椭圆的定义及几何性质

合集下载

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

椭圆的几何性质知识点归纳及典型

椭圆的几何性质知识点归纳及典型

Evaluation Warning: The document was created with Spire.Doc for JA V A.(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。

这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。

对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。

若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。

这两种特殊情况,同学们必须注意。

(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。

同学们想一想其中的道理。

(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。

不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。

椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。

椭圆的定义和几何性质

椭圆的定义和几何性质

答案: y 2
x2
1
25 16
椭圆第一定义:
平面内与两定点F1,F2的距离的和等于常数(大于 F1F2 )
的点的轨迹叫椭圆,这两个定点叫做椭圆的 焦点 , 定点 之间的距离叫做焦距.
注:①当2a=|F1F2|时,P点的轨迹是 线段 .②当 2a<|F1F2|时,P点的轨迹不存在.
2.椭圆 x2 y2 1的焦距为2,则 m4
1的左右焦点,已知 PF1F2
为等腰三
角形,求椭圆的离心率。
解:由题意2c b2 (a c)2
整理得:2c2 ac a2 0 两边同时除以a2
2e2 e 1 0
e 1 2
变题1. (2009 江苏),在平面直角坐标系xOy中,A1, A2, B1, B2 为椭
圆 与直ax22线 byB22 1F1(a相交b 与0)点的T四,个线顶段点OT,与F椭为圆其的右交焦点点M,恰直为线线A段1BO2 T的
1
的切线,切点分别为A,B直线AB恰好经过椭圆的右焦点与上
顶点,则椭圆的方程为
x2
y2
.
1
54
4已知F1、F2为椭圆
x2 a2
y2 b2
1(a b 0)的焦点;M为椭圆
上一点,MF1垂直于x轴,且

3.
F1MF2
60
,则椭圆的离心率
3
m=_5_或 _ 3
椭圆的标准方程:
(1)焦点在x轴上的椭圆标准方程是:
x2 a2
y2 b2
1
(a b 0, a2
b2 c2 )
(2)焦点在y轴上得椭圆的标准方程是:
y 2 x2 1 (a b 0, a2 b2 c2 )
a2 b2

椭圆的几何性质

椭圆的几何性质
2 2
y x 2 1 a b 0 2 a b
2
a b c
P95 1,2,3,4,5
x2 y2 1. 1 25 9
2. 由 |PF1| + |PF2| = 20, 得 |PF2| = 20-6=14 .
3. 写出适合下列条件的椭圆的标准方程:
x2 (1) y 2 1 16
2a叫做长轴长, 叫做短轴长 2b
a叫做长半轴长, 叫做短半轴长 b
c a b
2 2
2
4、椭圆的“扁”与“圆 ”
c 椭圆的焦距与长轴长之 比e ,叫做椭圆的离心率 (0 e 1) a
y
离心率越大,椭圆越扁 , 离心率越小,椭圆越圆
F1
o
F2
x
4 x2 y2 椭圆 1的离心率为: e 5 25 9 1 x2 y2 e 椭圆 1的离心率为: 2 4 3
解: 建系如图,以AB所在直线为x轴,AB中点为原点 2 y2 可设椭圆方程为: x 2 2 1 a b 0 a b y 6180 则 a c | OA | | OF2 | | F2 A | 6371 439 a c | OB | | OF2 | | F2B | 6371 2384 8755 解得 a 7782 5 , 972.5 . . c
一、椭圆的定义:
F
1

M ( x, y)

F2
平面内到两个定点F1、F2的距离之和等于常数 (大于|F1F2|)的点的轨迹叫做椭圆。 这两个定点叫做椭圆的焦点,
两焦点的距离叫做椭圆的焦距。
二、椭圆的标准方程:
y
M
y
F1
M

椭圆及其性质

椭圆及其性质

§8.5椭圆及其性质学习目标1.理解椭圆的定义、几何图形、标准方程.2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).3.掌握椭圆的简单应用.知识梳理1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.两个定点F1,F2叫做椭圆的焦点,两焦点间的距离|F1F2|叫做椭圆的焦距.2.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1 (a>b>0)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长短轴长为2b,长轴长为2a焦点F1(-c,0),F2(c,0) F1(0,-c),F2(0,c) 焦距|F1F2|=2c对称性对称轴:x轴和y轴,对称中心:原点离心率e=ca(0<e<1) a,b,c的关系a2=b2+c2常用结论椭圆的焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.如图所示,设∠F 1PF 2=θ.(1)当P 为短轴端点时,θ最大,12F PF S △最大.(2) 12F PF S △=12|PF 1||PF 2|sin θ=b 2tan θ2=c |y 0|.(3)|PF 1|max =a +c ,|PF 1|min =a -c . (4)|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2.(5)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × ) (2)椭圆是轴对称图形,也是中心对称图形.( √ ) (3)y 2m 2+x 2n 2=1(m ≠n )表示焦点在y 轴上的椭圆.( × ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ ) 教材改编题1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 答案 D解析 依椭圆的定义知,|PF 1|+|PF 2|=2×5=10.2.若椭圆C :x 24+y 23=1,则该椭圆上的点到焦点距离的最大值为( )A .3B .2+ 3C .2 D.3+1答案 A解析 由题意知a =2,b =3,所以c =1,距离的最大值为a +c =3.3.(2022·深圳模拟)已知椭圆C 的焦点在x 轴上,且离心率为12,则C 的方程可以为________.答案 x 24+y 23=1(答案不唯一)解析 因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b2=1,a >b >0,因为离心率为12,所以c a =12,所以c 2a 2=a 2-b 2a 2=14,则b 2a 2=34.题型一 椭圆的定义及其应用例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 B解析 点P 在线段AN 的垂直平分线上,故|P A |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________. 答案433解析 由题意知,c =a 2-4. 又∠F 1PF 2=60°,|F 1P |+|PF 2|=2a , |F 1F 2|=2a 2-4,∴|F 1F 2|2=(|F 1P |+|PF 2|)2-2|F 1P ||PF 2|- 2|F 1P |·|PF 2|cos 60°=4a 2-3|F 1P |·|PF 2|=4a 2-16, ∴|F 1P |·|PF 2|=163,∴12PF F S △=12|F 1P |·|PF 2|sin 60°=12×163×32 =433. 延伸探究 若将本例(2)中“∠F 1PF 2=60°”改成“PF 1⊥PF 2”,求△PF 1F 2的面积. 解 ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2=4(a 2-4) =4a 2-16, 又|PF 1|+|PF 2|=2a , ∴|PF 1|·|PF 2|=8, ∴12PF F S △=4.教师备选1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 周长为16,则顶点C 的轨迹方程为( ) A.x 225+y 216=1(y ≠0) B.y 225+x 216=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) 答案 A解析 由题知点C 到A ,B 两点的距离之和为10,故C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.所以方程为x 225+y 216=1. 又A ,B ,C 三点不能共线, 所以x 225+y 216=1(y ≠0).2.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72 D.752答案 C解析 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2+8-4|AF 1|,∴(6-|AF 1|)2=|AF 1|2+8-4|AF 1|, 解得|AF 1|=72.∴△AF 1F 2的面积 S =12×22×72×22=72. 思维升华 椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程、求焦点三角形的周长、面积及求弦长、最值和离心率等.(2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.跟踪训练1 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 答案 D解析 设动圆的圆心M (x ,y ),半径为r , 圆M 与圆C 1:(x -4)2+y 2=169内切, 与圆C 2:(x +4)2+y 2=9外切. 所以|MC 1|=13-r ,|MC 2|=3+r . |MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆. 则a =8,c =4,所以b 2=82-42=48, 动圆的圆心M 的轨迹方程为x 264+y 248=1.(2)(2022·武汉调研)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF 周长的最大值为( ) A .4+ 5 B .6 C .25+2 D .8 答案 D解析 设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|, 当A ,B ,F 1三点共线时, |AB |-|BF 1|-|AF 1|=0, 当A ,B ,F 1三点不共线时, |AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8. 题型二 椭圆的标准方程 命题点1 定义法例2 已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a . ∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a . 又|AF 2|=2|F 2B |, ∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a . 又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点. 如图,不妨设A (0,b ),又F 2(1,0),AF 2—→=2F 2B —→, ∴B ⎝⎛⎭⎫32,-b 2. 将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1, ∴a 2=3,b 2=a 2-c 2=2. ∴椭圆C 的方程为x 23+y 22=1.命题点2 待定系数法例3 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________. 答案 x 29+y 23=1解析 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ). 因为椭圆经过P 1,P 2两点, 所以点P 1,P 2的坐标满足椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,3m +2n =1, 解得⎩⎨⎧m =19,n =13.所以所求椭圆的方程为x 29+y 23=1.教师备选1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,过F 2的直线与椭圆C 交于A ,B 两点,若△F 1AB 的周长为8,则椭圆方程为( ) A.x 24+y 23=1 B.x 216+y 212=1 C.x 22+y 2=1 D.x 24+y 22=1 答案 A 解析 如图,由椭圆的定义可知,△F 1AB 的周长为4a , 所以4a =8,a =2,又离心率为12,所以c =1,b 2=3, 所以椭圆方程为x 24+y 23=1.2.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点为(2,0),离心率为22,则此椭圆的方程为________.答案 x 28+y 24=1解析 椭圆的右焦点为(2,0), 所以m 2-n 2=4,e =22=2m, 所以m =22,代入m 2-n 2=4,得n 2=4, 所以椭圆方程为x 28+y 24=1.思维升华 根据条件求椭圆方程的主要方法(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可.跟踪训练2 (1)已知椭圆的两个焦点为F 1(-5,0),F 2(5,0),M 是椭圆上一点,若MF 1⊥MF 2,|MF 1|·|MF 2|=8,则该椭圆的方程是( ) A.x 27+y 22=1 B.x 22+y 27=1 C.x 29+y 24=1 D.x 24+y 29=1 答案 C解析 设|MF 1|=m ,|MF 2|=n , 因为MF 1⊥MF 2,|MF 1|·|MF 2|=8, |F 1F 2|=25,所以m 2+n 2=20,mn =8, 所以(m +n )2=36,所以m +n =2a =6,所以a =3. 因为c =5, 所以b =a 2-c 2=2. 所以椭圆的方程是x 29+y 24=1.(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32.①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝⎛⎭⎫322+22.② 由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1.题型三 椭圆的几何性质 命题点1 离心率例4 (1)(2022·湛江模拟)已知F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,过椭圆C 的下顶点且斜率为34的直线与以点F 为圆心、半焦距为半径的圆相切,则椭圆C 的离心率为( )A.55B.12C.33D.22答案 A解析 过椭圆C 的下顶点(0,-b )且斜率为34的直线方程为y =34x -b ,即34x -y -b =0,F (c ,0),由点到直线距离公式,得c =⎪⎪⎪⎪34c -b ⎝⎛⎭⎫342+1, 即c 2=-32bc +b 2,即(2c -b )(c +2b )=0,则2c -b =0,b =2c .又a 2=b 2+c 2,即a 2=(2c )2+c 2=5c 2, 解得c a =55.(2)已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率e 的取值范围为( ) A.⎝⎛⎦⎤0,22 B.⎣⎡⎭⎫22,1C.⎝⎛⎦⎤0,32 D.⎣⎡⎭⎫32,1答案 B解析 若椭圆上存在点P ,使得PF 1⊥PF 2,则以原点为圆心,F 1F 2为直径的圆与椭圆必有交点,如图,可得c ≥b ,即c 2≥b 2, 所以2c 2≥a 2,即e 2≥12,又e <1,所以e ∈⎣⎡⎭⎫22,1.思维升华 求椭圆离心率或其范围的方法 (1)直接求出a ,c ,利用离心率公式e =ca 求解.(2)由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解. (3)构造a ,c 的齐次式.可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e . 命题点2 与椭圆有关的范围(最值)例5 (1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案 D解析 设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,当三角形的高为b 时,以椭圆上一点和两个焦点为顶点的三角形的面积最大,所以12×2cb =1,故bc =1,故2a =2b 2+c 2≥22bc =22(当且仅当b =c =1时取等号).(2)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.答案 4解析 由题意知a =2,因为e =c a =12,所以c =1, 所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1. 设P 点的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2, 所以当x 0=-2时,PF →·P A →取得最大值4.教师备选1.(多选)嫦娥四号在绕月飞行时是以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3 476公里,则下列选项中正确的有( )A .焦距长约为300公里B .长轴长约为3 988公里C .两焦点坐标约为(±150,0)D .离心率约为75994答案 AD解析 设该椭圆的长半轴长为a ,半焦距长为c .依题意可得月球半径约为12×3 476=1 738, a -c =100+1 738=1 838,a +c =400+1 738=2 138,所以2a =1 838+2 138=3 976,a =1 988,c =2 138-1 988=150,2c =300,椭圆的离心率约为e =c a =1501 988=75994, 可得结论A ,D 正确,B 错误;因为没有给坐标系,焦点坐标不确定,所以C 错误.2.(2022·太原模拟)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 由椭圆x 24+y 23=1可得F (-1,0), 点O (0,0).设P (x ,y )(-2≤x ≤2).则OP →·FP →=x 2+x +y 2=x 2+x +3⎝⎛⎭⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6.思维升华 与椭圆有关的最值或范围问题的求解方法(1)利用数形结合、几何意义,尤其是椭圆的性质;(2)利用函数,尤其是二次函数;(3)利用不等式,尤其是基本不等式.跟踪训练3 (1)(2022·济南质检)设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点.若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1B.5-12C.22D.2+1答案 A解析 不妨设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),如图所示,∵△PF 1F 2为直角三角形,∴PF 1⊥F 1F 2,又|PF 1|=|F 1F 2|=2c ,∴|PF 2|=22c ,∴|PF 1|+|PF 2|=2c +22c =2a ,∴椭圆E 的离心率e =c a=2-1.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0),上顶点为A (0,b ),直线x =a 2c上存在一点P 满足(FP →+F A →)·AP →=0,则椭圆的离心率的取值范围为( )A.⎣⎡⎭⎫12,1B.⎣⎡⎭⎫22,1C.⎣⎢⎡⎭⎪⎫5-12,1 D.⎝⎛⎦⎤0,22答案 C解析 取AP 的中点Q ,则FQ →=12(FP →+F A →),所以(FP →+F A →)·AP →=2FQ →·AP →=0,所以FQ ⊥AP ,所以△AFP 为等腰三角形,即|F A |=|FP |,且|F A |=b 2+c 2=a .因为点P 在直线x =a 2c 上,所以|FP |≥a 2c -c ,即a ≥a 2c -c ,所以a c ≥a 2c 2-1,所以e 2+e -1≥0,解得e ≥5-12或e ≤-5-12.又0<e <1,故5-12≤e <1.课时精练1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为() A.x 29+y 2=1 B.y 29+x 25=1C.y 29+x 2=1 D.x 29+y 25=1答案 D解析 由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.24答案 C解析 依题意可知,c =b ,又a =b 2+c 2=2c ,∴椭圆的离心率e =c a =22. 3.椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则PF 1—→·PF 2—→的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 设F 1为左焦点,则由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),-2≤x ≤2,∴PF 1—→=(-1-x ,-y ),PF 2—→=(1-x ,-y ),则PF 1—→·PF 2—→=x 2+y 2-1=x 22∈[0,1]. 4.设e 是椭圆x 24+y 2k=1的离心率,且e ∈⎝⎛⎭⎫12,1,则实数k 的取值范围是( ) A .(0,3)B.⎝⎛⎭⎫3,163 C .(0,3)∪⎝⎛⎭⎫163,+∞D .(0,2) 答案 C解析 当k >4时,c =k -4, 由条件知14<k -4k<1, 解得k >163; 当0<k <4时,c =4-k , 由条件知14<4-k 4<1,解得0<k <3. 5.(多选)已知椭圆C 的中心为坐标原点,焦点F 1,F 2在y 轴上,短轴长等于2,离心率为63,过焦点F 1作y 轴的垂线交椭圆C 于P ,Q 两点,则下列说法正确的是( )A .椭圆C 的方程为y 23+x 2=1B .椭圆C 的方程为x 23+y 2=1 C .|PQ |=233D .△PF 2Q 的周长为4 3答案 ACD解析 由已知得,2b =2,b =1,c a =63, 又a 2=b 2+c 2,解得a 2=3.∴椭圆方程为x 2+y 23=1, 如图.∴|PQ |=2b 2a =23=233, △PF 2Q 的周长为4a =4 3.6.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12 D .若PF 1—→=F 1Q —→,则椭圆C 的长轴长为5+17答案 ACD解析 由题意可知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1, 即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去), 则椭圆C 的离心率e =c a <13+52=15+12=5-12, 又0<e <1,所以椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12, 所以C 正确;由PF 1—→=F 1Q —→可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确. 7.如图是篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为________.答案 12解析 由图可得,椭圆的短轴长2b =22⇒b =11,2a =22sin 60°=2232⇒a =223,∴e =c a =1-⎝⎛⎭⎫b a 2=1-34=12. 8.(2021·全国甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.答案 8解析 根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积. 解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3, 因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以12F PF S △=12|y P |×2c =12×4×6=12. 10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b . (1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的方程. 解 (1)由题意得,A (-a ,0),EF 2:x +y =c ,因为A 到直线EF 2的距离为62b , 即|-a -c |12+12=62b , 所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =c a , 所以2e 2+e -1=0,解得e =12或e =-1(舍), 所以椭圆C 的离心率为12. (2)由(1)知离心率e =c a =12,即a =2c ,① 因为∠F 1PF 2=60°,△PF 1F 2的面积为3,则12|PF 1||PF 2|sin 60°=3, 所以|PF 1||PF 2|=4,又⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(2c )2, 所以a 2-c 2=3,②联立①②得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.11.(多选)(2022·大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是( )A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线P A 1与直线P A 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案 CD解析 由椭圆方程知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0, 即∠F 1PF 2最大值小于π2,B 错误; 若P (x ′,y ′),则1PA k =y ′x ′+4, 2PA k =y ′x ′-4,有12·PA PA k k =y ′2x ′2-16, 而x ′216+y ′29=1, 所以-16y ′2=9(x ′2-16),即有12·PA PA k k =-916,C 正确; 若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27, 故y ′=±2,代入椭圆方程得x ′=±453,D 正确. 12.(多选)2021年10月16日,神舟十三号发射圆满成功,人民日报微博发了一条“跨越时空的同一天”,致敬每一代人的拼搏!已知飞船在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即飞船的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( )A .飞船向径的取值范围是[a -c ,a +c ]B .飞船在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C .飞船向径的最小值与最大值的比值越大,椭圆轨道越扁D .飞船运行速度在近地点时最大,在远地点时最小答案 ABD解析 根据椭圆定义知飞船向径的取值范围是[a -c ,a +c ],A 正确;当飞船在左半椭圆弧上运行时,对应的面积更大,根据面积守恒规律,知在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间,B 正确;a -c a +c =1-e 1+e =21+e-1,比值越大,则e 越小,椭圆轨道越圆,C 错误; 根据面积守恒规律,飞船在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,D 正确.13.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1 答案 D解析 设P ⎝⎛⎭⎫a 2c ,m ,F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2得|PF 2|=|F 1F 2|,即⎝⎛⎭⎫a 2c -c 2+m 2=2c , 得m 2=4c 2-⎝⎛⎭⎫a 2c -c 2=-a 4c 2+2a 2+3c 2≥0, 即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13, 又0<e <1,故33≤e <1. 14.(2021·浙江)已知椭圆x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0)(c >0).若过F 1的直线和圆⎝⎛⎭⎫x -12c 2+y 2=c 2相切,与椭圆的第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.答案 255 55解析 设过F 1的直线与圆的切点为M ,圆心A ⎝⎛⎭⎫12c ,0,则|AM |=c ,|AF 1|=32c , 所以|MF 1|=52c , 所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b 2a , 又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e(0<e <1), 得e =55.15.已知椭圆x 2a 2+y 2b2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上的任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案 [1,4]解析 由已知得2b =2,故b =1.∵△F 1AB 的面积为2-32, ∴12(a -c )b =2-32, ∴a -c =2-3, 又a 2-c 2=(a -c )(a +c )=b 2=1, ∴a =2,c =3,∴1|PF 1|+1|PF 2| =|PF 1|+|PF 2||PF 1||PF 2| =2a |PF 1|(2a -|PF 1|) =4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4, 即1|PF 1|+1|PF 2|的取值范围为[1,4]. 16.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.(1)解 不妨设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c . 在△F 1PF 2中,由余弦定理得,cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|, 即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12, 所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2, 所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23. 又因为|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2, 当且仅当|PF 1|=|PF 2|时等号成立, 所以3a 2≥4(a 2-c 2),所以c a ≥12, 所以e ≥12. 又因为0<e <1,所以所求椭圆的离心率的取值范围是⎣⎡⎭⎫12,1.(2)证明 由(1)可知|PF 1|·|PF 2|=43b 2, 所以12F PF S △=12|PF 1|·|PF 2|sin 60° =12×43b 2×32=33b 2, 所以△F 1PF 2的面积只与椭圆的短轴长有关.。

54椭圆的定义及几何性质(2课时)

54椭圆的定义及几何性质(2课时)

第54课时 椭圆(1)一、课前准备: 【自主梳理】1.椭圆的概念:平面内到两个定点1F 、2F 的距离的和等于常数(大于1F 2F )的点的轨迹叫做 .这两定点叫做椭圆的 ,两焦点间的距离叫 . 集合P={}c F F a MF MF M 2,22121==+,其中0,0>>c a ,且c a ,为常数: (1)若 ,则集合P 为椭圆; (2)若 ,则集合P 为线段; (3)若 ,则集合P 为空集.2.椭圆的标准方程和几何性质 标准方程 )0(12222>>=+b a b y a x )0(12222>>=+b a bx a y图形性质范围 b y b a x a ≤≤-≤≤-, b x b a y a ≤≤-≤≤-, 对称性 对称轴:坐标轴 对称中心:原点轴长轴21A A 的长为2a ,短轴21B B 的长为2b焦距 c F F 221=离心率 a c e =a ,b ,c 关系222b a c -=1.已知两定点A(-1,0),B (1,0),点M 满足MA+MB=2,则点M 的轨迹是 .2.“0>>n m ”是方程“122=+ny mx 表示焦点在y 轴上的椭圆”的 条件.3.已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,则这个椭圆的离心率为 .4.椭圆131222=+y x 的焦点为1F 、2F ,点P 在椭圆上,如果线段P 1F 的中点在y 轴上,那么P 1F = ,P 2F = .5.在平面直角坐标系中,椭圆22221(0)x y a b a b+=>>的焦距为2,以O 为圆心,a 为半径的圆,过点2(,0)a c作圆的两切线互相垂直,则离心率e =.y O F 2 F 1 A 1 B 1B 2A 2 xOA 1 A 2B 1 B 2 F 1 F 2 x y二、课堂活动:考点一 椭圆的定义及应用【例1】一动圆与已知圆C 1:1)3(22=++y x 外切,与圆C 2:81)3(22=+-y x 内切,求动圆圆心的轨迹方程.变式:求过点A (2,0)且与圆032422=-++x y x 内切的圆的圆心的轨迹方程.考点二 求椭圆的标准方程【例2】求满足下列条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A (3,0);(2)经过两点A (0,2)和B (3,21).变题:(1)已知椭圆过(3,0),离心率36=e ,求椭圆的标准方程; (2)已知椭圆的中心在坐标原点,以坐标轴为对称轴,且经过两点P 1(1,6)、P 2(2,3--),求椭圆的标准方程.考点三 椭圆的几何性质【例3】已知1F 、2F 是椭圆的两个焦点,P 为椭圆上一点,21PF F ∠= 60, (1)求椭圆离心率的取值范围;(2)求证:21PF F ∆的面积只与椭圆的短轴长有关.变题:已知椭圆)0(12222>>=+b a by a x 的长短轴端点分别为A 、B ,从此椭圆上一点M (在x 轴上方)向x 轴作垂线,恰好通过椭圆的左焦点1F ,AB//OM.(1)求椭圆的离心率;(2)设Q 是椭圆上任意一点,1F 、2F 分别是左右焦点,求21QF F ∠的范围.渗透数学思想:方程思想【例4】已知中心在原点,焦点在x 轴上的椭圆C 的离心率为21,且经过点M (1,23),过点P (2,1)的直线l 与椭圆C 相交于不同的两点A ,B.(1)求椭圆C 的方程;(2)是否存在直线l ,满足2PA PB PM ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.第54课时 椭圆(1)作业1.若ABC ∆的两个顶点坐标分别为A (-4,0)、B (4,0),ABC ∆的周长为18,则顶点C 的轨迹方程为2.化简的结果_______________.3.已知1F 、2F 是椭圆的两个焦点,过1F 且与长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是等腰直角三角形,则这个椭圆的离心率为 .4.已知圆36)2(22=++y x 的圆心为M,设A 为圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程是 .5.椭圆192522=+y x 上一点M 到焦点1F 的距离是2,N 是M 1F 的中点,则ON=20=6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为7.椭圆12922=+y x 的焦点为1F 、2F ,点P 在椭圆上,若P 1F =4,则PF 2= ,21PF F ∠=8.已知A (4,0),B (2,2)是椭圆内的点,M 是椭圆上动点,则|MA|+|MB|最小值_________,最大值__________,|MB|+|MA|最小值__________.9.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是_____ ___.10.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是________.11.若点O 和点F 分别为椭圆x 24+y23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________.12.设椭圆22x a+22y b =1(a>b>0)的左,右两个焦点分别为12F F ,,短轴的上端点为B,短轴上的两个三等分点为P ,Q,且四边形12F PF Q 为正方形. (1)求椭圆的离心率;(2)若过点B 作此正方形的外接圆的切线在x 轴上的一个截距为32-,求此椭圆方程.13.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为右焦点. (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.221259x y +=5414.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1、F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2) 若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.第54课时 椭圆(2)【知识回顾】1. 椭圆的第二定义:平面内动点P 到定点F 的距离和它到定直线l 的距离的 是常数e( )的点的轨迹是椭圆.定点F 是 ,定直线l 是 ,常数e 是 . 【自我检测】1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为______________.2.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.3.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D, 且BF→=2FD →,则C 的离心率为________.4.椭圆x 2a 2+y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,抛物线y 2=2bx 的焦点为F.若F 1F→=3FF 2→,则此椭圆的离心率为________. 5.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=________. 【典例体验】题型一 求综合情况下椭圆的基本量例1已知椭圆的右焦点F ()m ,0,左、右准线分别为l 1:x =-m -1,l 2:x =m +1,且l 1、l 2分别与直线y =x 相交于A 、B 两点.(1) 若离心率为22,求椭圆的方程;(2) 当AF →·FB →<7时,求椭圆离心率的取值范围.题型二 椭圆的综合问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)经过点M(-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q.(1) 求椭圆C 的方程;(2) 试判断直线PQ 的斜率是否为定值,证明你的结论.例4 3.已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,连结椭圆的四个顶点得到的菱形的面积为4.(1) 求椭圆的方程;(2) 设直线l 与椭圆相交于不同的两点A ,B.已知点A 的坐标为(-a ,0).若|AB|=425,求直线l 的倾斜角.第54课时 椭圆(2)作业2.已知椭圆的两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52,则椭圆的标准方程为______________________.3.已知椭圆的焦点在y 轴上,a 2+b 2=5,且过点(-2,0),则椭圆的标准方程为________________________________________________________________________.4.已知椭圆经过两点⎝⎛⎭⎫-32,52和(3,5),则椭圆的标准方程为_____________________. 6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e.若椭圆上存在点P ,使得PF 1PF 2=e ,则该椭圆离心率e 的取值范围是________.7.已知椭圆x 24+y 22=1,A 、B 是其左、右顶点,动点M 满足MB ⊥AB.连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为________.8.已知点P 在椭圆C :22194x y +=上,左、右焦点分别为F 1、F 2,过点F2作∠F 1PF 2外角平分线的垂线,垂足为N ,则点N 的轨迹方程为________. 9.如图,设点P 是椭圆E :x 24+y 2=1上的任意一点(异于左、右顶点A 、B).(1) 若椭圆E 的右焦点为F ,上顶点为C ,求以F 为圆心且与直线AC 相切的圆的半径;(2) 设直线PA 、PB 分别交直线l :x =103于点M 、N.求证:PN ⊥BM.10.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A(0,1).(1) 求椭圆的方程;(2) 过点A 作两条互相垂直的直线分别交椭圆于点M 、N ,求证:直线MN 恒过定点。

椭圆的经典知识总结

椭圆的经典知识总结

椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。

下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。

一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。

2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。

(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。

长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。

(3)中心:椭圆的中心是指长轴和短轴的交点。

(4)半焦距:则是焦点到中心的距离。

(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。

3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。

(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。

(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。

4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。

二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。

(2)长轴和短轴也是椭圆的对称轴。

2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。

(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。

3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。

(2)法线是与切线垂直且通过椭圆上切点的直线。

4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。

5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。

(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。

椭圆的定义及几何性质(含答案)

椭圆的定义及几何性质(含答案)

椭圆的定义及其几何性质[要点梳理]1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质椭圆的常用性质(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.[基础自测]一、思考辨析判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)椭圆既是轴对称图形,又是中心对称图形.()(5)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(6)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案:(1)×(2)√(3)×(4)√(5)√(6)√二、小题查验1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5 C.8 D.10解析:D[由椭圆的定义知:|PF1|+|PF2|=2×5=10.]2.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析:B[由题意知25-m2=16,解得m2=9,又m>0,所以m=3.]3.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A .13B .12C .22D .223解析:C [由椭圆x 2a 2+y 24=1知b 2=4,∴b =2,c =2,∴a =b 2+c 2=22.∴椭圆的离心率e =c a =222=22.]4.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1B .x 225+y 220=1C .x 210+y 215=1D .x 220+y 215=1解析:A [由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.]5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是__________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4. 答案:(3,4)∪(4,5) 三、大题突破1.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且 与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.第1课时 椭圆的定义及简单几何性质[考点梳理]1.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1[解析] 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.2.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B .74C .72D .752[解析] 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.[答案] (1)D (2)C3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________. 解析:由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5.4.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3. 答案:(1)5 (2)31.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1D .x 24+y 2=1[解析] C [直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.] 2.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 24+y 22=1D .x 28+y 24=1[解析] A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12即a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.] 3.已知F 1(-1,0),F 2(1,0)是椭圆的两个焦点,过F 1的直线l 交椭圆于M ,N 两点,若△MF 2N 的周长为8,则椭圆方程为( )A .x 24+y 23=1B .y 24+x 23=1C .x 216+y 215=1D .y 216+x 215=1解析:∵F 1(-1,0),F 2(1,0)是椭圆的两个焦点,∴c =1.根据椭圆的定义,得△MF 2N 的周长为4a =8,得a =2,∴b =3,∴椭圆方程为x 24+y 23=1,故选A .4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且与抛物线y 2=x 交于A ,B 两点,若△OAB (O 为坐标原点)的面积为22,则椭圆C 的方程为( )A .x 28+y 24=1B .x 22+y 2=1C .x 212+y 26=1D .x 212+y 28=1解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=x 交于A ,B 两点∴设A (x ,x ),B (x ,-x ),则x x =22,解得x =2,∴A (2,2).由已知得⎩⎨⎧c a =22,4a 2+2b2=1,a 2=b 2+c 2,解得a =22,b =2.∴椭圆C 的方程为x 28+y 24=1,故选A .答案:(1)A (2)A[命题角度1] 椭圆的长轴、短轴、焦距1.已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5 解析:A [∵椭圆x 2m -2+y 210-m =1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.] [命题角度2] 椭圆的离心率2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14解析:D [如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1,由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4.所以e =c a =14.故选D .]2.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C .3-12D .3-1 解析:D [在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|FP 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1(a >b >0)中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D .]3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .[32,1) B .[31,22] C .[31,1) D .(0,31]解析:C [如图所示,∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c .∴a -c ≤2c <a +c .∴e =c a ∈⎣⎡⎭⎫13,1.] [命题角度3] 与椭圆有关的最值或范围问题4.已知F 是椭圆C :x 29+y 25=1的左焦点,P 为C 上一点,A (1,34),则|P A |+|PF |的最小值为( )A .103B .113C .4D .133解析:D [设椭圆C :x 29+y 25=1的右焦点为F ′(2,0),F (-2,0),由A ⎝⎛⎭⎫1,43,则|AF ′|=53, 根据椭圆的定义可得|PF |+|PF ′|=2a =6,所以|P A |+|PF |=|P A |+6-|PF ′|≥6-|AF ′|=6-53=133.]5.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为( )A .1B .23C .4D .43解析:C [设P 点坐标为(x 0,y 0). 由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤3. 又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), ∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=-2时,PF →·P A →取得最大值4.][课时训练]一、选择题1.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9) 解析:B [根据椭圆方程可得焦点在y 轴上,且c 2=a 2-b 2=25-16=9,∴c =3,故焦点坐标为(0,±3).故选B.]2.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1解析:A [依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.] 3.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .k >4B .k =4C .k <4D .0<k <4 解析:D [方程kx 2+4y 2=4k表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x轴上的椭圆,可得0<k <4,故选D.]4.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为( )A .53B .53或217C .217D .37或59解析:A [由题意得,2a =m -3>0,即m >3,若a 2=4,即a =2,则m -3=4,m =7>4,不合题意,因此a 2=m ,即a =m ,则2m =m -3,解得m =9,即a =3,c =m -4=5,所以椭圆离心率为e =53.故选A.] 5.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .32 B .22 C .12 D .33解析:A [△PEF 2的周长为|PE |+|PF 2|+|EF 2|=|PE |+2a -|PF 1|+|EF 2| =2a +|EF 2|+|PE |-|PF 1|≥2a +|EF 2|-|EF 1|=2a =4b ,∴e =c a =1-⎝⎛⎭⎫b a 2=1-14=32,故选A.] 6.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离 心率的取值范围是( )A .(31,1)B .[31,1)C .(0,31)D .(0,31] 解析:B [根据椭圆定义得|PF 1|+|PF 2|=2a ,将|PF 1|=2|PF 2|代入,得|PF 2|=2a 3,根据椭圆的几何性质,知|PF 2|≥a -c ,故2a 3≥a -c ,即a ≤3c ,故c a ≥13,即e ≥13,又e <1,故该椭圆离心率的取值范围是⎣⎡⎭⎫13,1,故选B.]7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则 △PQF 周长的最小值是( )A .14B .16C .18D .20 解析:C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]二、填空题8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆 的方程为______________.解析:由题意知抛物线y 2=16x 的焦点为(4,0),∴c =4, ∵e =c a =4a =63,∴a =26,∴b 2=a 2-c 2=8,∴椭圆的方程为x 224+y 28=1. 答案:x 224+y 28=1 9.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是____________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2, 解得0<k <1.答案:(0,1)10.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________. 解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8.答案:4或811.若椭圆x 2a 2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1→·PF 2→=0,则椭圆离心率的取值范围是 ______________.解析:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°.设P (x 0,y 0)S △PF 1F 2=b 2=c |y 0|≤cb ,即b ≤c ,则a 2-c 2≤c 2,解得e 2≥12,即e ≥22,又在椭圆中0<e <1,故椭圆离心率的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,1三、解答题12.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.13.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12. 14.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去). 故C 的离心率为12. (2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.② 将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1. 解得a =7,b 2=4a =28,故a =7,b =27.14.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.解:(1)由椭圆的定义知,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知得PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1. (2)如图,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义知,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,所以|PF 1|+|PQ |+|QF 1|=4a .于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43及1+λ+1+λ2关于λ的单调性, 得3≤t <4,即14<1t ≤13,进而12<e 2≤59,即22<e ≤53.。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

椭圆知识点总结

椭圆知识点总结
(2)椭圆 (a>b>0) 横坐标-b≤x≤b,纵坐标-a≤x≤a
}
2.对称性
椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心
3.顶点
(1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
(2)线段A1A2,B1B2分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。
同步测试
1已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )
A 圆 B 椭圆 C线段 D 直线
2、椭圆 左右焦点为F1、F2,CD为过F1的弦,则 CDF1的周长为______
3已知方程 表示椭圆,则k的取值范围是( )
A -1<k<1 B k>0 C k≥0 D k>1或k<-1
1.若椭圆经过点 , ,则该椭圆的标准方程为。
2.焦点在坐标轴上,且 , 的椭圆的标准方程为
3.焦点在 轴上, , 椭圆的标准方程为
4. 已知三点P(5,2)、 (-6,0)、 (6,0),求以 、 为焦点且过点P的椭圆的标准方程;
^
变式:求与椭圆 共焦点,且过点 的椭圆方程。
四.焦点三角形
1.椭圆 的焦点为 、 , 是椭圆过焦点 的弦,则 的周长是。
6.几何性质
(1) 最大角
(2)最大距离,最小距离
例题讲解:
一.椭圆定义:
1.方程 化简的结果是
%
2.若 的两个顶点 , 的周长为 ,则顶点 的轨迹方程是
3.已知椭圆 =1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为

(完整版)椭圆知识点总结

(完整版)椭圆知识点总结

椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a b y a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为: ∵100)35(0)35(222=+-+++=a ,2c =6. ∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。

椭圆几何性质知识点总结

椭圆几何性质知识点总结

椭圆几何性质知识点总结1. 椭圆的定义椭圆的定义是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

即PF1+PF2=2a。

其中F1和F2称为焦点,2a称为长轴长度。

椭圆的对称轴是通过两个焦点的连接线,称为长轴。

椭圆的短轴是垂直于长轴,并且过椭圆中心的直线。

2. 椭圆的焦点和离心率椭圆的焦点是椭圆的特殊点,它决定了椭圆的形状和大小。

椭圆的离心率e定义为焦点到椭圆中心的距离与长轴长度a的比值。

离心率的取值范围是0<e<1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆退化为一条直线。

3. 椭圆的参数方程椭圆的参数方程可以通过参数t来表示椭圆上的点的坐标。

一般来说,椭圆的参数方程可以写成x=acos(t),y=bsin(t)。

其中(a,b)是椭圆的长短轴长度,t是参数。

4. 椭圆的直角坐标方程椭圆的直角坐标方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)是椭圆的中心点坐标。

5. 椭圆的几何性质椭圆具有许多重要的几何性质,例如:a. 椭圆的焦点性质:任意点到两个焦点的距离之和等于椭圆的长轴长度。

b. 椭圆的直径定理:椭圆的任意直径的长度都等于椭圆的长轴长度。

c. 椭圆的对称性:椭圆具有关于两个坐标轴的对称性。

d. 椭圆的切线性质:椭圆上的任意一点处的切线与两个焦点到该点的连线的夹角相等。

6. 椭圆的面积和周长椭圆的面积可以表示为S=πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆的周长可以表示为C=4aE(e),其中E(e)是椭圆的第二类完全椭圆积分。

7. 椭圆的方程类型椭圆的方程可以分为标准方程和一般方程两种类型。

标准方程是指椭圆的中心点在坐标原点的方程形式,一般方程是指椭圆的中心点不在坐标原点的方程形式。

8. 椭圆的相关问题在实际问题中,椭圆经常出现在各种应用中,例如天体运动、工程设计等。

因此,研究椭圆的相关问题对于理论研究和应用都具有重要意义。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII2椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b xa y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e ace )10(<<=e ace33. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

椭圆知识点

椭圆知识点

椭圆【复习目标】椭圆的定义、标准方程和几何性质。

【基础知识总结】1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆. 2.椭圆的标准方程和几何性质:标准方程 )0(12222>>=+b a by a x )0(12222>>=+b a b x a y 图形性 质参数关系 222c b a +=焦点 )0,(),0,(c c -),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点 ),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ace 准线ca x 2±=ca y 2±=注:(1)对于椭圆定义:没有“平面内”这个条件,则是椭球而不是椭圆;对于确定哪种形式的标准方程则要看焦点的位置,若焦点在x 轴上则x 2的分母大,若焦点在y 轴上则y 2的分母大。

(2)求椭圆方程的除直接根据定义外,常用待定系数法。

当椭圆的焦点位置不明确而无法确定其方程时,可以设方程的形式为22x y m n+=1(m>0,n>0)或221(0,0)Ax By A B +=>>. 常用结论1. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.2. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22O M A B b k k a ⋅=-,即0202y a x b K AB -=。

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质椭圆是一种常见的几何图形,具有特定的定义和性质。

本文将对椭圆的定义以及与其相关的性质进行探讨。

一、椭圆的定义椭圆可以用两个焦点和到两个焦点距离之和等于定值的点的集合来定义。

更准确地说,椭圆是平面上满足到焦点F1和F2的距离之和等于常数2a的点的集合,其中a是椭圆的半长轴。

椭圆还具有两个确定其形状和大小的参数:离心率e和焦点间的距离2c。

二、椭圆的特点椭圆具有以下几个重要的性质:1. 对称性:椭圆具有两条互相垂直的对称轴,即长轴和短轴。

这两条对称轴的交点称为椭圆的中心。

2. 焦点性质:对于椭圆上的任意一点P,到焦点F1和F2的距离之和等于2a。

即PF1 + PF2 = 2a。

3. 定义性质:椭圆上的任意一点P到焦点F1和F2的距离之和等于2a,这是椭圆的定义。

4. 离心率性质:椭圆的离心率e满足0 < e < 1,离心率越小,椭圆越扁平。

5. 半焦参数性质:椭圆的半焦参数c满足c = a * e,其中c表示焦点到中心的距离。

6. 弦性质:椭圆上任意一条弦的长度等于半长轴的长度。

三、椭圆与其他几何图形的关系椭圆与圆、抛物线和双曲线都是常见的二次曲线。

与圆相比,椭圆的两个焦点在中心的两侧,而圆的焦点和中心重合;与抛物线相比,椭圆是有界曲线,而抛物线则是无界曲线;与双曲线相比,椭圆是闭合曲线,而双曲线则是非闭合曲线。

四、椭圆的应用椭圆由于其独特的几何性质,在现实生活中有着广泛的应用。

以下列举几个常见的应用场景:1. 太阳系的行星轨道:行星围绕太阳运动的轨道是个近似椭圆形,其中太阳位于椭圆的一个焦点处。

2. 圆形的近似:在一些工程设计中,可以使用椭圆作为近似圆形来进行计算和设计,便于操作和运算。

3. 电子轨道运动:根据玻尔模型,电子在原子中的运动轨迹近似为椭圆形。

总结:椭圆是一种具有独特几何性质的几何图形,其定义和性质经过了仔细的研究与推导。

我们了解到,椭圆具有对称性、焦点性质和离心率性质等重要特征,并且与其他几何图形有所区别。

椭圆的定义及性质

椭圆的定义及性质

椭圆
一.椭圆的定义
平面内与两个定点F1、F2的距离之和等于常数2a(大于∣F1F2∣)的点的轨迹叫椭圆. 这两个定点F1、F2叫椭圆的焦点. 两焦点的距离∣F1F2∣叫椭圆的焦距(2c).
1.动画演示
2.椭圆定义的符号表述:
(2a>2c)
注意:
1.当2a>2c时,轨迹是椭圆
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
二.椭圆的标准方程
(1)焦点在x轴
(2)焦点在y轴
看分母大小
1
2
y
o
F
F
P
x
1
o
F
y
x
2
F
P
三.椭圆的几何性质
让我们一起研究标准方程为:标准方程为: 的椭圆的性质
所以P到另一个焦点的距离 为6-2=4.
D
B
D
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
标准方程
图形
范围
对称性
曲线关于x轴、 y轴、原点对称
顶点
长轴顶点(±a,0) 短轴顶点(0,±b)
焦点
焦距
离心率
小结:椭圆的标准方程及其简单几何性质
(-c,0)和(c,பைடு நூலகம்)
顶点
长轴顶点(±a,0) 短轴顶点(0,±b)
范围
焦点
焦距
离心率
椭圆的标准方程及其简单几何性质
(-c,0)和(c,0)
(0,-c)和(0,c)
曲线关于x轴、 y轴、原点对称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学目标】(1)掌握椭圆的定义(2)掌握椭圆的几何性质(3)掌握求椭圆的标准方程【教学重难点】(1)椭圆的离心率有关的问题(2)椭圆焦点三角形面积的求法【教学过程】一、知识点梳理知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。

知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

讲练结合:(2)范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。

③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。

a和b分别叫做椭圆的长半轴长和短半轴长。

(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。

②因为a>c>0,所以e的取值范围是0<e<1。

e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。

当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2椭圆的图像中线段的几何特征(如下图):(1),,;(2),,;(3),,;知识点四:椭圆与(a>b>0)的区别和联系注意:椭圆,(a >b >0)的相同点为形状、大小都相同,参数间的关系都有a >b >0和,a 2=b 2+c 2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。

二、考点分析考点一:椭圆的定义 【例1】方程()()10222222=++++-y x y x 化简的结果是 。

【例2】已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=16,则点P 的轨迹为( )A 圆B 椭圆C 线段D 直线【变式训练】已知椭圆=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 。

考点二:求椭圆的标准方程【例3】若椭圆经过点(5,1),(3,2)则该椭圆的标准方程为 。

【例4】ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.【例5】求以椭圆229545x y +=的焦点为焦点,且经过点M 的椭圆的标准方程.【变式训练】1、焦点在坐标轴上,且213a =,212c =的椭圆的标准方程为 。

2、焦点在x 轴上,1:2:=b a ,6=c 椭圆的标准方程为。

3、已知三点P (5,2)、1F (-6,0)、2F (6,0),求以1F 、2F 为焦点且过点P 的椭圆的标准方程;4、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.考点三:利用标准方程确定参数【例6】若方程25x k -+23y k -=1(1)表示圆,则实数k 的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 .【例7】椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 。

【变式训练】1、椭圆2214x y m+=的焦距为2,则m = 。

2、椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

考点四:离心率的有关问题 一、求离心率1、用定义(求出a,c 或找到c/a )求离心率(1)已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C经过点41(,)33P .则椭圆C 的离心率 。

(2)设是椭圆的左、右焦点,为直线上一点, 是底角为的等腰三角形,则的离心率为( )(3)椭圆(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。

若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为_______________.(41,则该椭圆的离心率为 。

2、根据题设条件构造a 、c 的齐次式方程,解出e 。

2220()0n c cma nac pc m p m a a++==>+⋅+= (1)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. B. C. D.(2)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.(3)设椭圆的两个焦点分别为,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为 。

二)、求离心率的范围(关键是建立离心率相关不等式) 1、直接根据题意建立,a c 不等关系求解.(1)椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是 。

(2)已知21,F F 为椭圆()012222>>=+b a by a x 的焦点,B 为椭圆短轴上的端点,2121212BF BF F F ⋅≥u u u r u u u u r u u u u r ,求椭圆离心率的取值范围 。

2、借助平面几何关系(或圆锥曲线之间的数形结合)建立,a c 不等关系求解设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 。

3、利用圆锥曲线相关性质建立,a c 不等关系求解.(焦半径或横纵坐标范围建立不等式)(1)椭圆22221x y a b+=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则椭圆离心率的取值范围为 。

(2)已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围 。

(3)椭圆)(012222>>=+b a b y a x 和圆2222⎪⎭⎫ ⎝⎛+=+c b y x (其中c 为椭圆半焦距)有四个不同的交点,求椭圆的离心率的取值范围 。

考点五:椭圆焦点三角形面积公式的应用【例14】已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.【变式训练】1、若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求△21PF F 的面积.2、已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若21||||2121=⋅PF PF PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33课后作业: 一、选择题1已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=25,则点P 的轨迹为( )A 圆B 椭圆C 线段D 直线3已知方程22111x y k k+=+-表示椭圆,则k 的取值范围是( )A -1<k<1B k>0C k≥0D k>1或k<-1 17、椭圆32x +22y =1与椭圆22x +32y =(0)有( )(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对18、椭圆192522=+y x 与125922=-+-λλy x (0<k<9)的关系为( )(A)相等的焦距 (B)相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴 二、填空题2、椭圆221169x y -=左右焦点为F 1、F 2,CD 为过F 1的弦,则∆CDF 1的周长为______4、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6 (2)长轴是短轴的2倍,且过点(2,1) (3) 经过点(5,1),(3,2)5、若⊿ABC 顶点B 、C 坐标分别为(-4,0),(4,0),AC 、AB 边上的中线长之和为30,则⊿ABC 的重心G 的轨迹方程为______________________6.椭圆22221(0)x y a b a b-=>>的左右焦点分别是F 1、F 2,过点F 1作x 轴的垂线交椭圆于P点。

若∠F 1PF 2=60°,则椭圆的离心率为____ _____7、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的的离心率为____ ___ 椭圆方程为 ___________________.8已知椭圆的方程为22143x y +=,P 点是椭圆上的点且1260F PF ∠=︒,求12PF F ∆的面积9.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率为10.椭圆13610022=+y x 上的点P 到它的左焦点的距离是12,那么点P 到它的右焦点的距离是 11.已知椭圆)5(125222>=+a y ax 的两个焦点为1F 、2F ,且821=F F ,弦AB 过点1F ,则△2ABF 的周长 。

相关文档
最新文档