201x版八年级数学下册第10章分式10.5分式方程3导学案新版苏科版
苏科版数学八年级下册第10章《分式小结与思考》教学设计1
苏科版数学八年级下册第10章《分式小结与思考》教学设计1一. 教材分析《苏科版数学八年级下册》第10章《分式小结与思考》主要内容包括分式的概念、分式的运算、分式的性质和分式的应用。
本章内容是八年级数学的重要内容,也是初中的难点之一。
通过本章的学习,使学生掌握分式的基本概念和运算法则,提高学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经学习了实数、代数式、方程等知识,具备了一定的数学基础。
但分式的概念和运算对学生来说较为抽象,需要通过实例和练习来加深理解。
同时,学生需要掌握分式运算的技巧和方法,提高解题速度和准确率。
三. 教学目标1.理解分式的概念,掌握分式的基本性质和运算法则。
2.能够运用分式解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.分式的概念和性质。
2.分式的运算方法和技巧。
3.分式在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式的概念和性质。
2.使用案例教学法,通过实例讲解分式的运算方法和技巧。
3.运用小组合作法,让学生在团队合作中解决实际问题。
六. 教学准备1.准备相关的教学案例和实例,用于讲解和练习。
2.准备分式的运算练习题,用于巩固和拓展。
3.准备投影仪和教学课件,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用实例引入分式的概念,如面积的计算、比例问题等,引导学生思考分式的实际意义。
2.呈现(15分钟)讲解分式的概念和性质,如分式的定义、分式的基本性质等,并通过实例进行解释和展示。
3.操练(20分钟)进行分式的运算练习,如分式的加减乘除等,引导学生掌握分式的运算方法和技巧。
4.巩固(10分钟)让学生自主完成一些分式的运算题目,巩固所学知识,并找出存在的问题。
5.拓展(15分钟)利用分式解决实际问题,如工程问题、经济问题等,让学生运用所学知识解决实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调分式的概念和性质,分式的运算方法和技巧,以及分式在实际问题中的应用。
苏科版数学八年级下册10.1《分式》教学设计
苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。
本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。
但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算,并能灵活运用。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.分式的概念和基本性质。
2.分式的运算及其运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和板书。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。
请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。
2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。
同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。
3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。
教师巡回指导,解答学生遇到的问题,并给予反馈。
4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。
如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。
”教师引导学生思考和解答,巩固所学知识。
5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。
让学生举例说明,进一步拓宽视野。
2023年苏科版八年级数学下册第十章《分式的乘除(1)》导学案1
新苏科版八年级数学下册第十章《分式的乘除(1)》导学案基本环节基本内容组织教学知识梳理学习目标:1.知道分式加、减运算的一般步骤,能熟练进行分式的加、减运算;2.通过对运算法则的探究,增强类比思想的运用,提高转化问题的能力。
学习重点:掌握分式乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
预习导航一、预习展示:智慧碰撞一、探究新知1、猜一猜与ab×cd=ab÷cd=2、归纳:(1)分式的乘法法则:(2)分式的除法法则:(3)分式的乘方法则:二、例题讲解:例1:计算:(1)baa2284-.6312-aab(2)(cba4+)2(3)xy62÷231x(4)2244196aaaa+++-÷12412+-aa请学生自由讨论拓1、当2005=x,1949=y时,求代数式2222442yxxyyxyxyx+-•+--的值。
2、将分式22xx x+化简得1xx+,则x应满足的条件是.展延伸3、使代数式33xx+-÷24xx+-有意义的x的值是4、16.(技巧题)已知1m+1n=1m n+,求nm+mn的值.情感升华1、填空:(1)=-3)32(x(2)=⋅3242)23(16xyyx2、若代数式1324x xx x++÷++有意义,则x的取值范围是__________.3、计算3222⎪⎪⎭⎫⎝⎛-ban与2333⎪⎪⎭⎫⎝⎛-ban的结果()A.相等B.互为倒数C.互为相反数D.以上都不对4、计算:(1)46910523-⋅-aabbaa(2)222)()(baba-÷-(3)3224)3()12(yxyx-÷-(4)24222xxyxyxxyxyx--⋅+-(5)96234222++-÷+-xxxxxx(6)251025)5(22+--⋅-aaaa5、已知aba+b=13,bcb+c=14,aca+c=15,求代数式abcab+bc+ac的值反思与心得。
苏科版八年级数学下册10.5分式方程课件
5
1
(3)
2 ; (4) 2
2
0.
x 1 x 1
x x x x
检测反馈
检测反馈
检测反馈
检测反馈
有增根?
x3
3 x
解:原方程可变形为
x2
m
2
x 3
x 3
方程两边同乘以(x 3),得 x 2 2( x 3) m
m=4-x
①
当 x 3 0 时,即 x 3时原分式方程会产生增根
把 x 3 代入①中,则 m 1
合作学习
随堂练习
3
6
x+m
当m=_____时,— + —— = ——有增根.
10.5 分式方程(2)
八年级下册
复习回顾
1.分式方程的概念: 分母中含有未知数的方程叫做分式方程
2.解分式方程的基本思想:
乘最简公分母
分式方程
转化
3.解分式方程的关键:找最简公分母.
4.解分式方程的步骤:一化二解三检验.
整式方程
学 习 目 标
1.了解分式方程产生增根的原因;
2.学会检验根的合理性;
1
随堂练习(2)
x 2 3x 6
解:两边同乘以3(x-2),得:
3(5x-4)=4x+10-3(x-2)
x=2
检验:把x=2代入3(x-2)=0
∴x=2不是原方程的根 ∴原方程无解
检测反馈
1、解下列方程:
1
2
x
2x
(1)
; (2)
1;
2x x 3
x 1 3x 3
2
−
苏科版数学八年级下册10.5《分式方程》教学设计3
苏科版数学八年级下册10.5《分式方程》教学设计3一. 教材分析苏科版数学八年级下册10.5《分式方程》是学生在学习了分式、方程的基础上,进一步深化对分式方程的理解和应用。
本节课通过具体的例子引导学生理解分式方程的定义、特点及解法,培养学生解决实际问题的能力。
教材内容由浅入深,循序渐进,既注重了基础知识的巩固,又提高了学生的思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式和方程的基础知识,对于分式方程有一定的认识。
但部分学生对分式方程的理解仍停留在表面,难以把握其本质特征。
此外,学生在解决实际问题时,往往不能灵活运用所学知识,对于分式方程的解法技巧有待提高。
三. 教学目标1.理解分式方程的定义、特点及解法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力和创新意识。
四. 教学重难点1.分式方程的定义和特点。
2.分式方程的解法及应用。
五. 教学方法1.情境教学法:通过生活实例引入分式方程,让学生感受到数学与实际的联系。
2.案例教学法:分析典型例题,引导学生总结解题方法。
3.小组合作学习:鼓励学生相互讨论、交流,提高解决问题的能力。
4.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
六. 教学准备1.教学课件:制作课件,展示分式方程的相关概念、例题及解法。
2.练习题:准备分式方程的相关练习题,用于巩固所学知识。
3.教学素材:收集与分式方程相关的实际问题,用于引入和拓展。
七. 教学过程1.导入(5分钟)利用生活实例引入分式方程,激发学生的学习兴趣。
例如,讲解一个实际问题:某商品打8折后售价为120元,求原价。
2.呈现(10分钟)展示分式方程的定义、特点及解法。
通过PPT课件,让学生清晰地了解分式方程的基本概念和解题步骤。
3.操练(10分钟)让学生独立解决一些简单的分式方程问题。
教师巡视课堂,解答学生的疑问,指导学生掌握解题方法。
4.巩固(10分钟)分析典型例题,引导学生总结解题方法。
2023年苏科版八年级数学下册第十章《分式方程(3)》导学案
新苏科版八年级数学下册第十章《分式方程(3)》导学案教学过程一.知识互动1、解分式方程的一般步骤(1)去分母,(2)去括号,(3)移项,合并同类项,(4)系数化为1,(5)检验2、列分式方程解实际问题的一般步骤:⑴根据题意设未知数⑵分析题意寻找等量关系,列方程⑶解所列方程⑷检验所列方程的解是否符合题意⑸写出完整的答案3、列方程(组)解应用题的关键:分析题意寻找等量关系,列方程。
二.例题解析:【例1】指例4.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。
这样,这两个小组的每个同学就要比原计划多做4面。
如果这3个小组的人数相等,那么每个小组有多少名学生?分析:本题中的等量关系是什么?你会根据等量关系列出分式方程吗?【例2】甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。
问甲、乙两公司各有多少人?【例3】小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?(知道所列出的分式方程虽然有解,但解却不符合实际情况,这时原问题无解)三.随堂演练:1.填空⑴为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x棵,根据题意得方程____________.⑵ 甲、乙两人加工某种机器零件,甲在m 天内可以加工a 个零件,乙在n 天内可以加工b 个零件,若两人同时加工p 个零件,则需要的天数是________.2.选择⑴ 某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个,列方程式是 ( )A.3010256x x -=+B.3010256x x +=+C.3025106x x =++D.301025106x x +=-+ ⑵ 某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝土,解决此问题可设派x 人挖土,其它人运土,列方程:①x+3x=72,②72-x=3x ,③7213x x -=, ④372x x=-.上述所列方程正确的有( ) A.1个 B.2个 C.3个 D.4个3.小丽与小明同时为艺术节制作小红花,小明每小时比小丽多做2朵,那么小明做100朵小红花与小丽做90朵小红花所用时间相等吗?四.课后作业:1.某市从今年1月1日起调整居民的用水价格,每立方米水费上涨31。
苏科版八年级下册数学第10章 分式 含答案
苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2、下列各式中:①x=0;②2x>3;③x2+x-2=0;④+2=0;⑤3x-2;⑥x=x-1;⑦x-y=0;⑧xy=4,是方程的有( )A.5B.6C.4D.33、小马虎同学在下面的计算中只作对了一道题,他做对的题目是()A. B.a 3÷a=a 2 C. D.4、化简的结果是()A. B. C. D.5、若分式的值为0,则x的值是()A.-1B.1C.±1D.不存在6、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个7、衡阳市某生态示范园计划种植一批梨树,原计划总产值30万kg,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万kg,种植亩数减少了10亩,则原来平均每亩产量是多少万kg?设原来平均每亩产量为x万kg,根据题意,列方程为()A. B. C. D.8、计算结果为()A.1B.-1C.a+bD.-a-b9、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0 D.若分式的值等于0,则a=±110、化简﹣的结果是()A.a+bB.aC.a﹣bD.b11、方程的解为().A.x=-1B.x=0C.x=D.x=112、某商场要销售70件积压衬衫,销售30件后,降低售价,每天能多售出10件,结果70件衬衫一共用5天全部售完,原来每天销售多少件衬衫?设原来每天销售x件衬衫,下面列出的方程正确的是( )A. B. C. D.13、分式的计算结果是()A. B. C. D.14、已知.则分式的值为( ).A.3B.1C.D.015、化简:﹣,结果正确的是( )A.1B.C.D.x 2+y 2二、填空题(共10题,共计30分)16、方程= 的根x=________.17、若代数式有意义,则的取值范围为________.18、方程的解是________.19、如果关于x的方程2无解,则a的值为________.20、关于的方程的解是正数,则的取值范围是________.21、若分式的值为,则的值为________.22、计算:=________ .23、计算:=________.24、已知,则________.25、已知3a-b=0,则分式的值为________三、解答题(共5题,共计25分)26、先化简,再求值:.其中.27、如果方程与的解相同,求(a-3)2的值.28、为了锻炼意志提高班级凝聚力,某校八年级学生决定全班参加“美丽佛山一路向前﹣﹣﹣50公里徒步”活动,从起点步行出发20分钟后,负责宣传的王老师骑自行车以2倍的速度原路追赶,结果在距起点10千米处追上,求学生步行的速度和王老师骑自行车的速度分别是多少?29、某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数。
苏科版八年级数学下_10.4分式的乘除
感悟新知
解:(1)原式=2ab; (2)原式=-6yx33; (3)原式=mn42·mn36·m14n4=nm46mn67=n13.
知1-讲
感悟新知
例2 计算:
(2a-3)2 (1) a+3
·a2+3-6a2+a 9;
2m+4 (2)m2-4m+4
·(m2-4)
进行运算.
感悟新知
知2-讲
特别提醒: 分式除法运算的基本步骤: 第1 步:将分子、分母是多项式的进行因式分解,并
约分; 第2步:将除法转化成乘法; 第3步:利用分式的乘法法则计算.
感悟新知
例 3 计算: (1)a2bc23÷-45cad2b2;(2)23xy3÷(-2xy2); -1+2a-a2 a2-1 (3) a+2 ÷a2+2a.
·m2m2--146.
知1-讲
感悟新知
知1-讲
解题秘方:先分解因式再约分.
方法点拨: 分子分母都是多项式的分式的乘法运算一般先分别对分
子分母分解因式,再运用分式的乘法法则计算,最后约分化 为最简分式或整式.
感悟新知
解:(1)原式=(2aa+-33)2·-(a(2+a-3)23)= -(2a-3)(a+3) =-2a2-3a+9; (2)原式=2(m(m-+24)2)·(m+2)(m- 2) · (m+2(m4)-(m2-) 4)=4m(m2-+126)2.
感悟新知
知3-讲
特别解读: (1)分式的乘除混合运算要注意分式中分子、分母符号的
处理,可先确定积的符号; (2)分式的乘除混合运算的结果应为最简分式或整式.
感悟新知
例4 计算:
3ab2 (1)2x3y
初中数学苏教版八年级下册《10.5 分式方程》PPT课件(示范文本)
解分式方程:
试一试
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.检验:把整式方程的解代入原分式方程,如果左边=右边,则整式方程的解是原分式方程的解; 4、写出原方程的解.
情境设置
所列方程的分母中含有未知数.
分母中含有未知数的方程叫做分式方程.
问题中所列的各方程与一元一次方程(如:2x-1=0、 )有没有区别?若有,其本质区别是什么?
下列方程中,哪些是分式方程?
(1)
(2)
(3)
(4)
去分母
去分母
两边同乘分母的最小公倍数 6
方程两边同乘最简公分母 2x
解之,得x=15
经检验, x=15是所列方程的解.
答:骑自行车的学生的速度为15 km/h.
一化二解三检验
归纳 解分式方程的一般步骤:
解下列方程:
(1)
(2)
(5)
(3)
(4)
(6)
例2:我校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达.求骑自行车的学生的速度.
解:设自行车的速度为xkm/h,可得方程
等式的基本性质:等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
1.如何解一元一次方程
分式方程
整式方程
去分母
解分式方程的基本思想方法是什么?
转化
同乘各分式的最简公分母
注意:解分式方程一定要检验.
例1 解方程:
(1)
解:方程两边同乘x(x+4),得
3x-(x+4)=0
解得 x=2
第10章 分式 苏科版数学八年级下册综合素质评价(含答案)
第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。
八年级数学下册课后补习班辅导分式的乘除分式方程讲学案苏科版
分式的乘除、分式方程【本讲教育信息】一. 教学内容:分式的乘除、分式方程二. 教学目标:1. 使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.2. 掌握分式方程的概念,掌握分式的乘除运算,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.3. 培养学生分析问题、解决问题的能力,渗透数学类比转化的思想培养学生的应用意识。
三. 教学重点与难点:重点:1. 掌握分式的乘除运算2. 分式方程的解法.3. 将实际问题中的等量关系用分式方程表示难点:1. 分子、分母为多项式的分式乘除法运算.2. 列分式方程解应用题四. 课堂教学:(一)知识要点知识点1:约分根据分式的基本性质,把一个分式的分子与分母的公因式约去。
约分一定要把公因式约完。
知识点2:最简分式分子与分母没有公因式的分式叫最简分式。
分式运算的结果一定要化为最简因式。
知识点3:分式乘法法则 分式乘分式,用分子的积做积的分子,分母的积做积的分母。
即B A .DC = . 知识点4:分式除法法则:分式除以分式把除式的分子.分母颠倒位置后,与被除式相乘。
即B A ÷DC = . 知识点5:分式的混合运算 与分数混合运算类似,分式的加,减,乘,除混合运算的顺序是:先乘除,后加减。
如有括号,则先进行括号内的运算。
知识点6:分式方程的定义分母中含有未知数的方程叫做分式方程。
如:(1)01111=--+x x (2)163104245--+=--x x x x 知识点7:分式方程的解法去分母,把分式方程转化为整式方程解整式方程检验知识点8:解分式方程产生增根的原因解分式方程时我们在方程的两边同乘了一个可能使分母为0的整式。
因为解分式方程可能产生增根,所以解分式方程必须检验。
知识点9:列分式方程解应用题列分式方程解应用题与列一元一次方程和二元一次方程组相似。
但要特别注意检验。
【典型例题】例1. 计算: (1)2222.2)(x y x xy y xy x x xy -+-÷- 解:原式=y x y x y x xy x y x -=-⋅-⋅-22)()()( (2)x x x x x x x x -÷+----+4)44122(22 解:原式x4x ])2x (1x )2x (x 2x [2-⋅----+=22222)2(14)2(44)2(4--=-⋅--=-⋅-+--=x xx x x x x x x x x x x 例2. 先化简,再求值:2222222222ba )cb (a b a ab 2c )b a (ab a ac ab a ---÷++--⨯--+。
苏科版数学八年级下册 第10章 分式知识点总结
分式分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母;(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况;(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果。
(判断一个数是分数还是整数,要化简)分式有意义,无意义或等于零的条件:1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,避免分母的值为零;(2)遇到没有特殊说明的分式,都是有意义的,要注意隐含条件分式中的分母的值不等于零;(3)求分式的值,必须在分式有意义的前提下。
分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式).注意:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件;(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.分式的变号法则:对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数. 注意:根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.分式的约分,最简分式:与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。
苏科版八年级下册10.5分式方程的增根专题训练(1)
八下10.5分式方程的增根专题训练(1)姓名:___________班级:___________考号:___________一、选择题1.下列说法正确的是().A. 使分子的值为零的根是增根B. 方程的解是零就是增根C. 使所有分母为零的解是增根D. 使公分母的值为零的解是增根2.下列说法:①解分式方程一定会产生增根;②方程x−2x−4x+4=0的根为2;③方程1 2x =12x−4的最简公分母是2x(2x−4);④x+1x−1=1+1x−1是分式方程.其中正确的个数是().A. 1个B. 2个C. 3个D. 4个3.解关于x的方程xx−1−kx2−1=xx+1不会产生增根,则k的值是()A. 2B. 1C. k≠2且k≠一2D. 无法确定4.已知关于x的方程3x−1−x+ax(x−1)=0增根是1,则字母a的取值为A. 2B. −2C. 1D. −15.下列说法中,正确的有()个.(1)若a>b,则ac2>bc2(2)若ac2>bc2,则a>b(3)对于分式2x2−8x−2,当x=2时,分式的值为0(4)若关于x的分式方程x−mx−2=1x−2有增根,则m=1.A. 2B. 3C. 4D. 16.已知,关于x的分式方程2x−3+x+a3−x=2有增根,且关于x的不等式组{x>ax≤b只有4个整数解,那么b的取值范围是()A. −1<b≤3B. 2<b≤3C. 8≤b<9D. 3≤b<4二、填空题7.若分式方程xx−1−m1−x=2有增根,则这个增根是______.8.解关于x的方程x−6x−1=mx−1产生增根,则常数m的值等于________.9.解关于x的方程1−kxx−2=12−x出现增根,则增根x=________,常数k=________.10.若关于x的分式方程1ax+b =1bx+a有增根(a≠b,且a,b都不为零),则ab=________.三、解答题11.已知关于x的分式方程2x-1+mx(x-1)(x+2)=1x+2.(1)若方程的增根为x=1,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.12.先仔细看(1)题,再解答(2)题.(1)a为何值时,方程xx−3=2+ax−3会产生增根?解:方程两边同时乘以(x−3),得x=2(x−3)+a①,因为x=3是原方程的增根,并且是方程①的根,所以将x=3代入①,得3=2×(3−3)+a,所以a=3.(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?13.先仔细看(1)题,再解答(2)题.(1)a为何值时,方程xx−3=2+ax−3会产生增根?(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?14.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?x−2+3=12−x.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?15.增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.阅读以上材料后,完成下列探究:探究1:m为何值时,方程3xx−3+5=m3−x有增根?探究2:m为何值时,方程3xx−3+5=m3−x的根是−1?探究3:任意写出三个m的值,使对应的方程3xx−3+5=m3−x的三个根中两个根之和等于第三个根.探究4:你发现满足“探究3”条件的m1,m2,m3的关系是__________________________.16.阅读理解,并解决问题.分式方程的增根解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现0=0的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程1−xx−2+2=12−x时产生了增根,这个增根是______;(2)小明认为解分式方程2xx+1−32x+2=0时,不会产生增根,请你直接写出原因;(3)解方程2x−1+1x+1=4x2−1.答案和解析1.D解:分式方程的增根是使最简公分母的值为零的解.2.A3.C解:去分母得,x(x+1)−k=x(x−1),解得x=12k,∵方程xx−1−kx2−1=xx+1不会产生增根,∴x≠±1,∴12k≠±1,即k≠±2.4.A解:方程两边都乘以x(x−1)得,3x−x−a=0,2x−a=0,∵分式方程有增根x=1,∴2×1−a=0,∴a=2.5.A解:∵当c=0时,ac2=bc2=0,∴选项(1)不正确;∵ac2>bc2,∴c2>0,∴a>b,∴选项(2)正确;由{2x 2−8=0x −2≠0解得x =−2,∴当x =−2时,分式的值为0, ∴选项(3)不正确; ∵方程x−mx−2=1x−2有增根, ∴x =m +1=2, 解得m =1, ∴选项(4)正确. 综上,可得正确的结论有2个:(2)(4).6. D解:方程化简,得 2−x −a =2(x −3), 当x =3时,a =−1,{x >a x ≤b的解集是,−1<x ≤b . 由关于x 的不等式组{x >ax ≤b 只有4个整数解,得3≤b <4,7. x =1解:根据分式方程有增根,得到x −1=0,即x =1, 则方程的增根为x =1.8. −5解:两边都乘以(x −1),得 x −6=m ,由方程的增根是x =1, 得1−6=m . 解得m =−5.9. 2;1解:方程两边都乘(x−2),得1−kx=−1,∵方程有增根,∴最简公分母x−2=0,即增根是x=2,把x=2代入整式方程,得k=1.10.−1解:方程两边同乘(ax+b)(bx+a),得bx+a=ax+b.移项、合并同类项,得(b−a)x=b−a.两边同除以(b−a),得x=1.∵原分式方程有增根,∴x=1是原方程的增根,∴当x=1时,ax+b=0或bx+a=0,∴a+b=0,∴a=−b,=−1,∴ab11.解:方程两边同时乘以(x+2)(x−1),得2(x+2)+mx=x−1,整理得(m+1)x=−5,(1)∵x=1是分式方程的增根,∴1+m=−5,解得:m=−6;所以,m的值为−6;(2)∵原分式方程有增根,∴(x+2)(x−1)=0,解得:x1=−2,x2=1,当x=−2时,原分式方程有增根,代入(m+1)x=−5得m=1.5;当x=1时,原分式方程有增根,代入(m+1)x=−5得m=−6;所以,若方程有增根,m=−6或1.5;(3)当m+1=0时,该方程无解,此时m=−1;当m+1≠0时,要使原方程无解,由(2)得:m=−6或m=1.5,综上,若方程无解,则m的值为−1或−6或1.5.12.解:原方程公分母为y(y−1),方程两边同乘以y(y−1),得y2−m2=(y−1)2,y2−m2=y2+1−2y,2y−1=m2,当y=0时,m2=−1,此时m无解;当y=1时,m2=1,此时m=±1.故当m=±1时,方程有增根.13.解:(1)解方程两边同时乘(x−3),得x=2(x−3)+a,①因为x=3是原方程的增根,但却是方程①的根,所以将x=3代入①得:3=2×(3−3)+a,所以a=3;(2)原方程公分母为y(y−1),方程两边同乘y(y−1),得y2−m2=(y−1)2y2−m2=y2+1−2y2y−1=m2当y=0时,m2=−1,此时m无解;当y=1时,m2=1,此时m=±1.故当m=±1时,方程有增根.14.解:(1)方程两边同时乘以(x−2)得5+3(x−2)=−1解得x=0经检验,x=0是原分式方程的解.(2)设?为m,方程两边同时乘以(x−2)得m+3(x−2)=−1由于x=2是原分式方程的增根,所以把x=2代入上面的等式得m+3(2−2)=−1m=−1所以,原分式方程中“?”代表的数是−1.15.解:解分式方程,根据方程有增根求得m的值即可,根据规律即可得出结论.第三问设方程的三根为a,b,c且a+b=c,再求得对应的m.即可得出它们之间的关系.(1):探究1:方程两边都乘(x−3),得3x+5(x−3)=−m∵原方程有增根,∴最简公分母(x−3)=0,解得x=3,当x=3时,m=−9,故m的值是−9.(2)探究2:方程两边都乘(x−3),得3x+5(x−3)=−m∵原方程的根为x=−1,∴m=23.(3)探究3:由(1)(2)x=15−m,8方程的三个对应根为a,b,c且a+b=c,即可得出对应的m,m1=15−8a,m2=15−8b,m3=15−8c.(4)探究4:∵a+b=c,∴15−m18+15−m28=15−m38,整理得m3=m1+m2−15,故答案为m3=m1+m2−15.16.x=2解:(1)x=2;故答案为:x=2;(2)∵原分式方程的最简公分母为2(x2+1),而2(x2+1)>0,∴解这个分式方程不会产生增根.(3)方程两边同乘(x−1)(x+1),得2(x+1)+(x−1)=4解得:x=1经检验:当x=1时,(x−1)(x+1)=0所以,原分式方程无解.。
分式的基本性质(课件)八年级数学下册(苏科版)
2x
x
2
5x
2
,
25
3x
x
2
2
5x
25
.
典型例题
a
b
与 2
例题6 通分: 2
2
x y
x xy
(x+y)(x-y)
x(x+y)
解:最简公分母是x(x+y)(x-y)
a
x
2
y
2
b
x
2
a
( x y)( x y)
b
xy
x( x y )
ax
x( x y)( x y)
b( x y )
x( x y)( x y )
探究新知
分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值
不变.
上述性质可以用式子表示为:
A
AC A
AC
,
(C 0)
.
B
BC B
B C
其中A,B,C是整式.
典型例题
例题1 填空:
看分母如何变化,想分子如何变化.
看分子如何变化,想分母如何变化.
3
x
()
1
D. 3
5 −2+3
−0.2−1
5.不改变分式的值,将分式
中的分子与分母的各项系数化为整数,且第一项系
−0.3+0.5
数都是最小的正整数,正确的是( A )
A.
2+1
3−5
2−10
3+5
B.
2+10
3+5
C.
D.
2+10
最新苏教版八年级数学下册10.5分式方程公开课优质教案(10)
§10.5分式方程(1)教学目标:1、经历“实际问题-分式方程方程模型”地认识过程,能将实际问题中地等量关系用分式方程表示,体会分式方程地模型作用。
2、知道分式方程地意义,会解可化为一元一次方程地分式方程重点、难点:将实际问题中地等量关系用分式方程表示,会解可化为一元一次方程地分式方程。
教学过程一.【预学指导】初步感知、激发兴趣1、京沪铁路是我国东部沿海地区纵贯南北地交通大动脉,全长约1500km,是我国最繁忙地铁路干线之一。
如果货车地速度为xkm/h,快速列车地速度是货车地2倍,那么①货车从北京到上海需要多少时间?②快速列车从北京到上海需要多少时间?③已知从北京到上海快速列车比货车少用12h,你能列出一个方程吗?2、同学们列出上面以及课本中地三个方程并思考如下问题:①上面所得到地方程有什么共同特点?②与我们在七年级学过地一元一次方程或二元一次方程有什么区别? ③你能给这样地方程起一个恰当地名称吗?二. 【问题探究】师生互动、揭示通法问题 1. 在下列方程中:①322x x =-; ②1a b x y +=(,a b 是常数); ③135x-=π; ④3241x x +-+;分式方程有哪些?为什么?问题2. 尝试解分式方程:24x +1 =20x问题3. 解下列方程:(1)x x x x -++=--212253(2)2411y y y y y +-=-- 问题4.解下列方程:(1)31144x x x -=--- (2)2431422x x x x x +-+=--+ 三【变式拓展】能力提升、突破难点问题5.已知:321n m n -=+,试用含m 地代数式表示n四 【回扣目标】学有所成、悟出方法1、什么叫做分式方程?解分式方程地一般步骤是什么?2、你认为解分式方程最应注意地是什么?五.【板书】六.教学反思。
苏科版数学八年级下册10.1《分式》说课稿
苏科版数学八年级下册10.1《分式》说课稿一. 教材分析苏科版数学八年级下册10.1《分式》是学生在学习了有理数、实数等知识后,进一步拓展数学知识的重要内容。
本节课主要介绍分式的概念、分式的基本性质以及分式的运算。
通过学习,使学生掌握分式的基本概念,了解分式的运算规则,提高学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数、实数等知识,具备了一定的数学基础。
但部分学生对分式的概念和性质可能理解不深,分式的运算规则容易混淆。
因此,在教学过程中,要关注学生的学习差异,针对性地进行教学,提高学生的数学素养。
三. 说教学目标1.知识与技能:让学生掌握分式的概念,了解分式的基本性质和运算规则;2.过程与方法:通过自主学习、合作探讨,培养学生解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维和团队协作精神。
四. 说教学重难点1.教学重点:分式的概念、分式的基本性质和运算规则;2.教学难点:分式的运算规则,特别是分式的乘除法运算。
五. 说教学方法与手段1.采用问题驱动法,引导学生自主学习,培养学生的问题解决能力;2.利用多媒体教学手段,展示分式的图形,直观地理解分式的意义;3.运用合作探讨法,让学生在小组内交流分享,提高学生的团队协作能力。
六. 说教学过程1.导入新课:通过生活中的实际问题,引入分式的概念,激发学生的学习兴趣;2.自主学习:让学生自主探究分式的基本性质,培养学生独立解决问题的能力;3.合作探讨:引导学生分组讨论分式的运算规则,互相交流,提高团队协作能力;4.知识拓展:介绍分式的应用,让学生感受分式在实际问题中的重要性;5.课堂小结:总结本节课的主要内容,强化学生的记忆;6.课后作业:布置具有针对性的作业,巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出重点。
主要包括以下几个部分:1.分式的概念;2.分式的基本性质;3.分式的运算规则;4.分式的应用。
八年级数学下册10_5分式方程分式方程解法易错点分析素材新版苏科版
分式方程解法易错点分析一、去分母时常数漏乘公分母【例1】解方程23132--=--xx x . 错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.二、去分母时,分子是多项式不加括号【例2】解方程011132=+--x x 错解:方程化为011)1)(1(3=+--+x x x , 方程两边同乘以(x +1)(x -1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x +1)(x -1),得3-(x -1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.三、方程两边同除可能为零的整式【例3】解方程323423+-=--x x x x . 错解:方程两边都除以3x-2,得3141+=-x x , 所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x +4)=0.所以7(3x-2)=0.解得x=32. 检验:当x=32时,原方程的左边=右边=0,所以x=32是原方程的解 四、忽视“双重”验根【例4】解方程627132+=++x x x 错解 去分母,得4x +1=7.程的根. 错解分析:这里求出方程的根之后,又经过检验,似乎没有问题.但只母的过程中,把方程两边都乘以最简公分母2(x +3),没有将2(x +3)与1相乘,因而所得的方程与原方程不同解了.那么,为什么“检验”没有发现呢?这是因为这种验根方法必须以解题过程没有错误为前提,否则,即使将求得的未知数的值代入所乘的整式,整式的值不为零,也不能断定未知数的这个值是原方程的根.正确解法 去分母,得4x +2x +6=7.说明解分式方程时要注意的是:检验未知数的值是不是原方程的根,不仅要检验是否有增根(代入公分母),而且要代入原方程,检验原方程两边的值是否相等.。
初中数学章前导学设计
初中数学章前导学设计作者:顾广林来源:《江苏教育·中学教学版》2021年第10期【摘要】初中数学教材在章前都设计了章前图和章前语,揭示本章的主要学习内容和方法。
章前图语具有统领全章的导学功能,为全章教学构建框架,为全章学习提供明晰的路径,有利于学生理解全章的知识架构与能力要求。
教师的章前导学设计要紧扣章前图语、站在系统思维的高度进行,针对全章内容提出问题并引导学生尝试解决,使学生明白为什么要学、学什么、怎么才能学会。
【关键词】章前导学;系统思维;问题引领【中图分类号】G633.6 【文献标志码】A 【文章编号】1005-6009(2021)71-0037-03【作者简介】顾广林,江苏省泰州市九龙实验学校(江苏泰州,225312)教师,正高级教师,江苏省特级教师。
一、章前板块的内容分析以苏科版初中数学教材为例,章前图、章前语一般由两页组成。
第一页的上半部分给出一个几何图形和简洁的说明,关联已学知识和待学知识,说明本章知识产生的逻辑性,介绍主要学习内容,指出本章学习的关键所在;下半部分给出一幅生活中涉及本章相关内容的实景图片或关于数学文化的图片或操作类图片。
对于实景图片,教师可以基于图片创设一个蕴含本章知识的数学问题情境,并通過对问题的分解与创生,引导学生了解本章所要学习的知识和方法;对于同数学文化相关的图片,教师可用以引导学生感受我国古代数学的成就,增强其自豪感;操作类的图片往往暗示本章需要“做中学”。
第二页上半部分一般给出一个图文并茂的探索活动,学生通过探索可了解本章的主要知识,感受学习方法;下半部分一般给出本章的学习内容或指明学习方法。
第二页的内容是对全章内容的概括和学法的引领,力图引起学生的好奇心,培养学生的自信心。
总之,章前图语主要以情境和问题的形式揭示全章的内容和学习方法。
二、章前导学结构章前图语的主要功能是导学,它为全章的内容和结构设定了一个框架,对后续学习起着“导航”作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版八年级数学下册第10章分式10.5分式方程3导学案新版苏科版
一、学习目标
1、会列出可化为一元一次方程的分式方程解决实际问题;
2、能根据具体问题的实际意义检验方程的解是否合理。
二、预习导航
读一读:阅读课本P116-P118
想一想:
1.例题中240
3x
表示什么意思?;
2.列方程所用的等量关系是什么?;
3.观察解题过程,你发现它与用一元一次方程解应用题的过程有什么不同?。
三、课堂探究
1.探问新知
列分式方程解应用题的一般步骤是:。
2.例题精讲
例1:甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均少捐款20元,且甲公司的人数比乙公司的人数少20%。
问甲、乙两公司各有多少人?
例2:一辆汽车从甲地开往相距90km的乙地,出发后第一个小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了20分钟到达乙地。
求前一小时的行驶速度。
例3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用6天;
(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
归纳小结:
四、随堂演练
【基础题】
1.A、B两港之间的海上行程仅为s 千米,一艘轮船从A港出发顺水航行,以a 千米/时的速度到达B港,已知水流的速度为x 千米/时,则这艘轮船到B港所用的时间为小时;这艘轮船从B港返回A港所用的时间为小时。
2.甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,列方程得()
A.360480
140
x x
=
-
B.
360480
140x x
=
-
C.360480
140
x x
+= D.
360480
140
x x
-=
3.农机厂职工到距该厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余的人乘汽车去,结果他们同时到达。
已知汽车的速度是自行车的3倍。
求两种车的速度。
4、小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵
1.2元,小明和小丽能买到相同本数的笔记本吗?
5、一台甲型拖拉机3天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
【课后巩固】
1.某面粉厂现在平均每小时比原计划多生产面粉330kg,已知现在生产面粉33000kg所需的时间和原计划生产23100kg面粉的时间相同,若设现在平均每小时生产面粉x kg,则根据题意,可以列出分式方程为()
A .330023100330x x -=
B .3300023100330
x x =- C .3300023100330x x =- D .3300023100330x x =+ 2. 一个两位数的个位数字是4,如果把个位数字与十位数字对调,那么所得的两位数与原两位数
的比值是74。
原两位数的十位数字是几?
3.甲、乙两个工厂分别加工960件产品,已知乙工厂每天加工的件数比甲工厂多50%,而甲工厂单独加工完这批产品比乙工厂单独加工完这批产品需多用20天。
甲、乙两个工厂每天各加工该产品多少件?
4.某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前半年完成,需将原定的工作效率提高25%,原计划完成这项工程需要多少个月?
学后/教后思:
如有侵权请联系告知删除,感谢你们的配合!。