,计算得,1550S =米.。
第九届(2011)希望杯六年级第2试及答案
第九届小学“希望杯”全国数学邀请赛试题六年级 第2试2011年4月10日上午9:00-11:00 一、填空题(5'×12=60')1、计算:=-+∙∙114154.0625.3________________.2、对于任意两个数x 和y ,定义新运算◆和⊗,规则如下: x ◆y =y x y x 22++,x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯,1⊗2=5115632121==+⨯, 由此计算∙∙63.0◆=⊗)2114(__________.3、用4根火柴,在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…,如图1,拼成的图形中,若最下面一层有15个正方形,则需火柴__________根。
4、若自然数N 可以表示城3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是_________。
(注:最小的自然数是0)5、十进制计数法,是逢10进1,如141022410⨯+⨯=,15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法,是逢2进1,如22101111121217=⨯+⨯+⨯=,2231011001020212112=⨯+⨯+⨯+⨯=,如果一个自然数可以写成m 进制数m 45,也可以写成n 进制数n 54,那么最小的m =_______,n =________。
(注:a n na a a a a 个⨯⋅⋅⋅⨯⨯⨯=)6、我国除了用公历纪年外,还采用干支纪年,根据图2中的信息回答:公历1949年按干支纪年法是____________年。
7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球,为了保证有5次摸出的结果相同,则至少需要摸球__________次。
8、根据图3中的信息回答,小狗和小猪同时读出的数是___________。
9、图4中的阴影部分的面积是__________平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第八届小学“希望杯”全国数学邀请赛六年级 第 2 试一、填空题(每小题 5 分,共 60 分)330.21.45.4 =。
1.352.已知 111 ,其中 A 、 B 、 C 都是大于 0 但互不相同的自然数,则116 A11B616CC(A+B) ÷C =。
3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是 。
4.王老师在黑板上写了这样的乘法算式: 12345679×( ) =□□□□□□□□□,然后说道:只要同 学们告诉我你喜欢 1, 2,3, 4, 5, 6, 7, 8,9 中的哪个数,我在括号里填上适当的乘数,右边的积一定全是你喜欢的数字组成。
小明抢着说:我喜欢 3。
王老师填乘数“ 27”,结果 12345679×( 27)=333333333 ;小宇说:我喜欢 7,只见王老师在乘数上填“63”,结果是 12345679×( 63)= 777777777。
小丽说:我喜欢 8,那么在乘数上应填。
5.如图,三角形 ABC 中,点 E 在 AB 上,点 F 在 AC 上, BF 与 CE 交于点 P 上,如果四边形 AEPF 与三角形 BEP 、三角形 CFP 的面积都是 4,则三角形 BPC 的面积是。
6.张老师带六一班学生去种树,学生恰好可以平均分成 5 组,已知师生每人种的树一样多,共种树527 棵,问六一班学生有人。
7.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100 秒,女孩走了 300 秒,已知在电梯静止时,男孩每秒走 3 米,女孩每秒走 2 米,则该自动扶梯长米8.有 7 根直径都是 5 厘米的圆柱形木头,现在用绳子分别在两处把它们捆在一起,则至少需要绳子分米(结头处绳子不计,取 3.14 )9. 一个深 30 厘米的圆柱形容器,外圆直径22 厘米,壁厚 1 厘米,已装深27.5 厘米的水。
现放入一个底面直径10 厘米,高 30 厘米的圆锥形铁块,则将有立方厘米的水溢出?10. 新年联欢会共有8 个节目 , 其中有 3 个非歌唱类节目 . 排列节目单时规定 , 非歌唱类节目不相邻, 而且第一个和最后一个节目是歌唱类节目, 则节目单有种不同的排法 .11. 有一水池 , 单开进水管 3 小时可把水池注满 , 单开出水管 4 小时把排空满池水. 水池建成后 , 发现水池漏水 , 这时 , 若同时打开进水管与出水管14 小时才能把水池注满, 当水池注满后 , 并且关闭进水管与出水管, 经过小时水池会漏完 .12. 甲乙两人分别从A、 B 两地同时出发,相向而行,已知甲、乙两人的速度比是6: 5,他们相遇时距AB两地的中点 5 千米,当甲到达 B 时,乙距 A 还有千米二、解答题(每题15 分,共 60 分)每题都要写出推算过程。
13.有一个电子计算器的数字显示屏坏了,有部分区域在该亮时不亮,使原本的一道一位数乘以一位数,积是两位数的乘法算式,出现如图 1 所示怪样(不妨用火柴棒来表示),小明对此用火柴棒摆出可能算式如图 2。
请问,图中所示的算式有哪几种?14.修一条高速公路,若甲、乙、丙合作,90 天可完工;若甲、乙、丁合作,120 天可完工;若丙、丁合作, 180 天完工;若甲、乙合作36 天后,剩下的工程由四人合作,还需要多少天完工?15.甲乙两辆车在与铁路并行的道路上相向而行,一列长180 米的火车以60 千米 /小时的速度与甲同向前进,火车从追上甲车到遇上乙车,相隔 5 分钟,若火车从追上并超过甲车用时30 秒,从与乙车相遇到离开用时 6 秒,求乙车遇到火车后再过多长时间与甲车相遇?16.定: f (n)= k(其中 n 是自然数, k 是 0.987651234658⋯⋯的小数点后的第n 位数字 ),如 f(1)=9,f(2)= 8, f(3)=7,求5 f⋯⋯f f 5 2 ⋯⋯ f f 8的。
第八届小学“希望杯”全国数学邀请赛答案六年级第2试1.原式=0.75/1.35×5.4=32.等式左边 , 经过计算 =191/228, 再把它转化成等式右边形式可算出 A=1,B=5,C=6(A+B)÷C=1( 由于博文中不好显示这种形式的分数, 故解析较略 )3.要想这个奇数最大 , 那么位数越多越好 , 要想位数越多 , 那么该数里面所涉加法的次数越多越好 , 要想加法的次数越数 , 那么其中的加数越小越好 , 依以上考虑 , 不难找出该数是 10112354.由题可知 :12345679×27=333333333即12345679×3×9=333333333即12345679×9=111111111可推出 12345679×9×8=888888888即12345679×72=8888888885.连接 AP、 EF因为三角形BPE和三角形CFD的面积相等,都等于 4所以三角形BEF和三角形EFC的面积相等,这两个三角形的底边都是EF,所以它们的高肯定相等,可以推出 EF∥ BC那么,根据平行线定律,可得CF : FA=BE: EA在三角形CPF和三角形APF中,由于高相同,所以面积之比会等于底边之比,即三角形CPF的面积:三角形 APF的面积 =CF: FA同理可得:三角形BPE的面积:三角形EPA的面积 =BE: EA综合上面三个比,可得三角形 CPF的面积:三角形APF的面积 =三角形 BPE的面积:三角形EPA的面积因为三角形BPE的面积 =三角形 CPF的面积 =4所以,三角形EPA的面积 =三角形 APF的面积 =1/2四边形EPFA的面积=2那么BE: EA=2: 1即三角形BEC的面积:三角形ECA的面积 =BE: EA=2: 1三角形 ECA的面积 =8,所以,三角形BEC的面积 =16那么,三角形BPC的面积 =16-4=126.527=17×31师生人数可能是17 人 , 或是 31 人 , 即学生人数是16 人或 30 人, 由于学生人数能平均分成五组, 故学生人数应是30 人7. 牛吃草问题“新草” : 扶梯速度 :(300 ×2 - 100×3) ÷(300 -100)=1.5米/秒“原草” : 扶梯长度 :300 ×2 - 1.5 ×300=150 米8.每处绳子由 6 段长度为 5 分米和 6 段 60°弧形组成,所以,至少需要绳子长度=2×( 5×6+6× 60 °/360 ° ×л× 5)=91.49. 容器的容积 =л× [(22- 2) ÷2] ×[(22 - 2) ÷2] ×30=3000л容器内水的体积 =л× [(22 - 2) ÷2] ×[(22 - 2) ÷2] ×27.5=2750л圆锥的体积 =л× 5×5×30×1/3=250л圆锥的体积 +水的体积 =3000л=容器的容器水刚好满 , 不会溢出10. 先将 5 个歌唱类节目排列好,有5×4×3×2×1=120 种这 5 个节目中有四个空隔,再将 3 个非歌唱类节目按插在这四个空隔中,有4×3×2=24 种所以共有120×24=2880 种11.设 x 小时排空由题意可列出方程: (1/3–1/4–1/x)×14=1解得x=8412.第一次相遇时 , 时间相等 , 速度与路程成正比 , 甲乙的速度比是 6:5, 甲乙所走的路程比也是 6:5, 即甲比乙多走 1 份路 , 由题可知 , 甲比乙多走5×2=10 千米 , 即 1 份路就是10 千米 , 总路程即为11×10=110 千米 , 即 , 第一次相遇时, 甲走了 60 千米 , 乙走了 50 千米在接下来行走中 , 甲乙所用的时间相等 , 所走路程比仍是 6:5, 此时 , 甲到 B, 走了 50 千米 , 那么乙就走了50× 5/6 = 250/6 千米 , 离 A 地 60- 250/6 = 110/6 千米13. 在数字 0---9中,只有4,5,6,8,9,符合题意,所以有以下种情况 :5 ×9=45,9 ×5=45,6×8=48,8 ×6=48,6×9=54,9 ×6=54,8×8=6414.对应法解工程应用题( 此处的甲乙丙丁分别表示其工作效率)甲+乙 +丙 =1/90甲+乙 +丁 =1/120丙+丁 =1/180以上三个式子相加, 得 2 甲 +2 乙 +2 丙 +2 丁 =9/360甲+乙 +丙+丁 =1/80可推出甲 +乙 =1/80–1/180 =5/720(1-5/720 ×36) ÷ 1/80 = 60天15.题中”火车追上到超过甲用30 秒” , 是火车尾追甲 , 追及路程是火车长可求出甲的速度= 60000/3600-180÷30 = 32/3米/秒题中“火车与乙相遇到离开用 6 秒”,是火车尾与乙相遇,相遇路程是火车长可求出乙的速度 =180÷6 –60000/3600 = 40/3米/秒题中“火车追上甲到遇到乙用了 5 分钟”,此时,火车走了60000× 5/60 =5000米甲走了 32/3 × 5 ×60= 3200 米,与乙相隔 5000-3200=1800 米甲乙相遇时间 =1800÷( 32/3 + 40/3 )=1.25 分钟16.由题可知: ?( 5) =5, 505 次 ?( 5)结果仍是5,所以,所求的前面部分=5×5=25后一部分: ?( 8)=3,?( 3)=7,?( 7) =3,?( 3)=7、、、、、 2 个重复一次, 2010÷2没有余数, 2010 个就应 ?( 3) =7,所以后一部分 =2×7=14即,最后结果=25+14=39。