光学和原子物理知识点总结

光学和原子物理知识点总结
光学和原子物理知识点总结

v c

n r

i =

=sin sin 几何光学

一、光的反射定律:

1、内容:反射光线、入射光线、法线在同一平面内,反射光线与入射光线在法线两侧,反射角等于入射角。

围绕入射点将平面镜偏转a 角度,法线也偏转a 角度,反射光线偏转2a 角度。 镜面反射与漫反射都遵守光的反射定律。 2、平面镜成像规律:物体在平面镜中成虚像,像与物体大小相等,像与物体

到镜面的距离相等,像与物体的连线与镜面垂直。(对称) 二、光的折射定律,折射率

1、内容:折射光线、入射光线、法线在同一平面内,折射光线、入射光线在法线两侧,入射角的正弦值与折射角的正弦值成正比。

2、折射率(n):光从真空射入介质中时,入射角正弦值与折射角的正弦值之比。 光在真空中的速度与光在介质中速度之比。

3、任何介质的折射率n 都大于1。(空气近似等于1) 折射率表明了介质的折光本领,也表示对光传播的阻碍本领。 注意:

在反射、折射现象中,光路就是可逆的;在几何光学中作出光路图就是解题关键;

三、全反射,临界角

1、光疏介质:折射率较小的介质。 光密介质:折射率较大的介质。 光疏介质与光密介质就是相对的。

2、定义:光由光密介质射向光疏介质时,折射光线全部消失,只剩反射光线的现象。全反射光线不就是折射光线。

3、全反射的条件:①光密介质射入光疏介质; C 光从介质中进入真空或空气中时发生全反射的临界角C: sinC =1/n

4、光导纤维

光导纤维就是光的全反射的实际应用 四、棱镜:横截面就是三角形或梯形。

1、三棱镜能使射向侧面的光线向底面偏折,相同条件下,n 越大,光线偏折越多。 并将白色光分解为:红、橙、黄、绿、蓝、靛、紫七色光。 (光的色散)

棱镜对红光的折射率小,介质中的红光光速大; 棱镜对蓝光的折射率大,介质中的蓝光光速小。 (1)三棱镜折射规律:出射光线向底边偏折

(2)白光通过三棱镜发生色散规律:紫光靠近底边偏得最很

{光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速,}

2、全反射棱镜:横截面就是等腰直角三角形(临界角C=42度)。如右图。

3、作用:

三棱镜:向底边偏折光线,色散。 平行玻璃砖:平移光线

全反射棱镜、平面镜,改变光路方向,不改变聚散性质。

波动光学

一、、光的干涉现象,双缝干涉,薄膜干涉

1、光的干涉:频率相同的两列波叠加后,某些区域振动加强,某些区域振动减弱,加强区与减弱区相互隔开。

加强条件:路程差为半波长的偶数倍——

减弱条件:①双缝干涉:中间为亮条纹;亮条纹位置: 路程差=n λ;

暗条纹位置: 路程差=(2n+1)λ/2(n =0,1,2,3,、、、); { 路程差(光程差);λ:光的波长;λ/2:光的半波长;} 双缝干涉的条纹间距与波长的关系 λd

L x =

? x ?就是相邻两条明条纹或暗条纹间距,d 就是两条狭缝间的距离;L:双缝与屏间的距离} ②薄膜干涉:就是由膜的前表面与后表面反射的两列光波叠加形成。

在厚度为()

2

122λ

+=n d 的地方会出现暗条纹;在厚度λn d =2的地方会出现明条纹

增透膜的厚度就是绿光在薄膜中波长的1/4,即增透膜厚度d =λ/4

利用薄膜干涉法检查平面的平整程度。

③光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关。

光的颜色按频率从低到高的排列顺序就是:红、橙、黄、绿、蓝、靛、紫 (助记:紫光的频率大,波长小。) 二、光的衍射

1、 光的衍射:波绕过障碍物继续向前传播。

2、明显衍射条件:障碍物、缝或孔的尺寸与波长相近或比波长小。 d ≤λ 如单缝衍射、圆孔衍射、泊松亮斑(圆屏衍射)(注意条纹特点)

光的干涉

光的衍射

图形

公式

条件 两列光波频率相等

缝或孔的尺寸与波长相近或比波长小

条纹

原因

两列光波的空间叠加 缝上不同位置的光在空间的叠加

薄膜干涉:光照射薄膜上被前后两面反射形成相干光。薄膜不均匀时出现明暗条纹,薄膜劈(楔)形时形成明暗相间的线形等距条纹。

2

?=?n s 2

)12(λ

?

+=?n s

牛顿环

空气劈

原理 光照射到与空气接触的两个玻璃表面上,反射形成相干光

条纹

公式

三、光的电磁说:(电磁场,电磁波,电磁波的周期、频率、波长与波速) 1、①麦克斯韦电磁理论:变化的电场产生磁场,变化的磁场产生电场;

均匀变化的电场产生稳定磁场,均匀变化的磁场产生稳定电场;

周期性变化的电场产生周期性变化的磁场,周期性变化的磁场产生周期性变化的电场; ② 周期性变化的电场或周期性变化的磁场由发生区域由近及远的传播形成电磁波 2、 电磁场:变化的电场与磁场总就是相互联系的,形成一个不可分离的统一的场,这就就是电磁场。电场与磁场只就是这个统一的电磁场的两种具体表现。变化的磁场产生电场,变化的电场产生磁场。振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。

3、电磁波:电磁波就是一种横波。变化的电场与磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。(m/s 100.38?=c )

4、 电磁波的周期、频率与波速:

f

v T

v λλ

==

,

5、电磁波的应用:广播、电视、雷达、无线通信等都就是电磁波的具体应用。

6、光波就是电磁波的某一部分。

7、光波在真空中的传播速度:c=3×108m/s,就是横波。

8、公式:v=λ/T=λf = c/n (光进入另一介质时,频率、周期不变,波长、波速改变。)

可见光的波长范围:370nm —750nm

频率范围:8×1014Hz —4×1014Hz 9、光的本质就是一种电磁波(麦克斯韦)。

电磁波谱(按波长λ从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。 波长范围

102m-------------------------------------------------------------------------------------10—10

m

无线电波 红外线

可见光

紫外线

伦琴射线 γ射线 产生原理 LC 回路中

自由电子的周期运动 原子外层电子受到激发

原子内层电子受到激发 原子核受到激发

产生方法 LC 振荡电

一切物质 固液气体点燃、气体高压激发 高温物体

高速电子轰击固体

天然放射性物质 应用 无线电

遥控、遥感、加热、理疗

照相、摄像、加热

感光、消毒、化疗

探测、透视

工业探伤、医用放疗

原子物理知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

原子物理知识点汇总

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

光学设计考点总结

i p 一.球差 轴上物点发出的光束,经光学系统以后,与光轴夹不同角度的光线交光轴于不同位置,因此,在像面上形成一个圆形弥散斑,这就是球差。 二.色球差 F 光的球差和C 光的球差之差,称为色球差,该差值也等于边缘光和近轴光色差之差。 三.波像差 对于实际的光学系统,由于像差的存在,经光学系统形成的波面已不是球面,这种实际波面相对于理想球面波的偏离就是波像差。 四.点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。 五.单个折射球面的三个无球差点 单个折射球面的三对无球差点位置是(球心处、顶点处、齐明点处) 六.光学传递函数 将物的亮度分布函数展开为傅里叶级数或傅里叶积分,将光学系统对各种频率的正弦光栅的传递和反应能力作为像质评价指标,称为光学传递函数。其曲线与坐标轴所围的面积等于中心点亮度,还可以通过MTF 曲线下降速度的快慢来评价光学系统成像质量,下降越慢,成像质量越好。 七 子午平面:包含物点和光轴的平面 弧矢面:包含主光线并与子午平面垂直的面 八 7种像差哪些与孔径有关,哪些与视场有关,哪些与两者都有关?仅 与孔径有关的像差有:球差、位置色差; 仅与视场有关的像差有:像散、场曲、畸变、倍率色差; 与视场和孔径都有关系的有:彗差 九.二级光谱 消色差系统只能对二种色光校正位置色差,它们的公共焦点或像点相对于中间色光的焦点或像点仍有偏离,这种偏离称为二级光谱。 如果光学系统已对两种色光校正了位置色差,这两种色光的公共像点相对于第三种色光的像点位置仍有差异,该差异称为二级光谱。 十.解释五种赛德和数 第一塞得和数∑S ? 也称为初级球差系数,用来表征初级球差。 ∑S ? =∑luni (i -i ')(i '-u ) 第二塞得和数∑S п 也称为初级彗差系数,用来表征初级彗差。 ∑S ц=∑S 1 i 第三塞得和数∑S ш 也称为初级像散系数,用来表征初级像散。

高中物理光学原子物理知识要点精编WORD版

高中物理光学原子物理知识要点精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

光学 一、光的折射 2.光在介质中的光速:n=n/n 1.折射定律:n=nnn大角 nnn小角 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为n=3×108m/s,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为nnn n=n 。 n 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足n=nn(频率也可能用n表示),来源于机械波中的公式n=n/n。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。 5.红光和紫光的不同属性汇总如下:

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

武汉大学印刷应用光学复习重点总结(15-16年度)

第一章: 1、几何光学四项基本定律: 光的直线传播定律:均匀介质中光总是沿直线传播的; 光的独立传播定律:不同光源(非相干光)不同方向的光束独立传播; 光的反射折射定律:符号正负 光路可逆定律: 2、全反射及其产生条件: 在一定条件下,入射到介质上的光会全部反射回原来的介质中,而没有折射光产生,这种现象称为光的全反射现象。 入射光由光密介质进入光疏介质;入射角必须大于临界角。 3、光程、共轭、完善像: 光程表示在相同的时间内光在真空中通过的路程 共轭:对某一光组组成的光学系统来说,物体的位置固定后,总可以在一个相应的位置上找到物体所成的像,这种物象之间的关系在光学上称为共轭。 完善像:理想光组能使物空间的同心光束转化为像空间的同心光束(球面波仍为球面波),也就是物空间一点经光组成的像仍是一点,即物空间与像空间是:点点对应;线线对应;面面对应而形成的像叫完善像 第二章: 1、单球面折射成像存在球差的原因: 轴上物点粗光束成像:r , n , n’给定,已知L 和U ,求解L’和U’,正弦定理,折射定律 2、焦距,近轴相似: 像方焦距:物点位于左方无限远处的光轴上,即l→∞,表示无穷远处物点对应的像点,称为

像方焦点或后焦点。此时像方截距称为像方焦距,或后焦距。 焦距:像方焦距的正负决定了球面其汇聚还是发散作用,故将像方焦距为焦距 近轴相似:将物方倾斜角U限制在一个很小的范围内,人为选择靠近光轴的光线,只虑近轴光成像,这时可以认为可以成完善像 第三章: 1、理想光学系统、主平面; 理想光学系统:能够对足够大空间内的点以足够宽光束成完善像的光学系统 (通常把物象空间符合“点对应点,直线对应直线,平面对应平面”关系的像称为“理想像”,把成像符合上述关系的光学系统称为“理想光学系统”) 理想中,每一个物点对应于唯一的一个像点,即“共轭” 理想中,物空间和像空间都是均匀透明介质,根据光的直线传播定律,由点对应唯一像点可推出直线成像为直线、平面成像为平面,即共线成像理论 主平面:不同位置的共轭面对应不同放大率。总有一对共轭面的垂轴放大率β=1,称其为主平面,物平面称为物方主平面,平面与光轴交点称为主点 2、求轴上某点的像(多种方法): 第四章: 1、一致像: 当物为左手坐标系,而像变为右手坐标系(或反之),这样的像称为“非一致像”,也叫做“镜像”;当物用左手坐标系,通过光学元件后所成的像仍为左手坐标系,则称这样的像为“一致

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U0。回路中的光电流随着反向电压的增加而减小,当反向电压 1 U0满足:-mv max =eU o,光电流将会减小到零,所以遏止电压与入射光的频率有2 关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率, 无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长, 实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子? 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。即能量是一份一份的。其中v辐射频率,h是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量&跟光的频率v成正比。;=hv,其中:h是普朗克常量,v是光的频率。 三、光电效应方程 1、逸出功VW.电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

大学化学相关知识点整理

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。 无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg)

第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai ke t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功,W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θP 下的状态,混合气体中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θ P 时的状态。 液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。在溶液中,溶质的标准态是指压力θP P =,质量摩尔浓度θb b =,标准质量摩尔浓度11-?=kg mol b θ,并表现出无限稀释溶液特性时溶质的(假想)状态。标准质量摩尔浓度近似等于 标准物质的量浓度。即11-?=≈L mol c b θθ 5、 物质B 的标准摩尔生成焓θm f H ?(B,相态,T )是指在温度T 下,由参考状态单质生成物质B (1+=B ν)反应的标准摩尔焓变。 6、 参考状态一般指每种物质在所讨论的温度T 和标准压力θP 时最稳定的状态。个别情况下参考状态单质并不是最稳定的,磷的参考状态是白磷4P (s,白),但白磷不及红磷和黑磷稳定。O 2(g)、H 2(g)、Br 2(l)、I 2(s)、Hg(l)和P 4(白磷)是T=298.15K ,θP 下相应元素的最稳定单质,即其标准摩尔生成焓为零。 7、 在任何温度下,参考状态单质的标准摩尔生成焓均为零。 8、 物质B 的标准摩尔燃烧焓θ m c H ?(B ,相态,T )是指在温度T 下,物质B(1-=B ν)完全氧化成相同温度下指定产物时的反应的标准摩尔焓变。 第四节:Hess 定律 1、 Hess 定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是相等的。其实质是化学反应的焓变只与始态和终态有关,而与途径无关。 2、 焓变基本特点: ⑴某反应的θm r H ?(正)与其逆反应的θm r H ?(逆)数值相等,符号相反。即

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型-—核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型。 2。物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D 。α粒子穿过金箔时都有较大的偏转。 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。其中一个 α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________。 ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n =。其中n 称为量子数,只能取正整数。E 1=-13。6eV ,r 1=0。53×10-10 m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 原子的较高能量状态称为_______,对应电子在离核较远的轨道上运动. 4.氢原子核外的电子绕核运动的轨道与其能量相对应 核外电子绕核做圆周运动的向心力,来源于库仑力(量子化的卫星运动模型) 由r v m r e k F 222 ==库得动能r ke mv E k 2 22121==, 即r 越大时,动能________。 又因为12r n r n =,21 n E E n = 即量子数n 越大时,动能_______,势能______,总能量_______. 5.用玻尔量子理论讨论原子跃迁时释放光子的频率种数 氢原子处于n=k 能级向较低激发态或基态跃迁时,可能产生的光谱线条数的计算公式为:2 ) 1(2 -= =k k C N k 例1:氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中 ( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 图1-1 c 原子核 α粒子

大学光学知识点归纳总结

大学光学知识点归纳总结 光学是物理学的重要分支学科。也是与光学工程技术相关的学科。下面,XX为大家分享光学知识点总结,希望对大家有所帮助! 1、光源:能够发光的物体可分为 (1)自然光源如:太阳,萤火虫 (2)人造光源如:蜡烛,电灯 2、光的传播: (1)光在同种均匀介质中是沿直线传播的 (2)直线传播现象 ①影子的形成:日食、月食、无影灯 ②小孔成像:倒立、实像 3、光的传播速度": (1)光在真空中的传播速度是×108 (2)光在水中的传播速度是真空中的3/4 (3)光在玻璃中的传播速度是真空中的2/3 1、反射现象:光射到物体的表面被反射出去的现象 2、概念: (1)一点:入射点 (2)二角: ①入射角:入射光线与法线的夹角

②反射角:反射光学分与法线的夹角 (3)三线:入射光线、反射光线、法线 3、反射定律: (1)入射光线、反射光线、法线在同一平面内(三线共面) (2)入射光线、反射光线分居法线两侧(两线异侧) (3)反射角等于入射角(两角相等) 4、反射分类:遵循光的反射定律。 (1)镜面反射:入射光线平行,反射光线也平行 (2)漫反射:入射光线平行,反射光线不平行 5、平面镜成像:平面镜成的像是虚像,像与物体的大小相等,像到平面镜的距离与物体到平面镜的距离相等,像与物体关于平面镜对称(等大,正立,虚像) 1、折射现象:光由一种介质射入另一种介质时,在介面上将发生光路改变的现象。常见现象:筷子变"弯"、池水变浅、海市蜃楼。 2、光的折射初步规律:(1)光从空气斜射入其他介质,折射角小于反射角(2)光从其他介质斜射入空气,折射角大于入射角(3)光从一种介质垂直射入另一种介质,传播方向不变(4)当入射角增大时,折射角随之增大 3、光路是可逆的

原子物理知识点总结

、波粒二象性 1、热辐射: 一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。 特点: 1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种 波长 的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与 温度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体: 一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在 热辐射的同时能够完全吸收入射的各种波长的电磁波, 而不发生反射, 这种物体叫做黑体 ( 或 绝对黑体 )。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如, 空腔壁上的小孔。 注意,黑体并不一定是黑色的。 热辐射特点 吸收反射特点 一般物体 辐射电磁波的情况与温度, 材 料种类及表面状况有关 既吸收,又反射,其能力与材 料的种类及入射光波长等因 素 有关 黑体 辐射电磁波的强度按波长的 分布只与黑体温度有关 完全吸收各种入射电磁波, 不 反射 黑体辐射的强度,随波长分布有一个极大值。 各种波长的辐射强度均增加。 辐射强度的极大值向波长较短方向移动。 4、能量子 :上述图像在用经典物理学解释时与该图像存在严重的不符 (维恩、 瑞利的解释) 普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值 ε 叫做能 量子. h (h 6.63 10 34 J s 叫普朗克常量 ) 。 由量子理论得出的结果与黑体的辐射强度 图像吻合的非常完美,这印证了该理论的正确性。 原子物理 黑体辐射的实验规 律: 1)温度一定 时, 2)温度升高

5 光电效应: 在光的照射下,金属中的电子从金属表面逸出的现象。 射出 来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出 : ① 光的能量是不连续的, 是一份一份的, 每一份能量子叫做一个光 子. 光子的能量为 ε= h ν ,其中 h= 6.63× 10- 34 J · s 叫普朗克常量, ν是光的频率; ② 当光照射到金属表面上时, 一个光子会被一个电子吸收, 吸收的过程是瞬间的 (不 -9 超过 10-9 s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子, 不会有一个电子连续吸收多个光子的情况, 该过程需 要克服金属内部原子束缚做功(逸出功 W 0,其大小与金属材料有关),然后才有可能从金 属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出, 否则电子无法克服原子束缚从金属中逸出。 由能量守恒可得 光电效应方程 : E k h W 0 ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。 光的强度只会影响 从金属中逸出的电子数目。 能使某种金属发生光电效应的最小频率叫做该种金属的截止频率 (极限频 率 ).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面 单位面积上入射光中光子总数目。 若ν≥ c ,无论光照强度如何也会有光电效应现象产生 若ν< c ,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之 光电管的伏安特性曲线: 在光照条件不变时, 若正向电压升高, 则电路中的光电 流会随之变大, 当正向电压调到某值后电路中的电流不再增加, 该电流叫饱和电流。 饱和电 流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中 的光电流会随之变小, 当反向电压达到某值后, 电路中的电流变为零, 这个电压叫遏止电压。 遏止电压只与入射光频率有关。 h W 0 e e (由E k h W 0 和 eU c 0 E k 得出 eU c h W 0) U c

原子物理知识学知识题目解析(褚圣麟)

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是 α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得: 2min 202 1 21()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?

解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有: 2 min 04p Ze r K πε= 192 9 13619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.4 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为710-米、密度为41.93210?3/公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。已知金的原子量为197。 解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: dn Ntd n σ= 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于090的粒子数为:2'dn dn nNt d ππ σ=?=?

相关文档
最新文档