高考数学:基本不等式在实际问题中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总7页 高考数学:基本不等式在实际生活中的应用
典例1.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为: 250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.
(1)当[]
10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润; 如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+-
()2
35325x =--+,[10,15]x ∈.
∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,
可求得[300,75]P ∈--.
∴国家只需要补贴75万元,该工厂就不会亏损.
(2)设平均处理成本为 90050y Q x x x
==+-
5010≥=, 当且仅当900x x =
时等号成立,由0x >得30x =. 因此,当处理量为30吨时,每吨的处理成本最少为10万元.
点评:(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润(1010)P x y =+-,化简后它是关于x 的二次函数,利用二次函数的知识求出P 的取值范围,如果P 有非负的取值,就能说明可能获利,如果P 没有非负取值,说明不能获利,而国家最小补贴就是P 中最大值的绝对值.(2)每吨平均成本等于
y x
,由题意90050y x x x =+-,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的x 值. 变式题1.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化