三角形四心及其性质总结

合集下载

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心三角形的四心定义:1、内心:三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。

4、重心:重心是三角形三边中线的交点。

三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。

在△ABC中4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心的性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC 的重心一般用字母O 表示。

性质:1. 外心到三顶点等距,即OA OB OC 。

2. 外心与三角形边的中点的连线垂直于三角形的这一边,即OD BC ,OE AC ,OF AB .1 1 13. A BOC B AOC C AOB, ,2 2 2二、三角形的内心。

定义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC 的内心一般用字母I 表示,它具有如下性质:性质:1. 内心到三角形三边等距,且顶点与内心的连线平分顶角。

2. 三角形的面积=12三角形的周长内切圆的半径.3. AE AF ,BF BD ,CD CE ;AE BF CD 三角形的周长的一半。

1 1 14. , 90 ,AIB C5.BIC 90 A CIA B 90 。

2 2 2三、三角形的垂心定义:三角形三条高的交点叫重心。

ABC 的重心一般用字母H 表示。

性质:1. 顶点与垂心连线必垂直对边,即AH BC ,BH AC ,CH AB。

2. △ABH 的垂心为 C ,△BHC 的垂心为 A ,△ACH 的垂心为 B 。

1四、三角形的“重心”:定义:三角形三条中线的交点叫重心。

ABC 的重心一般用字母G 表示。

性质:4.顶点与重心G 的连线必平分对边。

5.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的 2 倍。

即GA 2GD , GB 2GE , GC 2GF6.重心的坐标是三顶点坐标的平均值.即x x x y y yA B C A B Cx , y .G G3 37.向量性质:(1)G A GB GC 0;1(2)( )PG PA PB PC ,38.S1BGC S S SCGA AGB3A BC。

五、三角形“四心”的向量形式:结论1:若点O 为ABC 所在的平面内一点,满足OA OB OB OC OC OA,则点O 为ABC 的垂心。

三角形四心及其性质总结

三角形四心及其性质总结

三角形四心及其性质总结三角形的四心是三角形内部以及外部的四个特殊点,它们是重心、垂心、外心和内心。

这四个特殊点在三角形的性质研究中起到了重要的作用。

下面我们对这四个特殊点及其性质进行详细总结。

一、重心:重心是三角形内部最重要的特殊点之一,也是最容易计算的一个点。

重心是由三角形的三条中线的交点确定的,其中中线是三角形的两个顶点与对边中点之间的线段。

重心的性质:1.重心到三角形的三个顶点的距离相等,且这个距离等于中线的一半。

2.重心将三角形分成六个小三角形,每个小三角形的重心都与大三角形的重心重合。

3.重心所在的直线与三角形的垂心所在的直线相交于三角形内部的其中一点。

4.重心到三角形的顶点的距离等于重心到该顶点所在直线上任一点的距离之和的二倍。

二、垂心:垂心是三角形内部的一个重要特殊点,它是由三角形的三条高的交点确定的,其中高是三角形的顶点与对边垂直的线段。

垂心的性质:1.垂心到三角形的三个顶点以及对边的距离互相相等。

2.垂心的连线与三角形的顶点构成的线段组成的三角形与原三角形形成的角互补。

3.垂心到三角形的边的垂直距离之和是最小的,也就是说垂心到三角形的边的距离最短。

三、外心:外心是三角形外接圆的圆心,它是由三角形的三个顶点的垂直平分线的交点确定的。

外心的性质:1.外心到三角形的三个顶点的距离相等,且这个距离等于外心到三角形的任一边的垂直距离。

2.外心是垂心与三角形的三个顶点的中垂线的交点所确定的,也就是说外心是垂心、重心和媒心的垂线交点。

3.外心到三角形的每条边的距离等于外心到该边所在直线上任一点的距离之和的二倍。

4.外心是连接三角形顶点与对边上等腰三角形顶点的线段的垂直平分线的交点所确定的。

四、内心:内心是三角形内切圆的圆心,它是由三条三角形的角的平分线的交点确定的。

内心的性质:1.内心到三角形的每条边的距离相等,且等于内切圆的半径。

2.内心是连接三角形的每个顶点与对边上切点的线段的垂直平分线的交点所确定的。

(完整版)三角形四心及其性质总结

(完整版)三角形四心及其性质总结

三角形四心
一、重心:三条边的中线交于一点
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,
即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

二、外心:三条边的垂直平分线交于一点。

该三角形外接圆的圆心,
性质:
1、外心到三角形三个顶点的距离相等
2、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心与斜边中点重合。

三、垂心:三角形的三条高(所在直线)交于一点。

性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

四、内心:三条内角平分线交于一点。

即三角形内切圆的圆心。

性质:
1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

2、双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

最新三角形四心及其性质总结

最新三角形四心及其性质总结

三角形四心
一、重心:三条边的中线交于一点
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,
即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

二、外心:三条边的垂直平分线交于一点。

该三角形外接圆的圆心,
性质:
1、外心到三角形三个顶点的距离相等
2、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心与斜边中点重合。

三、垂心:三角形的三条高(所在直线)交于一点。

性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

四、内心:三条内角平分线交于一点。

即三角形内切圆的圆心。

性质:
1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

2、双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

三角形四心

三角形四心

三角形四心1.外心:三角形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。

△ABC 的外心一般用字母O 表示,它具有如下性质:(1)外心到三顶点等距,即OA=OB=OC 。

(2)∠A=AOB C AOC B BOC ∠=∠∠=∠∠21,21,21。

2.内心:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

△ABC 的内心一般用字母I 表示,它具有如下性质:(1)(2)∠A 的平分线和△ABC 的外接圆相交于点D ,则D 与顶点B 、C 、内心I 等距(即D 为△BCI 的外心)。

(3)∠BIC=90º+21∠A ,∠CIA=90+21∠B ,∠AIB=90º+21∠C 。

3.垂心:三角形三条高线所在的直线的交点叫做三角形的垂心。

△ABC 的垂心一般用字母H表示,它具有如下的性质: (1)顶点与垂心连线必垂直对边,即AH ⊥BC ,BH ⊥AC ,CH ⊥AB 。

(2)若H 在△ABC 内,且AH 、BH 、CH 分别与对边相交于 D 、E 、F ,则A 、F 、H 、E ;B 、D 、H 、F ;C 、E 、H 、D ;B 、C 、E 、F ;C 、A 、F 、D ;A 、B 、D 、E 共六组四点共圆。

(3)△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

(4)三角形的垂心到任一顶点的距离等于外心到对边距离的2倍。

4.重心:三角形三条中线的交点叫三角形的重心。

△ABC 的重心一般用字母G 表示,它有如下的性质:(1)顶点与重心G 的连线必平分对边。

(2)重心定理:三角形重心与顶点的距离等于 它与对边中点的距离的2倍。

(3)ABC AGBCGA BGC S S S S ∆∆∆∆===31。

练习1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。

三角形4心的概念

三角形4心的概念

三角形4心的概念
三角形的四心是指三角形的重心、外心、内心、垂心。

1.重心:三角形三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。

2.垂心:三角形三条高线的交点,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

3.内心:三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角。

4.外心:三角形三条边的垂直平分线也称中垂线的相交点,用这个点做圆心可以画三角形的外接圆。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质-CAL-FENGHAI.-(YICAI)-Company One1三角形“四心”定义与性质所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 表示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心 定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 表示。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 表示。

性 质:1.顶点与重心G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:(1)0=++GC GB GA ;(2))(31++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

(完整版)三角形“四心”定义与性质

(完整版)三角形“四心”定义与性质

三角形“四心”定义与性质所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 表示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 表示。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 表示。

性 质:1.顶点与重心G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:(1)0=++GC GB GA ;(2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质之巴公井开创作所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 暗示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 暗示,它具有如下性质: 性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 暗示。

性 质:1.顶点与垂心连线必垂直对边, 即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 暗示。

性 质:G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:(1)0=++GC GB GA ;(2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

三角形四心”定义与性质

三角形四心”定义与性质

三角形四心”定义与性质
一、什么是三角形四心
三角形四心是指三角形的一类特殊的内部点,可以用来证明三角形形状的一些特性。

三角形四心包括内心(Incenter)、外心(Circumcenter)、垂心(Orthocenter)和重心(Centroid)。

二、各心的定义
1、内心(Incenter)
是指经过三条边的交点,是三条边的中线的交点。

内心一定在三角形内,而且和三角形各边中点垂直。

3、垂心(Orthocenter)
是三面垂直(三角形的外角均为90度)时才存在的第四心,它是三个顶点的垂线的交点,也是高的垂线的交点。

垂心的位置可能在三角形内,也可能在三角形外。

三、各心的性质
1、内心的性质
(1)设a,b,c为三角形的边长,I为三角形的内心,则三角形的内接圆半径为:rI=a×b×c/4S,其中S是三角形的面积。

(2)如果满足外角和的三倍等于内角和,则三角形的内心就与重心等同。

(3)如果三角形的三边呈等腰三角形(即有一条边等于另外两条边的1/2),则三角形的内心会在一条内角垂线上,且离该条边的长度等于另外两条边的1/3。

2、外心的性质
(1)如果三角形满足外角和的三倍等于内角和,则它的外心与重心也会相等。

(2)外心到三角形三边的距离相等,等于三角形外接圆半径,该半径可以用以下公式计算:rO=a×b×c/4R,其中R是三角形外接圆的半径。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质之阿布丰王创作所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 暗示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 暗示,它具有如下性质: 性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径.3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 暗示。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 暗示。

性 质:G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值.即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:(1)0=++GC GB GA ;(2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

三角形的四心

三角形的四心

三角形的四心一、重心 三角形的重心是三角形三条中线的交点。

性质1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

6.重心是三角形内到三边距离之积最大的点。

二、外心 三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。

性质 1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.(1)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。

(2)锐角三角形的外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部。

2.OA=OB=OC=R3.∠BOC=2∠BAC ,∠AOB=2∠ACB ,∠COA=2∠CBA 4C B A R Rabc S ABC sin sin sin 24==∆ 三、内心 三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。

性质1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3. 2)(c b a r S ABC ++=∆ 4.在Rt △ABC 中,∠C=90°,r=(a+b-c)/2. 5. A BOC ∠+︒=∠2190 四、垂心 三角形的垂心是三角形三边上的高的交点。

性质1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外2. 垂心O 关于三边的对称点,均在△ABC 的外接圆上3.△ABC 中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO ·OE=CO ·OF4. H 、A 、B 、C 四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义与性质之老阳三干创作所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。

当三角形是正三角形时,四心重合为一点,统称为三角形的中心。

一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的重心一般用字母O 暗示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。

二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 暗示,它具有如下性质: 性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2.三角形的面积=⨯21三角形的周长⨯内切圆的半径.3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的垂心定 义:三角形三条高的交点叫重心。

ABC ∆的重心一般用字母H 暗示。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。

ABC ∆的重心一般用字母G 暗示。

性 质:G 的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值.即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:(1)0=++GC GB GA ;(2))(31++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”定义取本量之阳早格格创做所谓三角形的“四心”是指三角形的沉心、垂心、中心及内心.当三角形是正三角形时,四心沉合为一面,统称为三角形的核心.一、三角形的中心定 义:三角形三条中垂线的接面喊中心,即中接圆圆心.ABC ∆的沉心普遍用字母O 表示.性 量:1.中心到三顶面等距,即OC OB OA ==.2.中心取三角形边的中面的连线笔曲于三角形的那一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21. 两、三角形的内心定 义:三角形三条角仄分线的接面喊干三角形的内心,即内切圆圆心.ABC ∆的内心普遍用字母I 表示,它具备如下本量:性 量:1.内心到三角形三边等距,且顶面取内心的连线仄分顶角.2.三角形的里积=⨯21三角形的周少⨯内切圆的半径.3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周少的一半. 4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 . 三、三角形的垂心定 义:三角形三条下的接面喊沉心.ABC ∆的沉心普遍用字母H 表示.性 量:1.顶面取垂心连线必笔曲对于边, 即AB CH AC BH BC AH ⊥⊥⊥,,.2.△ABH 的垂心为C ,△BHC 的 垂心为A ,△ACH 的垂心为B .四、三角形的“沉心”:定 义:三角形三条中线的接面喊沉心.ABC ∆的沉心普遍用字母G 表示.性 量:G 的连线必仄分对于边.2.沉心定理:三角形沉心取顶面的距离等于它取对于边中面的距离的2倍. 即GF GC GE GB GD GA 2,2,2===3.沉心的坐标是三顶面坐目标仄衡值.即3,3C B A G C B A G y y y y x x x x ++=++=. 4.背量本量:(1)0=++GC GB GA ;(2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31. 五、三角形“四心”的背量形式: 论断1:若面O 为ABC ∆地方的仄里内一面,谦脚OA OC OC OB OB OA ⋅=⋅=⋅,则面O 为ABC ∆的垂心.论断2:若面O 为△ABC 地方的仄里内一面,谦脚222222AB OC CA OB BC OA +=+=+, 则面O 为ABC ∆的垂心.论断3:若面G 谦脚0=++GC GB GA ,则面G 为ABC ∆的沉心. 论断4:若面G 为ABC ∆地方的仄里内一面,谦脚)(31OC OB OA OG ++=, 则面G 为ABC ∆的沉心.论断5:若面I 为ABC ∆地方的仄里内一面,而且谦脚0=⋅+⋅+⋅IC c IB b IA a(其中c b a ,,为三角形的三边),则面I 为△ABC 的内心. 论断6:若面O 为ABC ∆地方的仄里内一面,谦脚AC OA OC CB OC OB BA OB OA ⋅+=⋅+=⋅+)()()(,则面O 为ABC ∆的中心. 论断7:设()+∞∈,0λ,则背量||||(AC AC AB ABAP +=λ,则动面P 的轨迹过ABC的内心.。

三角形的四心及其简单性质

三角形的四心及其简单性质
钝角△的外心在三角形的外部
OA=OB=OC
二、内心 二、内心
定理:三角形的内角的角平分线必交于一点,这个点是三角 形的内切圆的圆心,简称内心
如图,I为△ABC的内心
性质:(1) 内心到三条边的距离相等
(2) 内心一定在三角形的内部
(3) 在Rt△中,内心到边的距 离等于两直角边的和与斜边的 差的一半
F G A
E
B
D
C
AG BG CG 2 GD GE GF x x x y yB yC G( A B C , A ) 3 3 GA GB GC 0
注 注意 意
1、三角形的中心:
只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
2、旁心
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆) 的圆心,叫做三角形的旁心,三角形有三个旁心,都在三角形外,旁心 到三边的距离相等。
三角形的“四心”及简单性质
By 郯城美澳数学QQ群 群号:454463883
二、内心 一、外心
定理:三角形三条边的垂直平分线必交于一点,这个点是三角 形的外接圆的圆心,简称外心
A
如图,O为离相等
(2) 锐角△的外心在三角形的内部
B
O C
直角△的外心在斜边的中点处
3、本文所述性质皆为常用性质,并不全面。
欢迎批评指正!谢谢!
ID=IE=IF
二、内心 三、垂心
定理:三角形的三条高线必交于一点,这个点叫做三角形 的垂心 如图,H为△ABC的垂心 性质:(1) 垂心与顶点的连线垂直于对边
(2) 垂心分每条高的两部 分乘积相等 AH⊥BC,BH ⊥ AC,CH ⊥ AB
二、内心 四、重心

三角形“四心”定义与性质

三角形“四心”定义与性质

三角形“四心”界说与性质之阿布丰王创作 时间:二O 二一年七月二十九日所谓三角形的“四心”是指三角形的重心、垂心、外心及内心.当三角形是正三角形时,四心重合为一点,统称为三角形的中心.一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心.ABC ∆的重心一般用字母O 暗示.性 质:1.外心到三极点等距,即OC OB OA ==.2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21.二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心.ABC ∆的内心一般用字母I 暗示,它具有如下性质:性 质:1.内心到三角形三边等距,且极点与内心的连线平分顶角.2.三角形的面积=⨯21三角形的周长⨯内切圆的半径.3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半.4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 .三、三角形的垂心定 义:三角形三条高的交点叫重心.ABC ∆的重心一般用字母H 暗示.性 质:1.极点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,.2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B .四、三角形的“重心”:定 义:三角形三条中线的交点叫重心.ABC ∆的重心一般用字母G 暗示.性 质:G 的连线必平分对边.2.重心定理:三角形重心与极点的距离即是它与对边中点的距离的2倍.即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三极点坐标的平均值.即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:(1)0=++GC GB GA ;(2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31.五、三角形“四心”的向量形式:结论1:若点O 为ABC ∆所在的平面内一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 为ABC ∆的垂心.结论2:若点O 为△ABC 所在的平面内一点,满足222222AB OC CA OB BC OA +=+=+,则点O 为ABC ∆的垂心.结论3:若点G 满足0=++GC GB GA ,则点G 为ABC ∆的重心.结论4:若点G 为ABC ∆所在的平面内一点,满足)(31OC OB OA OG ++=,则点G 为ABC ∆的重心.结论5:若点I 为ABC ∆所在的平面内一点,而且满足0=⋅+⋅+⋅IC c IB b IA a(其中c b a ,,为三角形的三边),则点I 为△ABC 的内心.结论6:若点O 为ABC ∆所在的平面内一点,满足AC OA OC CB OC OB BA OB OA ⋅+=⋅+=⋅+)()()(,则点O 为ABC ∆的外心.结论7:设()+∞∈,0λ,则向量||||(AC AB AP =λ,则动点P 的轨迹过ABC ∆的内心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形四心及其性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
三角形四心
一、重心:三条边的中线交于一点
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,
即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

二、外心:三条边的垂直平分线交于一点。

该三角形外接圆的圆心,
性质:
1、外心到三角形三个顶点的距离相等
2、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心与斜边中点重合。

三、垂心:三角形的三条高(所在直线)交于一点。

性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

四、内心:三条内角平分线交于一点。

即三角形内切圆的圆心。

性质:
1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

2、双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

相关文档
最新文档