常见化学发光免疫分析技术比较
化学发光免疫分析
糖尿病
Albumin C-peptide Insulin
唐氏筛查
PAPP-A free βHCG HCG+β AFP
心肌标志
骨标志
肝纤维
CK-MB
ß-Crosslaps
LN
Digoxin
25-(OH) Vit. D
HA
Digitoxin
Intact PTH
PIIINP
Myoglobin
Intact PTH
试剂有效期长 有效期可长达1年以上,放射免疫分析由
于放射性同位素的衰变,一般有效期只有一 个月,而酶免的底物贮存性差,都无法与化 学发光相比,有效期长可以降低使用成本, 利于推广应用。
梦想——之以恒、真正为实现纳米科技事业的梦想而奋斗!
3 化学发光免疫分析的优越性
➢ 中国免疫诊断现状
中国
国际(欧美为主)
种类
方法
检测原理
酶联免疫
酶与样本反应,依据颜色变化程度确定结果
免疫 化学发光
诊断
将抗原抗体同样本结合,由磁珠捕捉反应物,加入 发光促进剂加大反应发光速度与强度,进而诊断
根据镧系元素螯合物发光特点,用时间分辨技术测 时间分辨荧光
量荧光,检测波长和时间两个参数进行信号分辨
分子 诊断
PCR 基因芯片
DNA高温变成单链,低温互补配对链合成
激发态ν
的中间体。这种激发态中间体,当其回到稳定的基态时,可同时发射出
光子。利用发光信号测量仪器即可测量光量子产额,该光量子产额与样
品中的待测物质的量成正比。由此可以建立标准曲线并计算样品中待测
能量
h.ν
物质的含量。
基态ν0 梦想——之以恒、真正为实现纳米科技事业的梦想而奋斗!
化学发光
化学发光
化学发光(chemiluminescence)是指伴随化学反 应过程所产生的光的发射现象。某些物质(发光剂) 在化学反应时,吸收了反应过程中所产生的化学能, 使反应的产物分子或反应的中间态分子中的电子跃 迁到激发态,当电子从激发态回复到基态时,以发
㈡ 碱性磷酸酶标记的化学发光免疫分析
该分析系统以碱性磷酸酶 标记抗体(或抗原),
在与反应体系中的待测标本和固相载体发生
免疫反应后,形成固相包被抗体-待测抗原-酶
标记抗体复合物,这时加入AMPPD发光剂,
碱性磷酸酶使AMPPD脱去磷酸根基团而发光。
碱性磷酸酶标记化学发光免疫分析示意图
电化学发光免疫分析 电化学发光免疫分析
射光子的形式释放出能量,这一现象称为化学发光。
一些化学反应能释放足够 的能量把参加反应的物质激 发到能发射光的电子激发态, 若被激发的是一个反应产物 分子,则这种反应过程叫直 接化学发光。反应过程可简单地描述如下: A十B C* C* C + h· γ 其中γ为光子,C*表示C处于单线激发态。
若激发能传递到另一个未参加化学反应 的分子D上,使D分子激发到电子激发态, D分子从激发态回到基态时发光,这种过 程叫间接化学发光。反应过程可表示如下: A十 B C* C *十 D C 十 D* D* D十 h· γ
思考题
1.什么是化学发光免疫分析? 2.什么叫化学发光剂? 3.酶促反应的发光剂有哪些? 4.什么是化学发光酶免疫分析? 5. 化学发光免疫分析和放免、酶免相比具 有哪些优势?
小 结
• 发光是指分子或原子中的电子吸收能量后,由 基态跃迁到激发态,然后再返回到基态,并释 放光子的过程。 • 化学发光是吸收了化学反应过程中所产生的化 学能使分子激发而发光。 • 化学发光免疫分析是将化学发光与免疫反应相 结合,用于检测微量抗原或抗体的标记免疫分 析技术,分为直接化学发光免疫分析,化学发 光酶免疫分析和电化学发光免疫分析。
化学发光免疫分析与其他方法对比
化学发光免疫分析与其他方法对比化学发光免疫分析(Chemiluminescent Immunoassay, CLIA)是一种高灵敏度和高特异性的分析方法,常用于检测血液中的生物标志物以及其他生物样品中的分析物。
与其他常用的分析方法相比,化学发光免疫分析具有以下特点:1. 高灵敏度:化学发光免疫分析使用化学荧光产生光信号,荧光强度较高,大大提高了检测灵敏度。
正常情况下,化学发光免疫分析的灵敏度可达到ng/mL或pg/mL级别。
2.高特异性:化学发光免疫分析使用特异性的抗体或配体与待测物结合,能够准确地检测目标物质,避免了其他背景物质的干扰,保证了结果的准确性和可靠性。
3. 宽线性范围:化学发光免疫分析可在一个较宽的浓度范围内进行定量分析,通常可以在pg/mL到μg/mL范围内准确测量待测物质的浓度。
4.快速:化学发光免疫分析的反应速度较快,通常只需要几分钟到几十分钟就可获得结果。
这使得化学发光免疫分析在临床医学等领域中得到广泛应用。
5.自动化程度高:化学发光免疫分析通常使用酶标仪或化学发光仪进行测量,并且具备连续连续、多重测量和自动分析等功能,可适应高通量、多样品同时处理的需求。
除了化学发光免疫分析,目前常用的其他方法包括酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay, ELISA)、放射免疫分析(Radioimmunoassay, RIA)和免疫荧光分析(Immunofluorescence Assay, IFA)等。
与这些方法相比,化学发光免疫分析具有以下优势:1.安全性高:化学发光免疫分析不需要使用放射性物质,相比放射免疫分析更为安全,没有放射性污染的风险。
2.操作简便:化学发光免疫分析的操作相对简单,只需将样本和试剂添加到试验板中,并通过酶标仪或化学发光仪进行测量,不需要繁琐的实验步骤和长时间的操作。
3.灵敏度更高:相对于常规的ELISA方法,化学发光免疫分析的灵敏度更高。
化学发光免疫分析技术
化学发光免疫分析技术
第31页
化学发光免疫分析技术
第4页
是当前世界公认先进标识免疫测定技术,化学发光免
疫分析技术含有高度准确性和特异性,成为检验方法中最 为主要技术之一。化学发光免疫分析技术作为疾病诊疗主 要伎俩已被广泛用于机体免疫功效、传染性疾病、内分泌 功效、肿瘤标志物、性激素、甲状腺功效等方面体外诊疗 分析技术
第7页
• 分析方法简便快速
• 结果稳定、误差小
• 样品系直接自己发光,不需要任何光源照射,免去了各种可能原因(光源稳定性、光 散射、光波选择器等)给分析带来影响,使分析结果灵敏稳定可靠。
• 安全性好及使用期长
• 免去了使用放射性物质。到当前为止,还未发觉其危害性;试剂稳定,保留期可达一 年。
T3降低: ⑴仅于较重甲状腺功效减退病人,T3和T4均下降,轻型甲减T3 不一定下降; ⑵重症全身性疾病状态或慢性病变可造成T3下降,多见 于慢性肾功效不全、慢性心功效不全、糖尿病、心梗等疾病患者。
化学发光免疫分析技术
第33页
游离甲状腺素(FT4)游离三碘甲状腺原氨酸(FT3)
• FT3和FT4分别为T3和T4在血清中未与蛋白结合部分,其不 受血清中TBG影响,直接反应甲状腺功效状态,其敏感性 和特异性均高于T3和T4
化学发光免疫分析技术
第15页
㈠ 辣根过氧化物酶标识化学发光免疫分析
该分析系统采取辣根过氧化物酶(HRP)标 识抗体(或抗原),在与反应体系中待测标本 和固相载体发生免疫反应后,形成固相包被 抗体-待测抗原-酶(HRP)标识抗体复合物, 这时加入鲁米诺发光剂、H2O2和化学发光增 强剂使产生化学发光。
荧光和化学发光免疫分析方法
荧光和化学发光免疫分析方法荧光和化学发光免疫分析方法是一种常用的生物分析技术,广泛应用于生命科学研究、临床诊断和药物研发等领域。
本文将详细介绍荧光和化学发光免疫分析方法的原理、应用以及优缺点等方面。
首先,荧光免疫分析方法利用标记有荧光物质的抗体或抗原与待检测物相互作用,通过检测荧光信号来定量分析目标物。
其原理是当荧光标记物被激发后,会发射出特定波长的荧光信号,利用荧光光谱仪测量荧光强度来确定目标物的浓度。
荧光免疫分析方法具有高灵敏度、高选择性和多样性的优点,可用于检测蛋白质、核酸、细胞等生物分子。
化学发光免疫分析方法则是利用特定的化学反应产生荧光信号来检测目标物。
常用的化学发光免疫分析方法有酶免疫分析和化学发光免疫分析。
在酶免疫分析中,酶标记的抗体或抗原与待检测物相互作用后,加入底物,酶催化底物发生化学反应产生荧光信号。
而化学发光免疫分析则是通过特定的化学反应产生激发态分子,激发态分子发生无辐射跃迁产生荧光信号。
化学发光免疫分析方法具有高灵敏度、快速、稳定性好的特点,常用于临床诊断和药物研发等领域。
荧光和化学发光免疫分析方法在生命科学研究中有广泛的应用。
例如,在蛋白质研究中,可以利用荧光免疫分析方法检测蛋白质的表达水平、相互作用以及酶活性等。
在细胞研究中,荧光免疫分析方法可以用于检测细胞的分子分布、内源性蛋白质的表达和细胞信号传导等。
此外,荧光和化学发光免疫分析方法还可以用于检测病原体、药物残留和环境污染物等。
荧光和化学发光免疫分析方法具有许多优点。
首先,这些方法具有高灵敏度,可以检测到非常低浓度的目标物。
其次,这些方法具有高选择性,能够在复杂的样品中准确地检测目标物。
此外,荧光和化学发光免疫分析方法还可以实现高通量分析,节省时间和成本。
然而,荧光和化学发光免疫分析方法也存在一些缺点。
首先,荧光信号受到背景干扰的影响,可能导致误差的产生。
其次,荧光标记物的稳定性较差,容易受到光照和温度等因素的影响。
化学发光方法学比较汇总
免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。
现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定技术,发光免疫分析技术顺应了这一潮流,开创了免疫诊断的新纪元。
发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。
70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。
1、化学发光化学发光是指在化学反应过程中发出可见光的现象。
通常是指有些化合物不经紫外光或可见光照射,通过吸收化学能(主要为氧化还原反应),从基态激发至激发态。
退激时通过跃迁(或将激发能转移至受体分子上),释放能量产生光子,以光形式放出能量从而导致的发光现象。
其主要特点为消耗发光剂。
同时量子效率相对较低。
1.1 按化学反应类型分类:可分为酶促化学发光和非酶促化学发光两类。
其中酶促化学发光主要包括辣根过氧化物酶(HRP)系统、碱性磷酸酶 (ALP)系统、黄嘌呤氧化酶系统等。
酶促发光的共同特点为发光过程中作为标记物的酶基本不被消耗,而反应体系中发光剂充分过最,因此发光信号强而稳定,且发光时间较长。
因此可采用速率法测量,故检测方式简单、成本较低。
酶促反应的主要缺点为工作曲线可能随时间漂移,而且低端斜率容易呈非线性下移。
而非酶促化学发光包括吖啶酯系统、草酸酯系统、三价铁一鲁米诺系统等。
非酶促发光的共同特点为发光过程中标记物被消耗,同时作为标记物的发光剂是发光反应的瓶颈,即含量总是相对不足,因此发光信号持续时间较短;如果直接在免疫反应杯中启动发光反应,由于发光剂被很快消耗,故只能进行一次性测量。
所以重复性较差。
酶联免疫法和化学发光法
酶联免疫法和化学发光法
酶联免疫法(ELISA)和化学发光法(CLIA)是两种常用的免疫分析技术,用于检测和定量生物分子,如蛋白质、抗体、激素等。
它们在实验室和临床诊断中广泛应用。
酶联免疫法是一种基于酶催化反应的免疫分析方法。
其基本原理是将待测物(抗原或抗体)与固相载体(如微孔板)上的抗体或抗原结合,然后加入酶标记的抗体或抗原,形成三明治复合物。
当加入底物时,酶会催化底物发生反应,产生可检测的信号,通常是颜色变化或荧光强度。
通过测量这些信号,可以定量待测物的浓度。
酶联免疫法具有灵敏度高、特异性好、操作简便等优点,适用于大规模样本的检测。
它可以用于检测多种生物分子,如蛋白质、激素、药物、病原体等。
常见的酶联免疫法包括间接法、夹心法和竞争法等。
化学发光法是一种基于化学发光反应的免疫分析方法。
其基本原理是将待测物与固相载体上的抗体或抗原结合,然后加入标记有发光物质的抗体或抗原,形成三明治复合物。
当加入触发剂时,发光物质会被激发并产生光信号。
通过测量光信号的强度,可以定量待测物的浓度。
化学发光法具有灵敏度高、线性范围宽、快速等优点,适用于微量和痕量分析。
它可以用于检测多种生物分子,如蛋白质、激素、药物、病原体等。
常见的化学发光法包括间接法、夹心法和竞争法等。
总的来说,酶联免疫法和化学发光法都是常用的免疫分析技术,它们各有优缺点,适用于不同的应用场景。
选择哪种方法取决于待测物的特性、检测要求以及实验室的设备和技术水平。
化学发光免疫分析与其他方法对比
化学发光免疫分析的优点:
• 4.分析方法简便快速:绝大多数分析测定均为仅需加 入一种试剂(或复合试剂)的一步模式。
• 5.结果稳定、误差小:样品系直接自己发光,不需要 任何光源照射,免除了各种可能因素(光源稳定性、光 散射、光波选择器等)给分析带来的影响,使分析结果 灵敏稳定可靠。
• 6.安全性好及使用期长:在上述优点前提下,更免除 了使用放射性物质。到目前为止,还未发现CLIA的危 害性。有效期可长达1年以上,放射免疫分析由于放射 性同位素的衰变,一般有效期只有一个月,而酶联的底 物贮存性差,都无法与化学发光相比,有效期长可以提 高劳动效率,也利于推广应用。
浅刊物定性或定量分析。
• 化学发光免疫检测的灵敏度与可测范围 远远高于酶免产品,兼具ELISA法简便的 操作方法与较短的反应时间。
化学发光与酶免的对比表:
测量精度 人体伤害 有效期 干扰因素 测试项目
酶标
定性/半定量测量 底物有致癌性 较长 较多 少
化学发光
定量测量 无 长
极少 多
化学发光与放免的对比
.厂商试剂与仪器共同开发,试剂 基本系列化。
化学发光免疫 法(CLIA)
.导入于20世纪90年代,现个别较大 医院开展个别项目; .产品处于导入期或成长期; .无厂商开发生产,完全依赖进口
.兴起于20世纪80年代,现已被临床 普遍使用,成为临床免疫诊断的支 柱方法; .产品处于成熟期;
.厂商试剂与仪器共同开发,仪器 自动化程度高,试剂系列化状态.
总结
• 综合以上优点,目前已有的各种免疫分析 尚没有出其右者,现在国外发达国家在 CLIA的研究和开发方面进展很快,已有全 自动的化学发光(闪光型和辉光型)与电 化学发光免疫分析等系列产品。我国在化 学发光免疫分析方面的研究还比较落后, 这就是我国急需研究和发展CLIA的原因。
化学发光免疫分析与其他方法对比
化学发光免疫分析与其他方法对比化学发光免疫分析(Chemiluminescent Immunoassay,简称CLIA)是一种基于化学发光原理的免疫分析方法。
与其他传统的免疫分析方法相比,CLIA具有许多优点,使其成为当前广泛应用于生物医学领域的重要技术之一首先,CLIA具有极高的灵敏度。
由于化学发光反应产生的光信号非常强烈,因此能够检测到非常低浓度的分析物。
这使得CLIA在检测罕见疾病或者低浓度生物标志物时非常有优势。
其次,CLIA具有广泛的线性范围。
由于化学发光反应的信号强度与分析物的浓度呈线性关系,因此CLIA能够在广泛的浓度范围内准确测定分析物的浓度。
这使得CLIA成为临床实验室中常用的定量分析方法。
此外,CLIA还具有较高的特异性。
由于CLIA是基于免疫反应进行的,只有与特定抗原结合的抗体才能产生化学发光反应。
因此,CLIA能够准确地鉴定和测定特定抗原或抗体,避免了其他非特异性反应的干扰。
另一个优点是CLIA的操作简便和高效。
相对于传统的放射免疫分析(Radioimmunoassay,RIA)或酶联免疫吸附试验(Enzyme-linked immunosorbent assay,ELISA)等方法,CLIA无需使用放射性物质或底物染色等复杂步骤,操作简单、快速,并且能够实现自动化操作,提高检测效率。
此外,CLIA还具有较长的稳定性。
由于化学发光反应所需的试剂通常具有较长的保存期限,且反应条件可控,因此CLIA的试剂稳定性较高,能够长期保存并保持较好的性能。
然而,CLIA也存在一些限制。
首先,CLIA的成本较高。
由于所需试剂和设备较为昂贵,因此CLIA在一些资源匮乏的地区可能不太适用。
其次,CLIA对样本处理的要求较高。
由于CLIA的灵敏度非常高,对样品中可能存在的干扰物敏感,因此需要对样品进行特定的前处理步骤,以确保准确的分析结果。
总体而言,化学发光免疫分析是一种灵敏、特异、简便和高效的免疫分析方法,具有许多优点,使其在生物医学领域得到广泛应用。
发光免疫的种类及特点
发光免疫的种类及特点发光免疫是利用一些特定的发光物质来标记抗原、抗体,这些物质吸收能量后能使其分子进入激发态。
当处于激发态的分子退回到基态时以光子的形式释放能量,从而产生可见或不可见光,然后通过对光的强度和属性进行检测来判断被测物的量[1]。
根据发光物质的不同,发光免疫分析可分为化学发光免疫分析、化学发光酶免疫分析、生物发光酶免疫分析、微粒子化学发光免疫分析和电化学发光免疫分析。
1 化学发光免疫分析化学发光免疫分析(CLIA)是以化学发光底物直接标记抗原或抗体的免疫测定方法,常用的标记发光剂有鲁米诺、异鲁米诺及吖啶酯类。
80年代Pateln等采用吖啶酯为发光剂,改进了标记方法,在反应过程中不需催化剂,只要在碱性环境中就可进行,从而提高了测定的灵敏度[1]。
吖啶酯衍生物有几种分子结构,它们结构中都有共同的吖啶环,通过启动发光剂,在过氧化氢作用下,生成电子激发态的中间体N-甲基吖啶酮,当其回到基态时发出光子(hT),激发波长395nm,发射光波长430nm,其发光为快速闪烁发光,其检测灵敏度可以达到8×10-19mool/I,。
应用吖啶酯类化合物可以标记多抗、单抗,进一步制备固相试管或微球,可以应用于竞争法分析,也可用于夹心法进行免疫化学发光分析,这一领域里全自动分析仪发展很快,目前已有多家以吖啶酯为标志物的全自动免疫分析系统,每小时可以完成数百个测试,很快在临床得到了推广应用。
2 生物发光酶免疫分析生物发光是化学发光的一个特殊类型,它是生命活性生物体所产生的发光现象,发光所需的激光来自生物体内的酶促反应,催化此类反应的酶称为荧光素酶。
生物发光包括萤火虫生物和细菌生物发光,前者发光反应需ATP的参与,故萤火虫生物发光又称ATP依赖性生物发光。
ATP依赖性生物发光反应中,萤火虫荧光素和荧光素酶在ATP、Mg2+和O2存在下可发光,反应式为:ATP+荧光素+荧光素酶→腺苷基荧光素。
腺苷基荧光素+O2→腺苷基氧化荧光素+光子[2]。
化学发光免疫分析技术原理及特点对比
化学发光免疫分析技术原理及特点对比一、化学发光免疫分析技术原理自从二十世纪七十年代开创化学发光技术以来,世界各国科学家在这个技术的基础上不断研究发展,以改善此技术在人体医学检验上的应用,通过不懈的努力探索,最终化学发光技术进入临床测试应用,为人类健康检验做出了重要的贡献。
时至今日,化学发光免疫分析作为一种微量物质定量检测技术,已经发展的先进且成熟,在人体疾病筛查和健康检测等方面,有着十分重要的作用。
化学发光免疫分析结合了化学发光反应和免疫学的特点,通过将发光物质或酶标记在抗原或抗体上,抗原或抗体与待测物质发生特异性结合,随后加入氧化剂、化学发光底物或是电压的激发,通过氧化剂氧化发光物质,酶催化发光底物或是发光物质在电压的激发下形成高能的激发态,由于激发态不稳定,再回到基态过程中会以光的形式释放出能量,同时由于待测物浓度与发光强度在一定条件下呈线性定量关系,因此借助仪器检测发光的强度就可以确定待测物的含量。
以测定人绒毛膜促性腺激素(HCG)为例(图),待测物HCG首先与酶标记的抗体以及发光标记物标记的抗体反应,形成双抗体夹心复合物,随后再加入与含有与发光标记物结合的磁珠,通过磁铁将复合物聚集,最后加入发光底物产生光信号进行定量。
图-人绒毛膜促性腺激素化学发光测定原理二、不同化学发光免疫分析技术特点对比根据标记物的不同,化学发光可大致分为:利用吖啶酯、鲁米诺等进行标记的直接化学发光免疫分析(Chemiluminescence immunoassay,CLIA)、利用如辣根过氧化物酶和碱性磷酸酶等标记的酶促化学发光免疫分析(Chemiluminescence enzyme immunoassay,CLEIA)和利用三联吡啶钌等标记的电化学发光免疫分析(Electrochemiluminescence immunoassay,ECLIA)。
直接化学发光免疫分析发光过程十分快速,在几秒钟之内就可以完成,而酶在一般情况下稳定性较好,如辣根过氧化物酶处于室温下可以在几周内保持稳定,且具有较高的特异性,发光时间较直接化学发光法更长,可以持续几分钟到十几分钟,电化学发光法处于电解池介质中反应因而可以反复使用。
化学发光免疫分析与其他方法对比
干扰极小Leabharlann 容易受内外源稀土离子的干扰
项目齐全(见试剂报价 缺少部分项目。如:贫血(叶 单) 酸,铁蛋白,维生素B12)
化学发光免疫分析的优点:
• 1.灵敏度高:这是CLIA关键的优越性,其灵敏度可达1016mol/L ( RIA 为 10-12mol/L ) 。 又 如 化 学 发 光 底 物 ( 如 AMPPD)可检测出的碱性磷酸酶的浓度比显色底物要灵敏 5х105倍。 • 2.宽的线性动力学范围:发光强度在4~6个量级之间与测定 物质浓度间呈线性关系。这与显色的酶免疫分析吸光度(OD 值)为2.0的范围相比,优势明显。虽然RIA也有较宽的线性 动力学范围,但放射性限制了其应用。
表1.1 中国免疫诊断现状 中国
兴起于20世纪70年代,现仍普遍使 用于县级以上医院; .产品处于衰退期; .厂商试剂与仪器共同开发,试剂 基本系列化。
. .
国际(欧美为主)
兴起于20世纪60年代,现已基本退 出临床应用; .产品生命周期已终结; .厂商试剂和仪器共同开发,试剂 基本系列化。
放射免疫法 (RIA)
化学发光免疫分析
免疫学检测发展简介
• 免疫学检测主要是利用抗原和抗体的特 异性反应进行检测的一种手段,由于其 可以利用同位素、酶、化学发光物质等 对检测信号进行放大和显示,因此常被 用于检测蛋白质、激素等微量物质。
免疫分析经历了放射免疫检验、荧光免疫检验、 酶标免疫检验等不同时期,化学发光免疫检验是 免疫分析发展的一个新阶段,它环保、快速、准 确的特点已得到人们的普遍认识。 因此化学发光免疫分析是通往免疫检验完 美境界的必经之路。
化学发光与放免的对比表:
放 免 化学发光
高
无
测量精度
免疫化学发光法
免疫化学发光法免疫化学发光法是一种具有高灵敏度、高特异性的免疫分析方法,在生物医学领域得到了广泛应用。
下面是关于免疫化学发光法的各个方面的介绍。
1.直接法直接法是一种简单的免疫化学发光技术,通过将特异性抗体与发光标记物直接结合,形成免疫复合物,然后测定复合物发出的光强度,从而实现对目标分子的定量检测。
直接法的应用范围广泛,如肿瘤标志物、病毒和细菌等微生物的检测。
使用直接法时需要注意保证抗体的特异性,以及避免非特异性结合的影响。
2.间接法间接法是通过将特异性抗体与酶或化学发光物质结合,形成酶或化学发光标记的抗体,然后将该抗体与目标分子反应,形成免疫复合物,最后加入相应的底物或激发剂,根据发光强度实现对目标分子的定量检测。
间接法的灵敏度较高,适用于多种生物分子的检测。
需要注意的是,要确保抗体的特异性以及发光标记物的稳定性。
3.竞争法竞争法是一种免疫化学发光技术,通过将特异性抗体与目标分子和发光标记的竞争性抗体结合,形成免疫复合物,然后测定复合物发出的光强度,实现对目标分子的定量检测。
竞争法的应用范围包括激素、病毒和肿瘤标志物等生物分子的检测。
使用竞争法时需要注意保证竞争性抗体的特异性,以及避免非特异性结合的影响。
4.夹心法夹心法是一种免疫化学发光技术,通过将特异性抗体与目标分子和发光标记的抗体分别结合,形成夹心状的免疫复合物,然后测定复合物发出的光强度,实现对目标分子的定量检测。
夹心法的灵敏度较高,适用于多种生物分子的检测。
需要注意的是,要确保抗体的特异性和发光标记物的稳定性。
5.斑点免疫法斑点免疫法是一种将特异性抗体或抗原点状固定在支持物上的免疫分析方法。
在斑点免疫法中,待测样品中的目标分子与已固定的抗体或抗原相互作用,形成免疫复合物,然后加入发光标记物,形成点状发光。
通过测量发光强度,实现对目标分子的定量检测。
斑点免疫法的优点是灵敏度高、特异性强、操作简便,适用于多种生物分子的检测。
需要注意的是,要确保固定化抗体或抗原的特异性和稳定性。
荧光和化学发光免疫分析方法
荧光和化学发光免疫分析方法荧光和化学发光免疫分析方法是现代生物医学研究和临床诊断中常用的分析方法。
这两种方法在原理和应用中有一些差异,但都具有高灵敏度、高选择性和高自动化程度的特点。
以下将详细介绍荧光和化学发光免疫分析方法的原理、应用和优缺点。
荧光免疫分析方法是基于荧光分子的发射特性进行分析的一种方法。
其原理是,通过标记抗体或抗原的荧光物质,使其具有荧光,并与待测物发生特异性的免疫反应。
然后,通过荧光测定仪器对免疫反应产生的荧光进行检测和分析。
荧光免疫法具有高灵敏度、高选择性、多样化的荧光标记物选择以及可通过多色荧光分析多个指标等特点。
因此在生物医学研究、肿瘤标志物筛查、病毒感染和免疫补体等方面具有广泛的应用。
荧光免疫分析方法主要分为直接荧光免疫分析和间接荧光免疫分析。
直接荧光免疫分析通过将荧光标记物直接结合到抗体或抗原上,实现荧光信号的检测和分析。
间接荧光免疫分析则是先将抗体与细胞或蛋白质结合,然后再用荧光标记的二级抗体结合到一级抗体上,以增强荧光信号。
这两种方法各有优缺点,可以根据具体需要选择使用。
化学发光免疫分析方法是基于化学发光反应进行分析的一种方法。
其原理是,在特定的化学反应条件下,荧光标记的抗体或抗原与待测物发生免疫反应,产生化学发光信号。
然后通过化学发光仪器对化学发光信号进行检测和分析。
化学发光免疫方法具有高灵敏度、快速、特异性高、背景干扰低等优点,因此在临床诊断和分子生物学研究中得到广泛应用。
化学发光免疫分析方法主要分为催化化学发光和基因工程发光两种类型。
催化化学发光是通过特定的酶促发光底物,在酶的作用下产生化学发光信号。
催化化学发光免疫分析方法常用于免疫分析和临床诊断。
基因工程发光则是通过将荧光基因植入生物体内,利用生物体自身的酶促发光反应产生化学发光信号。
基因工程发光免疫分析方法主要用于分子生物学研究领域。
荧光和化学发光免疫分析方法在临床诊断和生物医学研究中具有广泛的应用。
它们可以用于检测血液中的肿瘤标志物、感染性疾病的病原体抗原和抗体、免疫系统功能等指标。
常见发光免疫分析技术的比较
【 键 词 】 发 光 免 疫 分 析 ; 酶免 检 测 ; 免 疫 诊 断 关
中 图分 类号 : 3 23 R 9 —3
Hale Waihona Puke 文献标志码 : A文章 编 号 :6 29 5 (0 90 -1 40 1 7—4 52 0 ) 20 —3 2 测量 , 即在 发 光信 号 相 对 稳 定 的 区域 任 意 点 测 量 单 位 时 间 的 发
酶 促 发 光 的 共 同特 点 为发 光 过 程 中 作 为 标 记 物 的酶 基 本 不 被
动 化 学 发 光 免 疫 分 析 系 统 [ ] 以 吖 啶 酯作 为 标 记 , 度 AE标 6, 量 记 物 化 学 反 应 所 产 生 的光 量 为 基 础 , 敏 度 可达 1 。 / 。 灵 0 g mL
测 量 化 学 发 光 反 应 的 光 强 度 , 得 某 些 化 学 物 质 和 生 物 物 求 质 的 含 量 , 其 与免 疫 学 方 法 结 合 以后 形 成 的 化 学 发 光 免疫 测 尤 定 法 ( i A) 其 既 具 有 发 光检 测 的高 度 灵 敏 性 , 具 有 免疫 分 c , I 又 析 的高 度 特 异 性 , 测 快 速 , 剂 无 放 射 危 害 , 测 限 达 1 ~ 检 试 检 o
光强度 。
免 疫 学 技 术 的迅 速 发 展 对 精 度 的 要 求 越 来 越 高 , 般 的酶 一
免 检 测技 术 已逐 渐 无 法适 应 这 种 形 势 的需 要 。 现 今 发 展 的 主 流 已 不 再是 用放 射 性 同位 索 标 记 的 测 定 方 法 ( 免 污 染 环 境 及 避
光剂 , 同时 量 子 效 率 相对 较低 l 。 _ 2 I
1 4 代 表仪 器 .
化学发光方法学比较分析
免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。
现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定技术,发光免疫分析技术顺应了这一潮流,开创了免疫诊断的新纪元。
发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。
70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。
1、化学发光化学发光是指在化学反应过程中发出可见光的现象。
通常是指有些化合物不经紫外光或可见光照射,通过吸收化学能(主要为氧化还原反应),从基态激发至激发态。
退激时通过跃迁(或将激发能转移至受体分子上),释放能量产生光子,以光形式放出能量从而导致的发光现象。
其主要特点为消耗发光剂。
同时量子效率相对较低。
1.1 按化学反应类型分类:可分为酶促化学发光和非酶促化学发光两类。
其中酶促化学发光主要包括辣根过氧化物酶(HRP)系统、碱性磷酸酶 (ALP)系统、黄嘌呤氧化酶系统等。
酶促发光的共同特点为发光过程中作为标记物的酶基本不被消耗,而反应体系中发光剂充分过最,因此发光信号强而稳定,且发光时间较长。
因此可采用速率法测量,故检测方式简单、成本较低。
酶促反应的主要缺点为工作曲线可能随时间漂移,而且低端斜率容易呈非线性下移。
而非酶促化学发光包括吖啶酯系统、草酸酯系统、三价铁一鲁米诺系统等。
非酶促发光的共同特点为发光过程中标记物被消耗,同时作为标记物的发光剂是发光反应的瓶颈,即含量总是相对不足,因此发光信号持续时间较短;如果直接在免疫反应杯中启动发光反应,由于发光剂被很快消耗,故只能进行一次性测量。
所以重复性较差。
三大品牌全自动化学发光免疫分析系统的对比分析
三大品牌全自动化学发光免疫分析系统的对比分析㈠、ACS:180SE全自动化学发光免疫分析系统ACS全自动化学发光免疫分析系统由拜耳公司生产,采用化学发光技术和磁性微粒子分离技术相结合的免疫分析系统。
20世纪90年代初首次推出全自动化学发光免疫分析系统ACS:180。
90年代中期推出第二代产品为ACS:180SE分析系统(图2),最近该公司又推出了ACS:CENTAUR。
第二代产品将微机与主机分开,软件程序加以改进,使操作更灵活,结果准确可靠,试剂贮存时间长,自动化程度高等优点。
1.仪器测定原理该免疫分析技术有两种方法:一是小分子抗原物质的测定采用竞争法;二是大分子的抗原物质测定采用夹心法。
该仪器所用固相磁粉颗粒极微小,其直径仅1.0μm,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便。
其反应基本过程:⑴竞争反应:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。
⑵夹心法:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。
上述无论哪种反应凡所结合的免疫复合物均被磁铁吸附于反应杯底部,上清液吸出后,再加入碱性试剂;其免疫复合物被氧化激发,发射出430nm波长的光子,再由光电倍增管将光能转变为电能,以数字形式反映光量度,计算测定物的浓度。
竞争法是负相关反应。
夹心法是正相关反应。
2.实验操作本仪器测定所用试剂均包括两种:固相磁粉和液相发光试剂。
每套试剂可放置于试剂托盘的任意位置上,由仪器扫描标签条码后自动加样。
根据测定项目不同,试剂用量在50~450μl之间。
测定标本必须用血清,禁止用血浆,以防纤维蛋白将管路堵塞。
由于是自动化仪器,其操作极其简单:①将样品编号排入样品盘。
②按试验项目将所用试剂放入试剂盘,并观察辅助试剂。
CLIA
常见发光免疫分析技术的比较免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。
现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定技术,发光免疫分析技术顺应了这一潮流,开创了免疫诊断的新纪元。
发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。
70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。
1、化学发光化学发光是指在化学反应过程中发出可见光的现象。
通常是指有些化合物不经紫外光或可见光照射,通过吸收化学能(主要为氧化还原反应),从基态激发至激发态。
退激时通过跃迁(或将激发能转移至受体分子上),释放能量产生光子,以光形式放出能量从而导致的发光现象。
其主要特点为消耗发光剂。
同时量子效率相对较低。
1.1 按化学反应类型分类:可分为酶促化学发光和非酶促化学发光两类。
其中酶促化学发光主要包括辣根过氧化物酶(HRP)系统、碱性磷酸酶 (ALP)系统、黄嘌呤氧化酶系统等。
酶促发光的共同特点为发光过程中作为标记物的酶基本不被消耗,而反应体系中发光剂充分过最,因此发光信号强而稳定,且发光时间较长。
因此可采用速率法测量,故检测方式简单、成本较低。
酶促反应的主要缺点为工作曲线可能随时间漂移,而且低端斜率容易呈非线性下移。
而非酶促化学发光包括吖啶酯系统、草酸酯系统、三价铁一鲁米诺系统等。
非酶促发光的共同特点为发光过程中标记物被消耗,同时作为标记物的发光剂是发光反应的瓶颈,即含量总是相对不足,因此发光信号持续时间较短;如果直接在免疫反应杯中启动发光反应,由于发光剂被很快消耗,故只能进行一次性测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见化学发光免疫分析技术比较1、化学发光免疫分析化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi'nesəns] [,imju:nəuə'sei]是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。
是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。
CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。
是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。
1.1、化学发光免疫分析原理化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。
化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。
免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。
1.2、化学发光免疫分析类型化学发光免疫分析法以标记方法的不同而分为两种:(1)化学发光标记免疫分析法;(2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法1.2.1化学发光标记免疫分析化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。
常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) , 是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2) 作用而发光, 强烈的直接发光在一秒钟内完成, 为快速的闪烁发光。
吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法, 大分子抗原则采用夹心法, 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。
1.2.2化学发光酶免疫分析从标记免疫分析角度, 化学发光酶免疫分析(chemiluminescent enzyme immunoassay,CLEIA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂, 操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物, 在信号试剂作用下发光, 用发光信号测定仪进行发光测定。
目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) , 它们有各自的发光底物。
12.2.1HRP 标记的CLEIA常用的底物为鲁米诺(3-氨基邻苯二甲酰肼,luminol) , 或其衍生物如异鲁米诺(4-氨基邻苯二甲酰肼) , 是一类重要的发光试剂。
其结构如图4 所示。
鲁米诺的氧化反应在碱性缓冲液中进行, 在过氧化物酶及活性氧[过氧化阴离子(O2-) , 单线态氧(1O2) , 羟自由基(OH·) , 过氧化氢(H2O2) ]存在下,生成激发态中间体, 当其回到基态时发光, 其波长为425nm。
早期用鲁米诺直接标记抗原(或抗体) , 但标记后发光强度降低而使灵敏度受到影响。
近来用过氧化物酶标记抗体, 进行免疫反应后利用鲁米诺作为发光底物, 在过氧化物酶和起动发光试剂(N aOH-H2O2) 作用下, 鲁米诺发光, 发光强度依赖于酶免疫反应物中酶的浓度。
Kodak AmerliteTM 半自动分析系统就是利用这一体系专门设计的。
1.2.2.2增强发光酶免疫分析(enhanced luminescence enzyme immunoassay, ELEIA )在发光系统中加入增强发光剂, 如对2碘苯酚等, 以增强发光信号, 并在较长时间内保持稳定, 便于重复测量, 从而提高分析灵敏度和准确性。
在全自动分析仪上, 还可通过计算机严密控制, 进行自动操作, 如加试剂, 混合, 温育, 洗涤, 加发光试剂, 发光计数, 数据处理, 绘制标准曲线, 直至完成病人血清样品的分析并打印出结果。
Am erliteTM 发光增强酶免分析系统用荧光素、噻唑等增强剂, 其发光时间可持续长达20min, 试剂盒有甲状腺功能检测的促甲状腺素、三碘甲腺原氨酸、甲状腺素、甲状腺素结合球蛋白、游离甲状腺素, 与性激素有关的有促黄体激素、促卵泡激素、人绒毛膜促性腺激素、甲胎蛋白、雌二醇、睾酮, 以及其他方面的如癌胚抗原、铁蛋白、地高辛等。
1.2.2.3ALP标记的CLEIA所用发光底物为环1, 2-二氧乙烷衍生物,,用于化学发光酶免分析底物而设计的分子结构中包含起稳定作用的金刚烷基, 其分子中发光基团为芳香基团和酶作用的基团, 在酶及起动发光试剂作用下引起化学发光。
最常使用的底物AMPPD 3-[2-spiroadamatane]-4-methoxy -4-[3-phosphoryloxy]-phenyl-1,2-dioxetane) Dioxetane中文名为: 3-(2-螺旋金刚烷)-4-甲氧基-4-(3-磷氧酰)-苯基-1,2-二氧环乙烷。
在碱性磷酸酶(ALP) 作用下, 磷酸酯基发生水解而脱去一个磷酸基, 得到一个中等稳定的中间体AMPD (半寿期为2-30min) , 此中间体经分子内电子转移裂解为一分子的金刚烷酮和一分子处于激发态的间氧苯甲酸甲酯阴离子, 当其回到基态时产生470nm 的光, 可持续几十分钟(如图5)。
AMPPD 为磷酸酯酶的直接化学发光底物, 可用来检测碱性磷酸酯酶或酶和抗体、核酸探针及其它配基的结合物。
可检测到碱性磷酸酯酶的浓度为10-15mol/L 。
美国DPC公司的Immulite全自动酶放大发光免疫分析仪, 以碱性磷酸酶为标记物, 以金刚烷作发光底物, 测定灵敏度相当于10- 21mol/mL的酶, 采用聚苯乙烯珠作载体, 其检测水平已能达到10- 12g/mL。
AMPPD是一种生物化学领域中最新的超灵敏的碱性磷酸酶底物,其特点:反应速度快,在很短时间内提供正确可靠的结果。
在它的分子结构中有两个重要部分,一个是联接苯环和金刚烷的二氧四节环,它可以断裂并发射光子;另一个是磷酸根基团,它维持着整个分子结构的稳定。
在通常情况下,这种化合物很稳定。
但是当有碱性磷酸酶存在时,DioxetanePhosphate作为酶的底物会在酶的催化一脱去磷酸根基团,形成一个不稳定的中间体。
这个中间体随即自行分解(二氧四节环断裂),同时发射光子。
该试剂采用微粒子化学发光技术,采用最新磁性微粒,用以包被抗体。
用碱性磷酸酶(ALP)标记抗原(抗体)。
经过普通抗原抗体反应,碱性磷酸酶结合在微粒子上,碱性磷酸酶的结合量同病人血清中的待测物质成比例。
经过洗涤(反应管两边有磁场,磁性微粒包被的抗原抗体结合物被吸附在管子两边,其余游离部分被抽吸掉),最后加入发光底物DioxetanePhosphate,5分钟后,仪器通过光电倍增管检测反应的发光强度。
AMPPD是碱性磷酸酶的化学发光底物,在适宜的缓冲液中,随着酶的催化水解作用,AMPPD分解成AMP-D,后者发出强度很高的光信号,其发光的速度取决于碱磷酶的浓度。
当碱磷酶偶合到杂交的探针时,便可以通过此系统检测到杂交分子的存在量。
2微粒体发光免疫分析微粒体发光免疫分析(microparticle luminescence enzyme immunoassay,MLEIA ),该免疫分析技术有两种方法:一种是小分子抗原物质的测定采用竞争法。
另一种是大分子的抗原物质测定采用双抗体夹心法。
该仪器所用固相磁粉颗粒极微小,其直径仅 1.0μm,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便,从而减少污染,降低交叉污染概率。
反应中使用碱性磷酸酶(ALP)标记抗原或抗体,作用于其底物二氧乙烷磷酸酯,由其在激发态与基态的动力学变化中发生发光反应。
2.1、竞争反应其原理是:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。
如受检标本中含有待测抗原,则与标记抗原以同样的机会与磁颗粒包被的抗体结合,竞争性地占去了吖啶酯标记抗原与磁颗粒包被的抗体结合的机会,使吖啶酯标记抗原与磁颗粒包被的抗体的结合量减少。
由于磁颗粒包被的抗体是过量的,足以与待测抗原结合。
2.2、双抗体夹心法:其原理是:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。
具体讲是以顺磁性微珠作为载体包被抗体,利用磁性微珠能被磁场吸引,在磁场的作用下发生力学移动的特性,迅速捕捉到被测抗原,当加入标本后,标本中的抗原与磁性抗体形成复合物,在磁力的作用下,协助该复合物快速地与其他非特异性物质分离,使抗原-抗体结合反应的时间缩短,测定时间减少,降低了交叉污染的几率,此时再加入碱性磷酸酶标记的第二抗体,形成磁珠包被抗体-抗原-酶标记抗体复合物,经洗涤去掉未结合的抗体后,加入ALP的发光底物环1,2-二氧乙烷衍生物AMPPD 。
AMPPD被复合物上ALP催化,迅速地去磷酸基团,生成不稳定的中间体AMPD。
AMPD的快速分解,从高能激发态回到低能量的稳定态时,持续稳定地发射出光子(hv),发射光所释放的光子能量被光量子阅读系统记录,通过计算机处理系统将光能量强度在标准曲线上转换为待测抗原的浓度,并报告结果。
其检测水平可达pg/ml水平,重复性好。
3、电化学发光免疫分析(Electrochemiluminescence immunoassay, ECLIA )ECLIA是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。
它的标记物的发光原理与一般的化学发光(CLA)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。
ECL与CLA的差异在于ECLA 是电启动发光反应,而CLA是通过化合物混合启动发光反应。
ECLA 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。
其检测原理(以TSH检测为例):第一步:结合了活化的三联吡啶钌衍生物即[Ru(bpy)3]2+ +N羟基琥珀酰胺酯(NHS)的TSH抗体和结合了生物素的TSH抗体与待测血清同时加入一个反应杯中孵育9分钟。