概率与统计测试题
概率与统计常用分布测试题
概率与统计常用分布测试题一、选择题1. 概率密度函数(probability density function, PDF)是描述连续型随机变量概率分布的函数。
下列哪种分布不是连续型随机变量的概率分布?a) 正态分布b) 二项分布c) 均匀分布d) 指数分布2. 下列哪种分布是用来描述二项试验中成功(success)的次数?a) 正态分布b) 泊松分布c) 几何分布d) 二项分布3. 对一组数据进行统计分析时,我们通常首先要计算其均值(mean)和标准差(standard deviation)。
下列哪种分布的均值和方差可以完全确定其分布?a) 正态分布b) 泊松分布c) 均匀分布d) 指数分布4. 如果一个随机变量服从标准正态分布(standard normal distribution),那么其均值和方差分别为多少?a) 均值为1,方差为1b) 均值为0,方差为1c) 均值为0,方差为0d) 均值为1,方差为05. 在概率论与数理统计中,可以使用卡方检验(chi-square test)来检验随机变量的拟合优度。
下列哪种分布被广泛地应用于卡方检验?a) 正态分布b) 假设检验分布c) 卡方分布d) 学生 t 分布二、填空题1. 二项分布是离散型随机变量的概率分布,其中每一次试验的结果只有成功(success)和失败(failure)两种可能。
一般来说所描述的试验是独立重复的。
一个二项分布的概率质量函数(probability mass function, PMF)可以表示为 P(X = k) = C(n, k) * p^k * (1-p)^(n-k)。
请问,试验次数为n,成功概率为p的二项分布的期望值(expectation)和方差(variance)分别是多少?期望值: ____________方差: ____________2. 泊松分布是描述单位时间或空间内事件发生次数的离散型随机变量的概率分布。
概率论与数理统计第一章测试题
第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。
初中数学统计与概率测试题(含答案)
初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。
请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。
请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。
高三数学单元测试《概率与统计》
(2)取得正品元件个数 的数学期望.
(参考数据:4个元件中有两个正品的概率为 ,三个正品的概率为 )
18.(本小题满分12分)已知10件产品中有3件是次品.
(1)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(2)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法
3.设随机变量ξ的概率分布列为P(ξ=k)= ,k=1,2,3,4……6,其中c为常数,则P
(ξ≤2)的值为()
A. B. C. D.
4.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()
高三数学单元测试《概率与统计》
一、选择题(本题每小题5分,共60分)
1.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()
A. B. C. D.
参考答案
一、选择题(每小题5分,共60分):
(1).D (2).B (3).B (4). C(5).D (6) B (7).B (8).C (9).C (10). B (11).C (12).C
二、填空题(每小题4分,共16分)
(13). (文) 5 (14). 24 (15). (p+0.1)a(16).
A. B. C. D.
5.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是()
概率统计期末考试试题及答案
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
概率论与数理统计自测题
概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
概率与统计测试题及详解
统计与概率一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011·淄博一中期末)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数分别是( )A .15,16,19B .15,17,18C .14,17,19D .14,16,20[答案] B [解析]50600+680+720=140,600×140=15,680×140=17,720×140=18,故选B.2.(文)(2011·山东实验中学期末)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是( )A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样[答案] B[解析] ①总体中高收入、中等收入、低收入家庭有明显差异,故用分层抽样;②总体容量与样本容量都较小,故采用简单随机抽样.(理)(2011·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( )A .10%B .15%C .30%D .45%[答案] D[解析] ∵正态曲线对称轴为μ=90,P(x<60)=0.05, ∴P(90<x<120)=12(1-2P(x<60))=0.45,故选D.3.(文)(2011·四川资阳市模拟)对总数为m 的一批零件抽取一个容量为25的样本,若每个零件被抽取的概率都为14,则m 的值为( )A .200B .150C .120D .100 [答案] D[解析] ∵25m =14,∴m =100. (理)(2011·黄冈期末)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A.156 B.17 C.114D.314[答案] C[解析] 从9块试验田中选3块有C 39种选法,其中每行每列都有一块试验田种植水稻的选法有6种,∴p =6C 39=114.4.(文)连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n)和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是( )A.56B.16C.712D.512[答案] D[解析] ∵夹角θ为锐角,∴错误!,∴错误!, 又∵m ,n ∈{1,2,3,4,5,6},∴满足条件的结果数为15. 而连掷两次骰子得到的结果数为36, ∴满足条件的概率是P =1536=512. (理)(2011·福州市期末)如图所示,正方形的四个顶点分别为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y =x 2经过点B ,现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是( )A.12B.14C.13D.25[答案] C[解析] 阴影部分的面积S =⎠⎛01x 2dx =13x 3|10=13,正方形面积为1,∴p =13,故选C.5.(文)(2011·福州市期末)如图是歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1、a 2的大小不确定[答案] B[解析] ∵甲、乙分数在70、80、90各分数段的打分评委人数一样多,故只须看个位数的和,乙的个位数总和37,甲的个位数字和为20+m<37,∴a 2>a 1,故选B.(理)(2011·巢湖质检)在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为λ1,λ2,平均数分别为μ1,μ2,则下列判断正确的是( )A.λ1>λ2,μ1<μ2 B .λ1>λ2,μ1>μ2 C .λ1<λ2,μ1<μ2 D .λ1<λ2,μ1>μ2[答案] B[解析] 由茎叶图知λ1=20.5,λ2=18.5,μ1=19.9,μ2=18.9,∴λ1>λ2,μ1>μ2,故选B.6.(文)(2011·温州八校期末)已知α,β,γ是不重合平面,a ,b 是不重合的直线,下列说法正确的是( )A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件D .“若a ⊥α,a∩b=P ,则b ⊥α”是不可能事件 [答案] D[解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.(理)(2011·丰台区期末)有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有( )A .24种B .48种C .96种D .120种[答案] B[解析] 先安排甲有2种方法,其余4名同学可安排余下4天的任意一天值日,∴共有2A 44=48种不同安排方法.7.(文)已知函数f(x)=sin aπ3x ,a 等于抛掷一颗骰子得到的点数,则y =f(x)在[0,4]上至少有5个零点的概率是( )A.13B.12C.23D.56 [答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f(x)在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f(x)在[0,4]上的零点至少有5个,故P =46=23,选C.(理)(2011·蚌埠二中质检)(3y +x)5展开式的第三项为10,则y 关于x 的函数图象的大致形状为( )[答案] D[解析] T 3=C 25(3y)5-2(x)2=10xy =10,∴y =1x(x>0),故选D.8.(2011·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a ,则a 的值为( )A .0.1B .0.2C .0.3D .0.4[答案] D[解析] 样本数据落在[2,10)内的频率为a =(0.02+0.08)×4=0.4.9.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,则复数P 1+P 2i 所对应的点P 与直线l 2:x +2y =2的位置关系是( )A .点P 在直线l 2的右下方B .点P 在直线l 2的右上方C .点P 在直线l 2上D .点P 在直线l 2的左下方[答案] D[解析] 易知当且仅当a b ≠12时,两条直线只有一个交点,而a b =12时有三种情况:a =1,b =2(此时两直线重合);a =2,b =4(此时两直线平行);a =3,b =6(此时两直线平行).而投掷一颗骰子两次的所有情况有6×6=36种,所以两条直线相交的概率P 2=1-336=1112;两条直线平行的概率为P 1=236=118,P 1+P 2i 所对应的点为P(118,1112,易判断点P(118,1112在直线l 2:x +2y =2的左下方,选D.10.(2011·河北冀州期末)某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .4[答案] D[解析] 由条件知⎩⎪⎨⎪⎧x +y +10+11+9=50x -102+y -102+1+1=10,∴⎩⎪⎨⎪⎧x =12y =8或⎩⎪⎨⎪⎧x =8y =12,∴|x -y|=4.11.(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6D .1-π6[答案] B[解析] 以点O 为圆心,半径为1的半球的体积为V =12×43πR 3=2π3,正方体的体积为23=8,由几何概型知:点P 到点O 的距离大于1的概率为P(A)=1-238=1-π12B.12.(2011·江西吉安质检)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产品x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A.4.5 C .3.15 D .3[答案] D[解析] 线性回归直线过样本点的中心(x -,y -),∵x -=4.5,y -=11+t4,∴11+t 4=0.7×4.5+0.35,∴t =3,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·浙江宁波八校联考)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.[答案] 1211[解析] 抽样比150 3000=1 20,第1组抽出号码为11,故第61组抽出号码为11+20×(61-1)=1211.14.(文)设集合A ={x|x 2-3x -10<0,x ∈Z},从集合A 中任取两个元素a ,b 且a·b≠0,则方程x 2a +y 2b=1表示焦点在x 轴上的椭圆的概率为________.[答案]310[解析] A ={x|-2<x<5,x ∈Z}={-1,0,1,2,3,4},由条件知,(a ,b)的所有可能取法有:(-1,1),(-1,2),(-1,3),(-1,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,-1),(2,-1),(3,-1),(4,-1),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共20种,方程x 2a +y 2b =1表示焦点在x 轴上的椭圆,应有a>b>0,∴有(2,1,),(3,1),(4,1),(3,2),(4,2),(4,3)共6种,∴所求概率P =620=310. (理)如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________.[答案]115[解析] 6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法6×2×2×2=48种,故所求概率P =48720=115. 15.(文)(2011·浙江宁波八校联考)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.[答案]37[解析] ∵|AB →|=k 2+1≤4,∴-15≤k≤15, ∵k ∈Z ,∴k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0得2k +4=0,∴k =-2,∵BC →=AC →-AB →=(2-k,3),由AB →·BC →=0得k(2-k)+3=0,∴k =-1或3, 由AC →·BC →=0得2(2-k)+12=0,∴k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,∴所求概率p =37.(理)(2011·豫南九校联考)(1-ax)2(1+x)6的展开式中,x 3项的系数为-16,则实数a的值为________.[答案] 2或3[解析] 展开式中x 3的系数为1×C 36-2aC 46+a 2C 56=-16,∴a 2-5a +6=0,∴a =2或3.16.(文)(2011·山西太原调研)在圆O 上有一定点A ,则从这个圆上任意取一点B ,使得∠AOB≤30°的概率是________.[答案]16[解析] 如图∠AOE =∠AOF =30°,当点B 落在EAF 上时,∠AOB≤30°, ∵∠EOF =60°,∴所求概率p =60°360°=16.(理)(2011·河北冀州期末)从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于...1,则取出这样的子集的概率为________. [答案]835[解析] 从8个数中任取4个共有C 48=70种取法,两数之和为1的取法有:-1+2,-2+3,-3+4,0+1共4种,要使取出的四个数中任何两数之和不等于1,则每组中的两个数只能取1个,故共有24种取法,故所求概率p =1670=835.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x -甲=85,x -乙=85,甲的方差为S 2甲=35.3,S 2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A ,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B ,其概率为P(B).则P(A)+P(B)=P(A +B)成立吗?请说明理由.[解析] (1)作出如图所示茎叶图,易得乙组数据的中位数为84.(2)派甲参赛比较合适,理由如下: ∵x -甲=85,x -乙=85,S 2甲=35.5,S 2乙=41, ∴x -甲=x -乙,S 2甲<S 2乙,∴甲的成绩较稳定,派甲参赛比较合适. (3)不成立.由已知可得P(A)=68,P(B)=78,P(A)+P(B)=138.而0<P(A +B)<1.所以P(A)+P(B)=P(A +B)不成立.[点评] P(A +B)=P(A)+P(B)成立的条件是A 和B 互斥,而此问题中的A 和B 是不互斥的,故P(A)+P(B)=P(A +B)不成立.18.(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.[解析] (1)设90~140分之间的人数是n ,由130~140分数段的人数为2人,可知0.005×10×n=2,得n =40.(2)设中位数为x,则0.35+(x-110)×0.045=0.2+(120-x)×0.045,解得x=3403≈113,即中位数约为113分.(3)依题意,第一组共有40×0.01×10=4人,记作A1、A2、A3、A4;第五组共有2人,记作B1、B2从第一组和第五组中任意选出两人共有下列15种选法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3,A4};{A1,B1}、{A2,B1}、{A3,B 1}、{A4,B1};{A1,B2}、{A2,B2}、{A3,B2}、{A4,B2};{B1,B2}设事件A:选出的两人为“黄金搭档组”,若两人成绩之差大于20,则两人分别来自于第一组和第五组,共有8种选法,故P(A)=815.19.(本小题满分12分)(文)(2011·湖南长沙一中期末)某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,100]之间的概率是915=0.6.(理)某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:表1:甲系列 表2:乙系列(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望E(ξ). [解析] (1)若该运动员希望获得该项目的第一名,应选择甲系列 理由如下:选择甲系列最高得分为100+40=140>115可能获得第一名 而选择乙系列最高得分为90+20=110<115,不可能获得第一名 记“该运动员完成K 动作得100分”为事件A “该运动员完成D 动作得40分”为事件B 则P(A)=34,P(B)=34记“该运动员获得第一名”为事件C 依题意得P(C)=P(AB)+P(A -B) =34×34+14×34=34. ∴运动员获得第一名的概率为34.(2)若该运动员选择乙系列,ξ的可能取值是50,70,90,110,则P(ξ=50)=110×110=1100,P(ξ=70)=110×910=9100,P(ξ=90)=910×110=9100;P(ξ=110)=910×910=81100ξ的分布列为∴E(ξ)=50×1100+70×100+90×100+110×100=104.20.(本小题满分12分)(文)(2011·广东佛山市质检)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽样进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图,并求p 、x 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选到的领队中恰有1人年龄在[40,45)岁的概率.[解析] (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06,频率直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2,所以n =2000.2=1000.由上可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以x =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60 30=2 1,所以采用分层抽样法抽取6人,[40,45)岁中抽取4人,[45,50)岁中抽取2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的有(a ,b)、(a ,c)、(a ,d)、(a ,m)、(a ,n)、(b ,c)、(b ,d)、(b ,m)、(b ,n)、(c ,d)、(c ,m)、(c ,n)、(d ,m)、(d ,n)、(m ,n),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m)、(a ,n)、(b ,m)、(b ,n)、(c ,m)、(c ,n)、(d ,m)、(d ,n),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为P =815.(理)(2011·河北冀州期末)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和期望E(ξ)的值. [解析] (1)设甲、乙两人同时到A 社区为事件E A ,则 P(E A )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)设甲、乙两人在同一社区为事件E ,那么 P(E)=3A 22C 24A 33=16,所以,甲、乙两人不在同一社区的概率是 P(E -)=1-P(E)=56.(3)随机变量ξ可能取的值为1,2,事件“ξ=i(i =1,2)”是指有i 个同学到A 社区,则P(ξ=2)=C 24A 22C 24A 33=13.所以P(ξ=1)=1-P(ξ=2)=23,ξ的分布列是∴E(ξ)=1×23+2×13=43.21.(本小题满分12分)(文)(2011·巢湖市质检)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,下图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图完成下表:(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.[解析] (1)(3)因为血液酒精浓度在[70,80)范围内有12人,[80,90)范围内有8人,要抽取一个容量为5的样本,[70,80)内范围内应抽3人,记为a ,b ,c ,[80,90)范围内应抽2人,记为d ,e ,则从总体中任取2人的所有情况为(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),恰有一人的血液酒精浓度在[80,90)范围内的情况有(a ,d),(a ,e),(b ,d),(b ,e),(c ,d),(c ,e),共6种,设“恰有1人属于醉酒驾车”为事件A ,则P(A)=610=35.(理)(2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.[解析] 若A 研究所独立地研究“甲型H1N1流感”疫苗,则其经济效益的期望为 0×23+a×13=a3万元.而两个研究所独立地研究时至少有一个研制成功的概率为 1-⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12所以两个研究所合作研究成功的概率为 12×(1+50%)=34于是A 研究所采用与B 研究所合作的方式来研制疫苗,所获得的经济效益的期望为0×14+12a×34=38a 万元,而38a>13a ,故应该建议A 研究所采用与B 研究所合作的方式来研制疫苗. 22.(本小题满分12分)(2011·辽宁铁岭六校联考)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i-n x -2=∑i =1nx i-x -y i-y -∑i =1nx i-x -2,a ^=y --b ^x -)[解析] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1-410=35. 故选取的2组数据恰好是不相邻2天数据的概率是35(2)由数据,求得x -=13(11+13+12)=12,y -=13(25+30+26)=27,3x -y -=972.∑i =13x iy i=11×25+13×30+12×26=977,∑i =13x 2i=112+132+122=434,3x -2=432. 由公式求得b ^=∑i =1nx iy i-n·x -·y -∑i =1nx 2i-n x -2=977-972434-432=52,a ^=y --b ^x -=27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=523=22,|22-23|<2;同样,当x =8时,y ^=52×8-3=17,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的.。
概率论与数理统计期末考试试卷
一、填空题:(每题3分,共30分.请把答案填在题中横线上.)1.设C B A ,,是三个随机事件,则事件“C B A ,,不同时发生”可以表示为: .2. 三个人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,问三人中至少有一个人能将此密码译出的概率是____________.3.设离散型随机变量X 的分布函数为()F x ,则{}P a X b <≤= .4.设X 的概率密度函数是{}111()10.520x f x P X ⎧-<<⎪=-<<=⎨⎪⎩,则其它 . 5.若(2,4)X N ,令__________Y =,则(0,1)Y N . 6. 设随机变量X 的方差()D X 存在,则[]()D X '= .7.已知随机变量X 有2(),()E X D X μσ==,根据契比雪夫不等式,则{}3P X μσ-<≥ .8.已知离散型随机变量X 服从参数为2的泊松分布,则()D X = .9.设12,,n X X X 是来自总体X 的样本,则11ni i X X n ==∑,2S = .10.评价估计量的标准有无偏性、有效性和 .1.用3个机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别为0.94,0.9,0.95,求全部产品中的合格率.2.已知随机变量X 的分布律为1240.50.30.2Xp ⎛⎫⎪⎝⎭,求()F x 及{}1 2.5P X -<<.3.设连续型随机变量X 的分布函数为20()0xA Be x F x -⎧+>=⎨⎩其它,试求:(1)A 、B 的值;(2)概率密度函数()f x .4. 已知随机变量X 、Y 相互独立,二维随机变量(,)X Y 的联合概率分布如下,请将表内空白处填入适当的数.试卷装订线5. 袋中有2只黑球,2只白球,3只红球,从中任取2只,用ξ表示取到黑球的只数,以η表示取到白球的只数(1)求(,)ξη的联合分布律; (2)求(2)P ξη+≥,22(1)P ξη+≤.6.设随机变量1234,,,X X X X 相互独立,且有(),()5,1,2,3,4i i E X i D X i i ==-=,设12341232Y X X X X =-+-,求 1(),(),X YE Y D Y ρ.三、应用题(每题8分,共16分)1.设电站供电网有10000盏电灯,夜晚每一盏开灯的概率是0.8,假定开、关时间彼此独立,估计夜晚同时开着的灯数在7900与8100之间的概率.2.一个车间生产铁钉,从某天的产品里随机抽取9个,量得结果如下(单位:毫米): 215,0.09x s ==,已知铁钉长度服从正态分布,求平均长度的双侧置信区间(0.05α=). 以下数据有可能在计算过程中要用到 0.025(2.5)0.9938,(8) 2.306t Φ==测验题(一)一、填空1、设123,,A A A 是三个事件,则这三个事件中至少有两个发生的事件是 。
概率论与数理统计测试题及答案
概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P A B P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布(A) 2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -. 4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1n ii X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为、、,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率.3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y 1}. 5.(10分)设随机变量(X,Y)的概率密度为 6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度.Y X 0 10 1一、填空题(每小题3分,共15分) 1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=,P(A 2)=,P(A 3)=,P(B|A 1)=,P(B|A 2)=,P(B|A 3)= ………3分(1)P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) ………5分=++= ………7分 (2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,, 33{}0.10.9(0,1,2,3)k k k P X k C k -=== ………3分X 0 1 2 3p………7分(2)P{X 1}=1-P{X=0}= ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, (10)分2412(3){/4/2}sin .24P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=,E (Y )=,E (XY )= ………4分Cov (X ,Y )=E (XY )-E (X )E (Y )=- ………6分 P{X +Y 1}=++= ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分(2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分22()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。
数的概率与统计练习题
数的概率与统计练习题一、选择题1. 在一副扑克牌中,红桃的数量是黑桃的两倍,方块的数量是梅花的三倍,那么在这副扑克牌中,梅花的数量是黑桃的几倍?A. 1倍B. 2倍C. 3倍D. 4倍2. 如图所示,一个骰子的每个面上都标有1至6的数字。
若一个人掷这个骰子两次,那么两次掷骰子赢的概率是多少?A. 1/12B. 1/6C. 1/4D. 1/23. 甲、乙、丙、丁四名学生依次从一堆石子中取球,每次可以取1个、2个或3个。
最后一颗石子由谁取到就算谁赢。
如果甲先取球,那么乙获胜的概率是多少?A. 3/8B. 1/4C. 3/16D. 1/84. 一张卡片标有字母A、B、C、D、E,从中随机抽取一张卡片。
抽到辅音字母的概率是多少?A. 1/5B. 1/2C. 2/5D. 4/55. 某班有35个学生,其中15个学生喜欢唱歌,20个学生喜欢跳舞,并且5个学生既喜欢唱歌又喜欢跳舞。
现从这班学生中随机抽取一个学生,抽到既喜欢唱歌又喜欢跳舞的概率是多少?A. 1/7B. 1/5C. 1/6D. 1/4二、填空题1. 一袋中有8个红球和4个蓝球,现从袋中连续取球3次,取到的都是红球的概率是多少?答案:7/332. 一种水果篮中有5个苹果、3个橙子和2个香蕉,现从篮子中随机取出3个水果,取出的水果中至少有1个橙子的概率是多少?答案:13/183. 有3个红桃、4个黑桃和5个方块,现从中随机取出2个扑克牌,取到两者都是红桃的概率是多少?答案:1/224. 一组数据中,35%的数小于12,40%的数大于16,那么这组数据中小于12或大于16的概率是多少?答案:75%5. 一副扑克牌中有52张牌,其中4张是红桃A和4张是黑桃A。
现从中随机抽取2张牌,抽到两张A的概率是多少?答案:1/221三、解答题1. 班级有40个学生,其中25个学生擅长语文,30个学生擅长数学。
假设每个学生只擅长其中一门学科,那么至少有多少个学生既擅长语文又擅长数学?答案:15个学生2. 一个正方形瓷砖被分成了9个小正方形,并且每个小正方形中都标有一个数字(1至9)。
初一数学上册《概率与统计》综合测试题(含答案)
初一数学上册《概率与统计》综合测试题
(含答案)
一、选择题
1. 某班级有60名学生,其中40人喜欢篮球,30人喜欢足球,15人既喜欢篮球又喜欢足球。
请问有多少人即不喜欢篮球也不喜欢足球的?
A. 35人
B. 20人
C. 10人
D. 5人
答案:B
2. 某商品原价是400元,现在打8折出售。
小明使用一张100元的折扣券购买该商品,他需要支付多少钱?
A. 300元
B. 320元
C. 360元
D. 380元
答案:C
...
二、填空题
1. 某场比赛共有12名选手参加,其中4名选手是女生,那么男生选手的人数是__8__人。
2. 一个色子被投掷6次,请问至少出现一次6的概率是
__11/36__。
...
三、解答题
1. 简述事件和样本空间的概念。
事件是指试验中可能发生的某个结果或一些结果的集合。
样本空间是指一个试验中所有可能结果的集合。
2. 请说明条件概率的计算方法。
条件概率是指在已知某个条件下,另一个事件发生的概率。
计算条件概率的方法是将事件A和B同时发生的概率除以事件B发生的概率。
...
以上是初一数学上册《概率与统计》综合测试题及答案。
希望能对您有所帮助!。
《概率论与数理统计》检测题
《概率论与数理统计》检测题(考试时间:90分钟)姓名 班级 分数一、填空题(每小题3分,共30分)1、设C B A ,,为三事件,则事件“C B A ,,同时发生”应表示为: 。
2、若B A ,互斥,则=AB 。
3、在n 重贝努利概型中,设每次实验中事件A 发生的概率为p ,则A 恰好发生k 次的概率为 。
4、某时间段内光顾某商店的顾客数ξ应服从 分布。
5、设某地区人群的身高服从正态分布)5,173(2N ,则该地区人群的平均身高为 。
6、设连续型随机变量ξ的分布密度为:⎪⎩⎪⎨⎧≥<-=1|| , 0 1|| , 1)(2x x x A x f ,则=A。
7、设随机变量X 的密度为)(x f ,则)(b X a P <<= 。
8、设),,,(21n x x x Λ是取自总体X 的样本,则总体期望的矩估计量为 。
9、若)1,0(~N ξ,)(~2n χη,且相互独立,则统计量nf /ηξ=服从 分布。
10、设总体X 服从正态分布),(2σμN ,2σ未知,随机抽样得到样本方差为2S ,若要对μ进行检验,则采用 检验法。
二、计算题(每小题7分,共42分)1、设有两个事件A ,B 的概率)(A P =0.5,)(B P =0.6,)(AB P =0.3,求A ,B 至少有一个发生的概率。
2、甲乙两射手各自对目标进行一次射击,已知甲的命中率为0.6,乙的命中率为0.5,求“两人都命中目标”的概率。
3、设随机变量X 服从=λ10的普阿松分布,求“1≥X ”的概率。
4、设连续型随机变量X 的密度为⎪⎩⎪⎨⎧-∈-=其他,0]1 , 1[,11)(2x x x πφ,求EX 。
5、设总体X 的分布密度为⎩⎨⎧<≥=-0,00,)(x x e x x θθφ,(0>θ),今从X 中抽取10个样本,得数据如下:1050,1250,1080,1200,1300,1250,1340,1060,1150,1150,求参数θ的极大似然估计。
数学中的概率分布与统计分析测试题
数学中的概率分布与统计分析测试题在我们的日常生活和各种科学研究中,数学中的概率分布与统计分析扮演着至关重要的角色。
从预测天气变化到评估投资风险,从医学研究中的临床试验到市场调查中的消费者行为分析,概率分布和统计分析为我们提供了理解和处理不确定性的有力工具。
接下来,让我们通过一系列测试题来深入探究这一重要的数学领域。
一、选择题(每题 5 分,共 30 分)1、下列哪个是离散型概率分布?()A 正态分布B 均匀分布C 二项分布D 指数分布2、对于一个均值为 5,标准差为 2 的正态分布,随机变量落在区间1, 9的概率约为()A 068B 095C 0997D 无法确定3、假设 X 服从参数为λ的泊松分布,且 P(X = 2) = P(X = 3),则λ的值为()A 2B 3C 6D 无法确定4、在统计中,用于描述数据集中趋势的量是()A 方差B 标准差C 中位数D 极差5、已知一组数据的方差为 4,若每个数据都乘以 2,则新数据的方差为()A 8B 16C 4D 326、对于两个相互独立的随机变量 X 和 Y,其方差分别为 4 和 9,则它们的和的方差为()A 13B 25C 5D 无法确定二、填空题(每题 5 分,共 30 分)1、二项分布的参数为 n 和 p,若 n = 10,p = 03,则其均值为_____。
2、正态分布的概率密度函数为 f(x) = 1/(σ√(2π)) e^((x μ)^2/(2σ^2)),其中μ 为_____,σ 为_____。
3、已知随机变量 X 服从区间0, 5上的均匀分布,则其概率密度函数为_____。
4、一组数据 1, 2, 3, 4, 5 的中位数是_____。
5、样本均值的计算公式为_____。
6、若随机变量 X 服从标准正态分布,即 X ~ N(0, 1),则 P(X <196) =_____。
三、计算题(每题 20 分,共 40 分)1、已知某工厂生产的零件长度服从正态分布 N(10, 05^2),从生产的零件中随机抽取一个,求其长度在 95 到 105 之间的概率。
小学四年级概率与统计练习题
小学四年级概率与统计练习题题目:小学四年级概率与统计练习题第一部分:概率计算1. 某班级有30个学生,其中20个是男生,10个是女生。
请问从班级中随机选择一个学生,他是女生的概率是多少?2. 一副标准扑克牌共有52张牌,其中红心和黑桃各有13张,梅花和方块各有13张。
请问从一副扑克牌中随机抽取一张牌,它是红心的概率是多少?3. 一枚公平的硬币抛掷一次,正面朝上的概率是多少?4. 甲、乙、丙三个学生参加一场考试,其考试成绩如下:甲:60分乙:80分丙:90分请问从他们中随机选择一个人,他的考试成绩大于70分的概率是多少?第二部分:数据统计与图表1. 下图是小明家的月度用水量统计表,请根据图表回答问题。
![image](image_link)a. 小明家一月份的用水量是多少?b. 二月份的用水量比一月份多还是少?c. 三月份的用水量是多少?d. 四月份的用水量比三月份多还是少?2. 下表是某小学四年级学生的身高统计表,请根据表格回答问题。
| 班级 | 身高范围(cm) | 学生数量 ||------|---------------|----------|| 1班 | 120 - 130 | 5 || 1班 | 131 - 140 | 8 || 1班 | 141 - 150 | 6 || 2班 | 120 - 130 | 4 || 2班 | 131 - 140 | 6 || 2班 | 141 - 150 | 7 |a. 1班的学生数量是多少?b. 2班身高在131cm以上的学生数量是多少?c. 班级1和班级2的学生数量总共是多少?d. 身高在141cm以上的学生数量是多少?第三部分:数据分析1. 某班级12个学生参加一场语文测试,他们的得分如下: 78, 86, 92, 73, 64, 80, 89, 77, 85, 91, 68, 79a. 这组数据的平均分是多少?b. 这组数据的中位数是多少?c. 这组数据的众数是多少?d. 这组数据的范围是多少?2. 某小区住户的家庭成员数统计如下:| 家庭成员数 | 家庭数量 ||------------|----------|| 1人 | 10 || 2人 | 15 || 3人 | 20 || 4人 | 25 || 5人以上 | 30 |a. 该小区共有多少个家庭?b. 平均每个家庭有几人?c. 家庭成员数最多的家庭有多少人?请按照题号完成相应的题目。
概率与统计初步测试题3份
测试一一、填空题:(每空 4分,共 32 分)1.设,表示两个随机事件,,分别表示它们对立事件,用,和,表示,恰有一个发生的式子为2.从一批乒乓球中任取 4 只检验,设表示“取出的 4 只至少有 1 只是次品”,则对立事件表示3.甲、乙两人同时各掷一枚硬币观察两枚硬币哪面向上。
这个随机试验的样本空间为4.____________________________________ 掷一颗骰子,出现 4点或 2 点的概率等于___________________________________ .5.____________________________________ 甲、乙两个气象合同时作天气预报,如果它们预报准确的概率分别是 0.8 和 0.7,那么在一次预报中,两个气象台都预报准确的概率是___________________________ (设两台独立作预报) .6._______________________________________________ 标准正态变量(0,1)在区间(- 2, 2)内取值的概率为_____________________ .7.作统计推断时,首先要求样本为随机样本,要得到简单随机样本,必须遵从的条件是8.已知随机变量的分布列为则()=_____ .二、选择题:(每小题 5 分,共 25 分)9.在掷一颗骰子的试验中,下列事件和事件为互斥事件的选项是()( A )= {1 ,2} ={1,3,5} (B)={ 2,4, 6}= {1}(C)= {1,5} ={3,5,6} (D)={2,3,4,5}={1,2}10.下面给出的表,可以作为某一随机变量的分布列的是11.对某项试验,重复做了次,某事件出现了次,则下列说法正确的一个是()( A )就是( B )当很大时,与有较大的偏差C )随着试验次数的增大,稳定于( D )随着试验次数的无限增大,与的偏差无限变小。
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
概率与统计综合测试题[1].doc(专题学习报)
概率与统计综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分为150分,考试时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项是符合题目要求的)1、甲、乙两人下棋,甲获胜的概率为30%,和棋的概率为50%,那么乙不输的概率为( ) A 、20% B 、70% C 、80% D 、30%2、一枚硬币连掷2次,只有一次出现正面的概率为( )A .32 B .41 C .31 D .21 3、有一批蚕豆种子,如果每一粒种子发芽的概率为0.9,那么播下15粒种子恰有14粒种子发芽的概率是( )A 、1-149.0 B 、149.0 C 、9.01415C (1-14)9.0 D 、)9.01(9.0141415-C4、某地区高中分三类,A 类校共有学生4000人,B 类校共有学生2000人,C 类校共有学生3000人,若采取分层抽样的方法抽取900人,则A 类校中的学生甲被抽取到的概率为( )A 、101 B 、409 C 、52 D 、215、设随机变量ξ的概率分布列为k Ck P 2)(==ξ,k =1,2,3,4,……6,其中C 为常数,则)2(≤ξP 的值为 A 、43 B 、2116 C 、6463 D 、6364 6、袋中有编号为1,2,3,4,5的五只小球,从中任取三只球,以ξ表示取出球的最大号码,则E (ξ)的值是( )A 、5B 、4.75C 、4.5D 、4 7、一个学生通过一种英语听力测试的概率是21,他连续测试两次,那么其中恰有1次通过的概率是( ) A 、41 B 、31 C 、21 D 、43 8、从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52,设ξ为途中遇到红灯的次数,则随机变量ξ的方差是( ) A 、56 B 、2518 C 、256 D 、125189 )A 、甲比乙大B 、乙比甲大C 、甲、乙相同D 、没法比较10、甲、乙、丙、丁四人做相互传球练习,第一次甲传给其他三人中的一人,这样共传了4次,则第4次仍传回到甲的概率是( ) A 、277 B 、275 C 、87 D 、6421 11、某地举行一次民歌大奖赛时,六个省各有一对歌手参加决赛,现要选出4名优胜者,则选出的4名选手中恰有且只有两个人是同一省份的歌手的概率是( ) A 、3316 B 、12833 C 、3332 D 、11412、已知抛物线)0(22≠++=a bx ax y 的对称轴在y 轴的左侧,其中}2,1,0,1,2{,--∈b a ,在这些抛物线中,记随机变量=ξ“|a -b|的取值”,则概率)(1=ξP 应为( )A 、51B 、41C 、31D 、21第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)则丢失的两个数据依次为____________。
第十一章(概率与统计)过关测试
高三数学练习二十一一、填空题:本大题共14小题,每小题5分,共70分.1. 某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是答案:分层抽样法、简单随机抽样法2. 如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是答案:38解析:利用面积比.3. 一箱内有十张标有0到9的卡片,从中任选一张,则取到卡片上的数字不小于6的概率是答案:25解析:取到卡片上的数字不小于6,则取到卡片上的数字为6、7、8、9,则所求的概率为52104=.4.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为答案: 0.35 解析:1-0.45-0.20=0.35.5.已知样本9,10,11,x ,y 的平均数是10,方差是2,则xy = 答案:966. 某单位为了了解用电量y 度与气温C x 0之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程a bx y ˆ+=中2b -=,预测当气温为04C - 时,用电量的度数约为_______.答案:687. 一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30] ,3;(30,40],4;(40,50],5;(50,60],4;(60,70],2;则样本在区间(-∞,50]的频率为答案:100708.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为答案:5,10,15,209. 在10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________答案:4517解析:至少有1件次品包括1件次品1件正品与2件次品两种情况.10. 从1008名学生中抽取20人参加义务劳动.规定采用下列方法选取:先用简单随机抽样的抽取方法从1008人剔除8人,剩下1000人再按系统抽样的方法抽取,那么在1008人中每个人入选的概率是答案:252511.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为答案:0.27,7812.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为 .答案:16.3213.从含有两件正品a ,b 和一件次品c 的3件产品中每次任取一件,连续取两次,每次取出后放回.则取出的两件产品中恰有一件是次品的概率为 .答案:94.解析:每次取出后放回的所有结果:(a ,a ),(a ,b ),(a ,c ),(b ,a ),(b ,b ),(b ,c ),(c ,a ),(c ,b ),(c ,c ) 共有9个基本事件, 其中恰有臆见次品的事件有4个, 所以每次取出后放回,取出的两件产品中恰有一件是次品的概率为94.14. 由数据1,2,3组成可重复数字的三位数,则三位数中至多出现两个不同数字的概率为 .答案:97解析:“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与“三个数全相同”两个互斥事件,故所求概率为9727327332=+⨯⨯二、解答题:本大题共6小题,共90分.15. (14分)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球.求取出的两个球是不同颜色的概率.解析:(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”,则事件A 的概率为: P (A )=692323⨯⨯⨯+=92. 由于事件A 与事件B 是对立事件,所以事件B的概率为:P (B )=1-P (A )=1-92=9716.(14分) (16分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数;(2) 在这次测试中,学生跳绳次数的中位数落在第几小组内?(3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?解析:(1) 第四小组的频率=1-(0.1+0.3+0.4)=0.2,因为第一小组的频数为5,第一小组的频率为0.1,所以参加这次测试的学生人数为5÷0.1=50(人).(2) 0.3⨯50=15,0.4⨯50=20,0.2⨯50=10,则第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内.(3) 跳绳成绩的优秀率为(0.4+0.2)⨯100%=60%.17.(14分) 已知y x ,之间的一组数据如下表:(1)从y x ,中各取一个数,求y x +≥10的概率;(2)对于表中数据,甲、乙两同学给出的拟合直线分别为131+=x y 与2121+=x y ,试利用最小二乘法思想判断哪条直线拟合程度更好.解析:(1)从x,y 各取一个数组成数对(x ,y ),共有25对,其中满足10≥+y x 的有:)5,8(),4,8(),3,8(),2,8(),5,7(),4,7(),3,7(),5,6(),4,6(,共9对故所求概率为259=P ,所以使10≥+y x 的概率为259. (2)用131+=x y 作为拟合直线时,所得y 值与y 的实际值的差的平方和为37)5311()4310()33()22()134(222221=-+-+-+-+-=S用2121+=x y 作为拟合直线时,所得y 值与y 的实际值的差的平方和为 21)529()44()327()22()11(222222=-+-+-+-+-=S .12S S < ,故用直线2121+=x y 拟合程度更好. 18.(16分) 为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:(1)求出表中N M n m ,,,所表示的数分别是多少? (2)画出频率分布直方图;解析:(1)由频率的意义知,1=N ,04.0)16.030.040.008.002.0(1=++++-=n ,由第一组的频率和频数,可求得2=m ,5028152041=+++++=M . (2) 频率分布直方图如右图.19.(16分) 为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议。
《概率论与数理统计》检测题
⎪⎪《概率论与数理统计》检测题(考试时间:90 分钟)姓名 班级分数一、填空题(每小题 3 分,共 30 分)1、设 A , B , C 为三事件,则事件“ A , B , C 同时发生”应表示为:。
2、若 A , B 互斥,则 AB = 。
3、在 n 重贝努利概型中,设每次实验中事件 A 发生的概率为 p ,则 A 恰好发生 k 次的概率为 。
4、某时间段内光顾某商店的顾客数 ξ 应服从分布。
5、设某地区人群的身高服从正态分布 N (173,52 ) ,则该地区人群的平均身高为。
⎧ A 6、设连续型随机变量 ξ 的分布密度为: f (x ) = ⎨ 1 - x 2⎪⎩0 , | x |< 1 , | x | ≥ 1 ,则 A =。
7、设随机变量 X 的密度为 f (x ) ,则 P (a < X < b ) = 。
8、设 (x 1 , x 2 ,L , x n ) 是取自总体 X 的样本,则总体期望的矩估计量为。
9、若 ξ ~ N (0,1) ,η ~ χ 2(n ) ,且相互独立,则统计量 f =ξ η / n服从分布。
10、设总体 X 服从正态分布 N (μ,σ 2 ) ,σ 2 未知,随机抽样得到样本方差为 S 2,若要对 μ 进行检验,则采用检验法。
二、计算题(每小题 7 分,共 42 分)1、设有两个事件 A , B 的概率 P ( A ) =0.5, P (B ) =0.6, P ( AB ) =0.3,求 A , B 至少有一个发生的概率。
2、甲乙两射手各自对目标进行一次射击,已知甲的命中率为 0.6,乙的命中率为 0.5,求“两人都命中 目标”的概率。
3、设随机变量 X 服从 λ = 10 的普阿松分布,求“ X ≥ 1 ”的概率。
⎧ 14、设连续型随机变量 X 的密度为φ (x ) = ⎨π 1- x 2 ⎪⎩ 0, , x ∈[-1,1]其他 ,求 EX 。
概率统计考试题库
1
16. 设一个质点等可能地落在 xoy 平面上的三角形域 D 内 (其中 D 是 x=0,y=0,x+y=2 所 围成的),设事件 A 为:质点落在直线 y=1 的下侧,求 P( A) 。 17. 设甲、乙两人相约在 8:009:00 之间到车站乘车,已知两人到达车站的时刻是独立的, 等可能的,并设该车站在 8:15,8:30,8:45 和 9:00 各有一班车开出,并且两人见车就乘无 须互相等待,记事件 A 为两人刚好乘上同一班车,求事件 A 的概率。 18. 在线段 AD 上任取两点 B,C,将 AD 分为 AB,BC,CD,记事件 E 为: “这三个线段 能构成三角形。 ”求事件 E 的概率。 19. 任意取两个不超过 2 的正数,记事件 A 为:两正数的乘积介于 1 与 2 之间,求事件 A 的概率。 20. 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头, 它们在一昼夜内任何时刻到达是 等可能的,如果甲船的停泊时间是一小时,乙船是二小时,求它们中的任何一艘都不需要等 待码头空出的概率。 21. 从装有 3 个白球,3 个黑球的甲箱中,随机地取出二个球,放入装有 4 个白球与 4 个黑 球的乙箱中,然后再从乙箱中取出一球,求此球为白球的概率。 22. 不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为 90%,第二 个品种的种子发芽率为 96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求: (1)从中任取一粒种子,它能发芽的概率; (2)如果取到的一粒种子能发芽,那么它是第一个品种的概率是多少? “好的” , “一般的”与“差的” ,统计资料表明,对于 23. 某保险公司把被保险人分成三类: 上述三种人而言,在一年内出问题的概率依次为 0.05,0.15,和 0.30,如果“好的”被保险 人占总的保险人数的 20%, “一般的”占 50%, “差的”占 30%,试问在固定的一年中出问 题的人在总保险人数中占多大的比例?如某人在这一年内未出问题,他是属于“好的”的概 率为多少? 24. 在 18 盒同类电子元件中有 5 盒是甲厂生产的,7 盒是乙厂生产的,4 盒是丙厂生产的, 其余是丁厂生产的,该四厂的产品合格品率依次为 0.8,0.7,0.6,0.5,现任意从某一盒中 任取一个元件,经测试发现是不合格品,试问该盒产品属于哪一个厂生产的可能性最大? 25. 无线电通讯中,由于随机干扰,当发出信号“”时,收到信号为“”."不清”和“” 的概率依次为 0.7,0.2 和 0.1,当发出信号“”时,收到信号为“” , “不清” ,和“” 的概率为 0.9,0.1 和 0,如果整个发报过程中“” , “”出现的概率分别为 0.6,0.4,求收 到信号“不清”的概率?又当收到信号为“不清”时,原发信号是什么信号的可能性大? 26. 某校射击队共有 20 名射手,其中一级射手 4 人,二级射手 8 人,三级射手 7 人,四级 射手 1 人,一,二,三,四级射手能通过预选赛进入正式比赛的概率分别为 0.9,0.7,0.5, 0.2,求任选一名射手能进入正式比赛的概率。 27. 两台机床加工同样的零件,第一台出现废品的概率为 0.05,第二台出现废品的概率为 0.02,加工的零件混放在一起,若第一台车床与第二台车床加工的零件数为 54,求: (1)任意地从这些零件中取出一个为合格品的概率; (2)若已知取出的一个零件为合格品,那末,它是由哪台机床生产的可能性较大? 28. 已知产品中 96%为合格品,现有一种简化的检查方法,它把真正的合格品确认为合格 品的概率为 0.98, 而误认废品为合格品的概率为 0.05, 求在简化法检查下被认为是合格品的 一个产品确实是合格品的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级概率与统计测试题考号 班 姓名1 .六个人站成一排,其中某三人相邻的概率为 ( )1 : A . B . 5 12011 C . D . 30 120 2.有 10 名学生, 其中 4 名男生, 6 名女生,从中选出 2 名,恰好是 2 名男生或 2 名女生的概率为 ( )22 1 7 A . B C . D . 4515 3 153.抛两个各面上分别标有 1,2,3,4,5,6 的均匀的正方体玩具,“向上的两个数之和为 3”的概率为 ( ) 111 1 A . B . C . D . 36 36 18 4.投掷两颗骰子 ,求同时出现奇数点的概率: ( ) 111A 、B 、C 、D 、以上都不对2465.将 3 个相同的球放到 4 个盒子中,假设每个球放入哪个盒子是等可能的,并且每个盒子能容纳的球不 限,则有 3 个盒子各放一个球的概率 ( )7.下列说法正确的是:(B) 期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好(C) 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好(D) 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好 8.从某鱼池中捕得 1200条鱼,做了记号之后, 再放回池中, 经过适当的时间后, 再从池中捕得 1000 条鱼, 计算其中有记号的鱼为 100 条,试估计鱼池中共有鱼的条数为A 、 10000B 、 12000C 、 1300D 、 130009.一个年级有 12 个班,每个班有 50 名学生,随机编为 1~ 50 号,为了了解他们在课外的兴趣 爱好要求每班是 40 号学生留下来进行问卷调查,这里运用的抽样方法是(A ) 分层抽样 ( B )抽签法 ( C )随机数表法 ( D )系统抽样法10.八人分两排坐,每排 4 人,其中甲必须在前排,乙、丙二人排在同一排的不同排法的概率是 11.从 5 个男生和 3 个女生中选 5 人担任 5 门不同学科的课代表,求女生甲必须担任语文课代表,男生甲 必须担任课代表,但不担任数学课代表的概率A 、 6. P 43 43从装有白球 353 1 3 34 B 、 C 4 ( )C 、 3D 、以上都不对 4 4 4 C 633个、红球 4 个的箱子中,把球一个一个地取出来,到第五个恰好把白球全部取出的概率是(A) 甲乙两个班期末考试数学平均成绩相同, 这表明这两个班数学学习情况一样12.甲袋内有8个白球,4个红球;乙袋内有6个白球,4个红球.现从两个袋内各取1个球.计算:①取得两个球颜色相同的概率;②取得两个球颜色不相同的概率.13.有 5 件不同的玩具全部分给 3 个儿童,求每人至少一件的概率14.任意从1,2,⋯,100 中取出50 个球并按从小到大顺序排列,试求第10 个数为20 的概率(只要列式)15.6位同学到A、B、C三处参加活动,求:①每处均有2位同学的概率;② A 处恰有3位同学的概率.16.将数字1,2,3,4 填入标号为1,2,3,4的 4 个方格中,每格填一个数字,则方格的标号与所填数字均不相同的概率为。
17.某人忘记了电话号码的最后两个数字,但他记得最后一位是奇数,求他一次接通电话的概率统计2.从总体中抽一个样本,2、3、4、8、7、6,则样本平均数为x =3。
从总体中抽一个样本,3、7、4、6、 5 ,则样本标准差为4.若样本a1,a2,a3的方差是2,则样本2a1+3,2a2+3,2a3+3 的方差是5.(反面)10 件产品中有 2 件次品,取出的2件中最多有 1 件次品的概率为.6.(反面)在一次口试中,要从10 道题中随机地抽出3道进行回答,答对其中两道题就获得及格某考生能回答这10 道题中的8 道题,那么这位考生及格的概率是.11.从正方体的6个面中选取3 个面,其中有2个面不相邻的选法A.8种B.12种C.16种D.20 种15.(x21)(x 2)7的展开式中x3的系数是答案2002高考:1,3,B,1008,A,概率:A,44 29D ,,,8 7 10、,、160,D,2 13 45 30 15 15 81 7293,3,3,A,80 ,C 9 40 50 319 C80 /C100 ,D,1,1,统计:D,5,2 ,8,D,B,5 14 56 81 8 502 2004 年高考中的概率统计与期望方差题分析 概率统计是近代数学的重要分支,在现实生活中应用十分广泛,同时概率统计与排列组合又是紧密联系 的.从 2004 年各省的高考试题来看,要求同学们必须了解随机事件的概率、等可能事件、互斥事件、对 立事件、相互独立事件、 n 次独立重复试验、抽样方法、概率分布列、数学期望与方差等基本概念 . 会灵活 运用排列组合公式计算等可能事件的概率、 会用互斥事件的概率加法公式、 相互独立事件的概率乘法公式、 会用 n 次独立重复试验 k 次发生的概率公式、 期望与方差计算公式进行相关运算. 下面对 2004 年高考试题 中的有关题目进行分析研究.例 1 (湖南理科第 5题)某公司在甲、乙、丙、丁四个地区分别有 150个、 120个、 180 个、150 个销售点,公司为了调查产品的销售情况,需从这 600 个销售点中抽取一个容量为 100 的样本,记这项调查为①;在 丙地区中有 20 个销售点,要从中抽取 7 个调查其销售收入和售后服务情况,记这项调查为②.则完成①② 这两项调查宜采用的抽样方法依次为( ).A .分层抽样、系统抽样B .分层抽样、简单随机抽样C .系统抽样、分层抽样D .简单随机抽样、分层抽样解: 回归定义。
本题考查了分层抽样、简单随机抽样的定义,选项 B .例 2 ( 湖南文科第 19 题 ) 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等 品而乙机床加工的零件不是一等品的概率为 1/4 , 乙机床加工的零件是一等品而丙机床加工的零件不是一 等品的概率为 1/12, 甲、丙两台机床加工的零件都是一等品的概率为 2/9.(I ) 分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(II ) 从甲、乙、丙加工的零件中各取一个检验,求至少有一个是正品的概率.二项式定理:16 4 8 3 8 8 1, , C 186 x 3 ,10、11、12、13、14,- 20,C ,45,800,C ,C ,C ,1、38、38、 5 1 381 38,B ,B ,解: (I) 设 A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有27[P(C)] 2-51P(C)+22=0 解得 P(C)=2/3 或 11/9( 舍去 ),将 P(C)=2/3 分别代入③、②可得P(A)=1/3,P(B)=1/4 ,即甲、乙、丙三台机床各自加工零件是一等品的概率分别为 1/3 ,1/4 ,2/3.(II) 记 D 为从甲、乙、丙三台机床各自加工零件中各取一个检验,至少有一个一等品的事件.则 =,故从甲、乙、丙加工的零件中各取一个检验,为至少有一个是正品的概率为 5/6 .例3(湖北文科第 15题)某校有老师 200人,男学生 1200 人,女学生 1000人,现用分层抽样的方法从所有 师生中抽取一个容量为 n 的样本,已知从女生中抽取的人数为 80 人,则 n= . 解:由分层抽样的定义知,从各个不同层面抽取的个体的概率相同,由已知为 8 %,故样本容量为(200+1200+1000)× 8%=192.例 4( 湖北文科 21 题) 为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的 预防措施可采用,单独采用甲、乙、丙、丁预防措施后,此突发事件不发生的概率 ( 记为 P)和所需费用如下表: 预防措施甲 乙 丙 丁 P 0.9 0.8 0.7 0.6费用(万元) 9060 30 10 预防措施方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过,由①③得代入②得 120 万元的前提下,请确定一个预防方案使得此突发事件不发生的概率最大.分析:本小题考查概率的基础知识以及运用概率知识解决实际问题的能力.解:方案 1 :单独采用一种预防措施的费用均不超过120 万元,由表可知采用甲措施使得此突发事件不发生的概率最大,其概率为0.9.方案 2 :联合采用两种预防措施,总费用不超过120 万元,由表可知联合甲、乙两种预防措施使得此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97方案 3 :联合采用三种预防措施,总费用不超过120 万元,故只能联合乙、丙、丁三种预防措施,此时此突发事件不发生的概率为1-(1-0.8)(1-0.7)(1-0.6)=0.976.综合上述三种预防措施方案,在总费用不超过120 万元的前提下,联合使用乙、丙、丁三种预防措施,可使此突发事件不发生的概率最大.例 4 (湖北理工科第13 题)设随机变量的概率分布为P( =k ) 为常数,k=1,2,3 ⋯⋯则a= _________ .分析:由随机变量的概率分布的定义知:所有概率之和为1,而此概率列为首项是a/5 ,公比是1/5的等比数列,由公式S= ,解之得a=4.例 5 ( 湖北理工科第21 题) 某突发事件,在不采取任何措施的情况下以生的概率为0.3, 一旦发生将造成400万元的损失,现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙两种预防措施所需的费用分别为45万元和30万元,采用相应措施后此突发事件不发生的概率分别为0.9 和0.85. 若预防方案允许甲、乙两种相互独立的预防措施可单独采用、联合采用、不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)分析:本题考查概率和数学期望等概念及应用概率知识解决实际问题的能力.解:①不采取预防措施时,总费用即损失的期望值为400 ×0.3=120 万元.②若单独采用甲,则预防措施所需的费用为45 万元,损失的期望值为400×(1-0.9 )=40 万元所以总费用为45+40=85 万元.③若单独采用乙,则预防措施所需的费用为30 万元,损失的期望值为400× (1-0.85)=60 万元所以总费用为30+60=90 万元.④若联合采用甲、乙,则预防措施所需的费用为45+30=75 万元,损失的期望值为400× (1-0.85)(1-0.9)=6 万元所以总费用为75+6=81 万元.综合①②③④比较其总费用可知,应选择联合采取甲、乙两种预防措施可使总费用最少.例 6 (天津文科第18 题)从4名男生和2名女生中任选3人参加演讲比赛.( Ⅰ) 求所选 3 人都是男生的概率;( Ⅱ)求所选 3 人中恰有 1 名女生的概率;( Ⅲ)求所选 3 人中至少有 1 名女生的概率.解:( Ⅰ)所选 3 人都是男生的概率为:.( Ⅱ)所选 3 人中恰有 1 名女生的概率为:.( Ⅲ)所选 3 人中至少有 1 名女生的概率为:也可采用对立事件的概率公式,至少有 1 名女生,其对立事件为都是男生,由(Ⅰ) 知更快.例7( 全国卷理科18 题)一接待中心有 A 、B、C、D四部热线电话,已知某一时忘刻电话A、B占线的概率均为0.5 ,电话D、C 占线的概率均为0.4, 各部电话是否占线相互之间没影响.假设该时刻有部电话占线,试求随机变量的概率分布和它的期望.解:逐步计算,得,,=0.04 .于是得随机变量的概率分布列为:所以例8 (浙江理工科第18 题)盒子中有大小相同的球10 个,其中标号为1 的球3 个,标号为 2 的球 4 个,标号为 5 的球 3 个,第一次从盒子中任取一个球,放回后第二次再任取一个球(假设取到每个球的可能性相同),记第一次与第二次取到期球的标号之和为。