复变函数习题总汇与参考答案
复变函数_习题集(含答案)
原积分 .
20.解: 在 内以 为2级极点.
.
原积分 .
21.解: .
记 , 在上半平面内仅以 为二级极点.
,
故 .
22.解: .
设 , 以 为二级极点,且
,
.
故 .
23.解: .
设 , 为 在上半平面的一级极点,
,
.
.
24.解: .
记 满足 ,
.
故 .
25.解: 设 则 , .
,
令 则 在 内只有一级极点, ,依定理有
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
5.设函数 在区域 内解析, 在区域 内为常数,证明 在区域 内必为常数.
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
.
9.解:
.
10.解: .
11.解: 在C内解析.
.
12.解: .
13.解:
.
14.解:(a) .
(b)
.
15.解:(a) .
(b)
.
16.解: 在 内仅以z=1,z=2为分别为一、二级极点.
复变函数考试试题及参考答案
复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
复变函数习题及答案解释
第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数期末试题及答案
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
(完整版)复变函数试题及答案
-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
复变函数习题及解答
第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
复变函数综合练习题及答案
1复变函数综合练习题及答案第一部分 习题一. 判断下列命题是否正确,如正确, 在题后括号内填√,否则填⨯.(共20题) 1. 在复数范围内31有唯一值1.( ) 2. 设z=x+iy , 则=z z 22y x +.()3. 设,2321i z -=则.32arg π=z ( ) 4. z cos =ω是有界函数.( ) 5. 方程1=ze 有唯一解z=0.( ) 6.设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导.()7.设函数),(),()(y x iv y x u z f +=在00iy x z +=处可导,则)(00,0)()(y x yui y v z f ∂∂-∂∂='.( )8. 设函数)(z f 在区域D 内一阶可导,则)(z f 在D 内二阶导数必存在. ( ) 9.设函数)(z f 在0z 处可导, 则)(z f 在0z 处必解析.( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析.()11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数.( ) 12. 设n 为自然数,r 为正实数,则0)(00=-⎰=-r z z n z z dz.()13. 设)(z f 为连续函数,则⎰⎰'=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值.( )214. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=⎰cdz z f .( )15. 设函数)(z f 在单连通区域D 内解析, c 是D 内的闭曲线,则对于c D z ∈0有)(2)(00z if dz z z z f cπ=-⎰. ( )16. 设幂级数∑+∞=0n n nz c在R z ≤(R 为正实数)内收敛,则R 为此级数的收敛半径. ( )17. 设函数)(z f 在区域D 内解析,D z ∈0,则n n n z z n z fz f )(!)()(000)(-=∑+∞=. ( )18. 设级数n n nz z c)(0-∑+∞-∞=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数.( ) 19. 设0z 是)(z f 的孤立奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.()20. 设函数)(z f 在圆周1<z 内解析,0=z 为其唯一零点,则⎰==1].0),([Re 2)(z z f s i z f dzπ ( )二. 单项选择题.(请把题后结果中唯一正确的答案题号填入空白处,共20题)1. 设复数3)22(i z -=,则z 的模和幅角的主值分别为____________.A. 45,8πB. 4,24πC. 47,22π2.)Re(1z z -<是__________区域.A. 有界区域B. 单连通区域C. 多连通区域3.下列命题中, 正确的是_____________. A. 零的幅角为零B. 仅存在一个z 使z z-=1C.iz z i=14.在复数域内,下列数中为实数的是__________.A. i cosB. 2)1(i -C.38-35.设i z +=1,则=)Im(sin z _________.A. sin1ch1B. cos1sh1C. cos1ch16.函数)(z f =2z 将区域Re(z)<1映射成___________.A. 412v u -<B. 412v u -≤C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续 B. 可导C. 解析8. 下列函数中为解析函数的是_____________.A. )(z f =iy x -2B.)(z f =xshy i xchy cos sin + C.)(z f =3332y i x -9. 设函数),(),()(y x iv y x u z f +=且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是_____________时, )(z f 在D 内解析.A. 可导函数B. 调和函数C. 共轭调和函数10. 设0z 是闭曲线c 内一点, n 为自然数,则⎰-cn z z dz)(0=________________. A. 0B. i π2C. 0或i π211. 积分dz z zz ⎰=-22)1(sin =_______________. A. 1cos B. i π21cos C. i π2sin112. 下列积分中,其积分值不为零的是___________________. A.⎰=-23z dz z zB. 1sin z zdz z =⎰C.⎰=15z zdz ze 13. 复数项级数∑+∞=13n nnz 的收敛范围是________________.A. 1≤zB.1<zC.1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ⋃⋃组成4复合闭路Γ且D D ⊂Γ,则___________________. A. 0)()()(21=++⎰⎰⎰c c c dz z f dz z f dz z fB. 0)(=⎰Γdz z fC.⎰⎰⎰-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221ze z-在z=0的展开式是_______________________. A. 泰勒级数B. 罗朗级数C. 都不是16. 0=z 是4)(zshzz f =的极点的阶数是_____________. A. 1B. 3C. 417. 0=z 是411)(zez f z-=的____________________. A. 本性奇点B. 极点C. 可去奇点18. 设)(z f 在环域)0(0R r R z z r <<<-<内解析,则n n nz z cz f )()(0∑+∞-∞=-=,其中系数n c =______________________.A.!)(0)(n z fn , ,2,1,0=nB.!)(0)(n z fn ,,2,1,0±±=nC.,,2,1,0,)()(2110 ±±=-⎰+n d z f i c n ζζζπc 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f =1-ze z,则]2),([Re i z f s π=__________________. A. 0B. 1C. i π2 20. 设函数)(z f =)1(cos -z e z z,则积分⎰=1)(z dz z f =________________.5A. i π2B. ]0),([Re 2z f s i πC. .2,0,]),([231i z zz f ik k kππ±=∑=三. 填空题 (共14题)1. 复数方程31i e z-=的解为____________________________________. 2. 设i z 22-=,则z arg =_____________,z ln =___________________________. 3.411<++-z z 表示的区域是___________________________________.4. 设,sin )(z z z f =则由)(z f 所确定的 ),(y x u =____________________,),(y x v =_______________________.5. 设函数)(z f =⎩⎨⎧=≠+-0,00,sin z z A e z z 在0=z 处连续,则常数A=____________.6. 设函数)(z f =ζζζζd z z ⎰=-++22173,则)1(+'i f =________________________.若)(z f =ζζζζd z z ⎰=-+2353,则)(i f ''=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的一个原函数,且D z z ∈10,,则⎰1)(z z dz z f =_______________________.8. 当a =________时,xyiarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f =zzsin 在z=0处的罗朗展开式的最小成立范围为_____________.612. 设∑+∞-∞==n nn z c z z 3sin ,则______________________,02==-c c .13. 积分dz zez z⎰=11=________________________.14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题(共6题)1. 设函数)(z f =)(2323lxy x i y nx my +++在复平面可导,试确定常数l n m ,,并求)(z f '.2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足i f =)0(.3. 试讨论定义于复平面内的函数2)(z z f =的可导性. 4. 试证22),(y x yy x u +=是在不包含原点的复平面内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足1)(=i f .5. 证明z e z f =)(在复平面内可导且zz e e =')(.6. 证明⎰⎩⎨⎧>==-c n n n i z z dz1,01,2)(0π,其中n 为正整数,c 是以0z 为圆心,半径为r 的圆周.五. 求下列积分 (共24题)1. 计算dz z c⎰sin ,其中c 是从原点沿x 轴至)0,1(0z ,然后由0z 沿直线x=1至)1,1(1z 的折线段.2.⎰+cdz z z )]Re(2[,其中c 是从点A(1,0)到点B(-1,0)的上半个圆周.73.⎰+-cdz z z)652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线.4.dz ze iz ⎰+π11. 5.dz z z i z ⎰=-++21)4)(1(122 6.dz z z zz ⎰=--ππ2)1(cos 2.7.⎰=-232)(sin z dz z zπ. 8.⎰-+=cz z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9.⎰++=cz z dzI )1)(12(2,其中曲线c 分别为1)1=-i z2)23=+i z 10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e cz⎰-3)1(. 11. 23cos sin [](2)zzz e z e I dz z z z ==+-⎰. 12.⎰=--2)1(12z dz z z z . 用留数定理计算下列各题.13. dz z z e z z⎰=-1302)(,其中0z 为10≠z 的任意复数.14. dz z e z z⎰=+222)1(π.815.⎰=-24)1(sin z dz z zπ. 16.dz z z zz ⎰=-+12)12)(2(sin π. 17.⎰=1z zdz tg π.18.dz z zz ⎰=22sin . 19.⎰=+-122521z dz z z . 20.dz z z z ⎰=+-14141. 21.dz iz z z ⎰=-+122521.22. dz z z z c ⎰++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线.23. dz z z c ⎰++1142,其中c 同上.24.⎰++c dz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数 (共8题)1.421)(z e z f z-=.2. 1sin )(-=z z z f .3.3)1(sin )(z zz f +=.94.224)1(1)(++=z z z f . 5.1)(-=z e z z f . 6.2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f .8.z zz f sin 1)(+=. 七. 将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题)1.)2()1(1)(22z z z z f --=110<-<z2.13232)(2+--=z z zz f231<+z 3.1)(-=z e z f z+∞<-<10z4. 21)(2--=z z z f1)1<z ,2). 1<z <2,3). 2<∞<z5.)1(1)(2z z z f -=110<-<z 6.z z f cos )(=+∞<-πz 7.2)1(1)(z z f +=1<z8.zzz f sin 1)(+=π<<z 0 (写出不为零的前四项)9.)1(cos )(2-=z e z z z f+∞<<z 0 (写出不为零的前三项)1010. zz z f sin )(=π<<z 0 (写出不为零的前三项)11第二部分解答一、判断题.(共20题)1. ×2. √3. ×4. ×5. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √二、单项选择题.(共20题)1. A.2. B.3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B.三、填空题 1.,210)(235(2ln ±±=++,,k k i ππ) 2.47π ,i 472ln 23π+ 3. 13422<+y x 4. xshy y xchy x cos sin - , xchy y xchy x sin cos +5. 16. i ππ2612+- ,π36-7.)()(01z G z G -8.21 9.n m + ,n m -10.2π 11. π<<z 01212. 1 ,-61 13.i π14. 0 ,1四、求解下列各题1. 由题意得⎪⎩⎪⎨⎧+=+=2323),(),(lxyx y x v ynx my y x u利用yv nxy x u ∂∂==∂∂2 ,得l n =222233ly x xvnx my y u --=∂∂-=+=∂∂,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy xvi x u z f -+-=∂∂+∂∂='23iz =2. 由于x xu y v 6=∂∂=∂∂ 所以 ⎰+==)(66),(x xy xdy y x v ϕ,)(6x y xvϕ'+=∂∂ 又由yux v ∂∂-=∂∂,即y x y 6)(6='+ϕ 所以 0)(='x ϕ,C x =)(ϕ(C 为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件 i f =)0(代入可得1=C ,因此,满足条件i f =)0(的函数i z z f +=23)(3. 由题意知⎩⎨⎧=+=0),(),(22y x v y x y x u ,由于1302=∂∂==∂∂y v x x u ,02=∂∂-==∂∂x v y y u 可得⎩⎨⎧==00y x 由函数可导条件知,2)(z z f =仅在0=z 处可导。
(完整版)复变函数试题及答案
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式的值。
+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。
复变函数考试题及答案
复变函数考试题及答案一、选择题(每题2分,共40分)1. 下列哪个不是复数的实部?A. 2B. -3iC. -4D. 5i答案:B2. 设z = x + yi,其中x和y都是实数,若z和z*的虚部相等,则x和y满足的关系是:A. x = yB. x = -yC. x = 0D. y = 0答案:C3. 设复函数f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)是光滑函数,若f(z)满足Cauchy-Riemann方程,则u和v满足的关系是:A. ∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂xB. ∂u/∂x = ∂v/∂y,∂u/∂y = ∂v/∂xC. ∂u/∂y = -∂v/∂x,∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x,∂u/∂x = -∂v/∂y答案:A4. 设f(z)是复平面上的解析函数,若f(z)的实部为2x^2 + 3y,则f(z)的虚部为:A. 2x^2 - 3yB. 3yC. 2x^2D. 2x^3 + 3y答案:C5. 若f(z) = z^3,其中z为复数,则f(z)的导数为:A. 3z^2B. z^2C. 2zD. 0答案:A......二、计算题(共60分)1. 计算下列复数的模和辐角:(1)z1 = 3 + 4i(2)z2 = -2 + 2i(3)z3 = -4 - 3i答案:(1)|z1| = sqrt(3^2 + 4^2) = 5,arg(z1) = arctan(4/3)(2)|z2| = sqrt((-2)^2 + 2^2) = 2sqrt(2),arg(z2) = arctan(2/(-2)) + π = -π/4(3)|z3| = sqrt((-4)^2 + (-3)^2) = 5,arg(z3) = arctan((-3)/(-4)) + π = π/42. 设复数z满足|z-2| = 3,且arg(z-2) = π/3,求z的值答案:由题意得,z-2的模为3,即|z-2| = 3,且z-2的辐角为π/3,即arg(z-2) = π/3根据复数的模和辐角定义,可以得到:3 = |z-2| = sqrt((Re(z-2))^2 + (Im(z-2))^2)π/3 = arg(z-2) = arctan((Im(z-2))/(Re(z-2)))解方程组可以得到:Re(z-2) = 3/2Im(z-2) = 3sqrt(3)/2再加上z-2 = Re(z-2) + Im(z-2)i,可以计算得到:z = 3/2 + 3sqrt(3)/2 + 2 = 2 + 3sqrt(3)/23. 将复数z = 1 + i转化为极坐标形式,并计算z^3的值。
《复变函数》练习题册
第一章1. 设,43,5521i z i z +−=−=求21z z 与21z z . 参考答案:i 515721−−=z z ,i 515721+−=z z2.iii z −−−=131求()().,Im ,Re z z z z参考答案:()().25,21Im ,23Re =−==z z z z3. (1)证明:().Re 2212121z z z z z z =+ (2)证明:11Re()();Im()()22zz z z z z i=+=+4. 求下列复数的辐角主值、三角表示式、指数表示式123456781,1,1,1,2023,,1,z z z z z z i z z i=+==−+=−===−=−参考答案:1234567822arg ,arg ,arg ,arg ,3333arg 0,arg,arg ,arg 22z z z z z z z z πππππππ==−==−====−23i cossin221cos sin 12cos sin 233ii i i e i e i e πππππππππ=+=−=+= ++=,,,5 求i z 212−−=的三角表示式。
参考答案:−=−−=65sin 65cos4212ππi i z6. 求下列复数z 的实部与虚部,共轭复数,模与辐角()()821112432i i i i−++,参考答案:()()()()()()3arctan arg ,10z i 31,3Im ,1Re i,i 4i 4.32arctan arg ,131z i 132133,132Im ,133Re i 2311218−==+=−==+−−==+=−==+z z z z z z z z ,,,7.求下列各式的值(幂)()()()()361121i ++ ())53i − 参考答案:()()()())365511i 8i 21855(3)2(cos()sin())66i ππ+=−+=−−=−+−,8.求下列各式的值(方根)((12()()1331i −参考答案:((1601234522441cossin ,0,1,2,3.442221cos()sin(),0,1,2,3,4,5.661111,,,,,2222k k i k k k i k w i w i w i w i w i w i ππππππππ+++=+++=+=+−=−−()()130********cos sin ,0,1,2.337755cos sin ,cossin ,cos sin 1212121244k k i i kw i w i w i ππππππππππ−+−+ −=+=−++第二章1研究函数()()()22,2,z z h yi x z g z z f =+==和的解析性。
复变函数1到5章测试题及答案
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
(精品)《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数习题及答案
第一章习题一、选择题1.设z=3+4i,,则Re z2=( )A.-7 B.9C.16 D.252.arg(2-2i)=()A. B.C. D.3.设0<t≤2,则下列方程中表示圆周的是( )A.z=(1+i)t B.z=e it+2iC.z=t+D.z=2cost+i3sint4.复数方程z=3t+it表示的曲线是()A.直线B.圆周C.椭圆D.双曲线5.复方程所表示的曲线为________.. 直线;.抛物线;.双曲线;.圆二、填空题1. 设点,则其辐角主值arg z (-π<arg)为_______.2.设点, 则其辐角主值arg z (-π<arg)为_______.3.若,则=___________.4.arg(1+i)= .5.复数的模为_____, 幅角主值为_______.6.复数的模为_________,辐角为____________.7.设z=x+iy, 则曲线|z-1|=1的直角坐标方程为.一.选择1.下列集合为无界多连通区域的是()A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.二、填空1.设,则Imz=______________________。
三、计算题1.解方程z4=.2. 考察函数在处的极限。
复变函数第一章单元测试题一、判断题(正确打√,错误打)1.复数. ( )2.若为纯虚数,则. ( )3.。
()4.在点连续的充分必要条件是在点连续。
()5.参数方程(为实参数)所表示的曲线是抛物线. ( )二、填空题1.若等式成立,则______, _______.2.方程表示的曲线是__________________________.3.方程的根为_________________________________.4.复变函数的实部_________,虚部_________.5.设,,则= _ _____.6.复数的三角表示式为_________________,指数表示式为_________________.三、计算、证明题1.求出复数的模和辐角。
复变函数试题及答案
复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。
下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。
答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。
复变函数14套题目和答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
(完整版)复变函数试题及答案
2、计算积分
5z 2 z 2 z( z 1)2 dz
3、将函数 f z z 1 在 z 1的邻域内展成泰勒级数 , 并指出收敛范围 z1
x2
4、计算实积分 I= 0
(x2
1)( x 2
dx 4)
5、求 f ( z)
1 1 z2 在指定圆环 2
zi
内的洛朗展式
6、求将上半平面 Im z 0 共形映射成单位圆 w 1的分式线性变换
I=
1 2
(x2
x2 1)( x 2
dx 4)
= 1 2 i Re s f ( z) Resf (z)
2
zi
z 2i
z2
=i (z
i )( z2
4) z i
z2 ( z2 1)( z 2i ) z 2i
= 6
5 解: f ( z)
1
( z i)( z i )
1
1
=
2
(z i) 1
2i
zi
= 6 解:
1
(z
i)2
n
(
0
1) n
(2i )n (z i )n
w =L(i)=k z i zi
2i
w
k (z
i)2
2 zi
-3 -
6分
…4 分 …6分 …1 分 …2 分 …3 分 …5 分 …6 分 …1 分 …3 分
…6 分 2分
…3 分
____________________________________________________________________________________________________________
w L z ,使符合条件 L i 0 , L i 0
复变函数总习题及答案
第二章习题姓名:学号:专业:一、填空题1.MCS-51系列单片机为8 位单片机,,51系列单片机的地址线有16 条,共有40 个引脚。
2.当单片机的PSW=01H时,这时当前的工作寄存器区是0区,R4所对应的存储单元地址为04H。
3.单片机外部三大总线分别为地址总线、数据总线和控制总线。
4.8051内部有4并行口,P0口直接作输出口时,必须外接上拉电阻;并行口作输入口时,必须先置1,才能读入外设的状态。
5.MCS—51的存储器空间配置从功能上可分为四种类型:_外部数据存储器_、内部数据存储器、__内部程序存储器__、外部程序存储器。
6.设计一个以AT89C51单片机为核心的系统,如果不外扩程序存储器,使其内部4KB闪烁程序存储器有效,则其EA*引脚应该接高电平。
7.半导体存储器分成两大类程序存储器和数据存储器,其中数据存储器具有易失性,常用于存储临时数据。
8.PC存放下一条将要从程序存储器取出指令的地址,具有自动加1特性。
在8051中决定程序执行顺序的是PC还是DPTR?PC 。
DPTR存放存放16 位地址,作为片外RAM寻址用的地址寄存器(间接寻址),故称数据指针。
9.8051单片机的内部硬件结构包括了:CPU、程序存储器、数据存储器、和定时计数器以及并行I/O口、串行口、中断控制系统、时钟电路、位处理器等部件,这些部件通过总线相连接。
10.一个完整的微机系统由硬件和软件两大部分组成。
11.MCS—5l单片机的堆栈区只可设置在片内RAM,堆栈寄存器SP是8位寄存器。
12.AT89S51复位后,PC与SP的值为分别为0000H 和07H 。
13.P2口通常用作_地址总线高八位,也可以作通用的I/O口使用。
14.MCS—51单片机的P0—P4口均是并行I/O口,其中的P0口和P2口除了可以进行数据的输入、输出外,通常还用来构建系统的数据总线和地址总线,在P0—P4口中,P0为真正的双向口,P1,P2,P3为准双向口,P3 口为双功能口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数习题总汇与参考答案
第1章 复数与复变函数
一、单项选择题
1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C ) A (ac+bd, a ) B (ac-bd, b) C (ac-bd, ac+bd ) D (ac+bd, bc-ad)
2、若R>0,则N (∞,R )={ z :(D )} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R
3、若z=x+iy, 则y=(D)
A B C D
4、若A= ,则 |A|=(C )
A 3
B 0
C 1
D 2
二、填空题
1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )
2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )
3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充
2z
z +2z z -i z z 2+i
z z 2-)1)(4()
1)(4(i i i i +--++∞
→n lim
+∞
→n lim
分必要条件是 x n =x 0,且 y n =y 0。
三、计算题
1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=
2、写出复数-i 的三角式。
解:
3、写出复数 的代数式。
解:
4、求根式 的值。
解: ππ4
5
|11|
arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限Θπ
π23
sin 23cos i i +=-i i i i
i i
i i i i i i
i i i
2
12312
1
21)1()1)(1()1(11--=--+-=⋅-+
+-+=
-+
-i
i
i i -+-113
27
-)
3
sin 3(cos 3327)27arg(3
273
03
π
ππ
π
i e
W z i +==-=∴=-=⋅
的三次根的值为Θ
四、证明题
1、证明若 ,则a 2+b 2=1。
证明:
而
bi a yi
x yi
x +=+-bi
a yi x yi x +=+-Θ||
||yi
x yi
x bi a +-=+∴2
2||b a bi a +=+1
1
1
2
2222
2
22=+∴=+∴=++=
+-∴b a b a y
x y x yi x yi x
3、证明:
证明:
)
Re(2212
2212
2
1z z z z z z +++=+∴
=+=--++-++=-++-+=+∴-=+=-=+=+++=+++=++=++=+)Re(2)(2)()())(())(()
)(())((211221*********
22
112212************
21z z by ax i ay bx by ax i ay bx by ax bi a yi x yi x bi a z z z z yi
x z yi x z bi a z bi a z z z z z z z z z z z z z z z z z z z z z z z z z 则则设)
Re(2212
22
12
21z z z z z z ⋅++=+
第2章 解析函数
一、单项选择题
1.若f(z)= x 2-y 2+2xyi,则 2、若f(z)=u(x, y)+iv(x,y), 则柯西—黎曼条件为(D )
A B
C D
3、若f(z)=z+1, 则f(z)在复平面上(C ) A 仅在点z=0解析 B 无处解析
C 处处解析
D 在z=0不解析且在z ≠0解析 4、若f (z )在复平面解析,g(z)在复平面上连续,则f(z)+g(z)在复平面上(C )
A 解析
B 可导
C 连续
D 不连续 二、填空题
1、若f(z)在点a 不解析,则称a 为f(z)的奇点。
2、若f(z)在点z=1的邻域可导,则f(z)在点z=1解析。
3、若f(z)=z 2+2z+1,则
4、若 ,则 不存在。
)
()(D z f ='y
v x v y u x u ∂∂=∂∂∂∂=∂∂且x
v x u x v y u ∂∂=
∂∂∂∂-=∂∂且y
v x
v y
u x
u ∂∂=∂∂∂∂=∂∂且x
v
y u y v x u ∂∂-=∂∂∂∂=∂∂且2
2)(+='z z f )
2)(1(7
)(--=z z z f =')1(f。