六年级奥数-第一讲.分数的速算与巧算.教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的速算与巧算

教学目标

本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.

1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找

通项进行解题的能力

2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利

用运算定律进行简算的问题. 4、通项归纳法

通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨 一、裂项综合

(一)、“裂差”型运算

(1)对于分母可以写作两个因数乘积的分数,即

1

a b

⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b

=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:

1(1)(2)n n n ⨯+⨯+,1

(1)(2)(3)

n n n n ⨯+⨯+⨯+形式的,我们有:

1111

[](1)(2)2(1)(1)(2)

n n n n n n n =-⨯+⨯+⨯+++

1111

[](1)(2)(3)3(1)(2)(1)(2)(3)

n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+

裂差型裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 (二)、“裂和”型运算:

常见的裂和型运算主要有以下两种形式:

(1)11a b a b a b a b a b b a

+=+=+⨯⨯⨯ (2)

2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:

裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项

(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1

(1)(1)3

n n n =

-⨯⨯+ (2) 1

123234345...(2)(1)(2)(1)(1)4

n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+ 二、换元

解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.

三、循环小数化分数 1、循环小数化分数结论:

0.9a =; 0.99ab =; 0.09910990

ab =⨯=

; 0.990abc =,…… 2、单位分数的拆分:

例:

110=11

2020+

=()()11+=()()11+=()()11+=()()

11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:

11()()()()m n m n N N m n N m n N m n +==+

+++=11

A B

+ 本题10的约数有:1,10,2,5.。 例如:选1和2,有:

11(12)12111010(12)10(12)10(12)3015

+==+=++++ 本题具体的解有:

1111111111011110126014351530

=+=+=+=+ 例题精讲

模块一、分数裂项

【例 1】

11111

123423453456678978910

+++⋅⋅⋅++

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式111111131232342343457898910⎛⎫

=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭

11131238910⎛⎫=⨯- ⎪⨯⨯⨯⨯⎝⎭119

2160=

【巩固】 333

(1234234517181920)

+++

⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式1111111

3[(...)]3123234234345171819181920

=⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯

113192011139

1231819201819206840

⨯⨯-=

-==

⨯⨯⨯⨯⨯⨯ 【例 2】 计算:5719

1232348910

+++=⨯⨯⨯⨯⨯⨯ .

【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差

数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算. 原式3234

316

123234

8910

+++=

++

+

⨯⨯⨯⨯⨯⨯

1111283212323489101232348910⎛⎫⎛⎫

=⨯++++⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭

111111111132212232334899102334910⎛⎫⎛⎫=⨯⨯-+-++-+⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭

31111111122129102334

910⎛⎫⎛⎫

=

⨯-+⨯-+-++- ⎪ ⎪⨯⨯⎝⎭⎝⎭

3111122290210⎛⎫⎛⎫

=

⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭

7114605=-- 2315= 也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以

()()()()()()

2323

121212n n n n n n n n n +=+

⨯+⨯++⨯+⨯+⨯+,再将每一项的()()

2

12n n +⨯+与

()()

3

12n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.

【巩固】 计算:57

1719

1155234345

891091011

⨯++

+

+⨯⨯⨯⨯⨯⨯⨯⨯(

【解析】 本题的重点在于计算括号内的算式:

57

1719

234345

891091011

++

+

+

⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.

观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以

571719

234345891091011++++

⨯⨯⨯⨯⨯⨯⨯⨯ 2334910

23434591011+++=+++

⨯⨯⨯⨯⨯⨯ 111111

342445*********

=++++++

⨯⨯⨯⨯⨯⨯

相关文档
最新文档