二次函数根的判别式、韦达定理

合集下载

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

关于判别式法与韦达定理的论述

关于判别式法与韦达定理的论述

关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。

别式法与韦达定理说明了一元二次方程中根和系数之间的关系。

它们都有着广泛的应用在整个中学阶段。

一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

判别式法与韦达定理在方程论中有着广泛的应用。

二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。

这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。

判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。

二次方程根公式大全,二次函数两个根的公式推导

二次方程根公式大全,二次函数两个根的公式推导

二次方程根公式大全,二次函数两个根的公式推导二次方程根公式大全?一元二次方程_31、大多数情况下形式ax²+bx+c=0(a≠0)这当中ax²是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

2、变形式ax²+bx=0(a、b是实数,a≠0);ax²+c=0(a、c是实数,a≠0);ax²=0(a是实数,a≠0)。

一元二次方程的根与根的判别式当中有请看下方具体内容关系:(1)当△0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△0时,方程无实数根,但有2个共轭复根。

(这当中,△=b²-4ac,a、b、c分别是一元二次方程的二次项系数、一次项系数还有常数项。

)二次函数两个根的公式?二次函数y=ax2+bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定这当中一个变量,就可利用剖析解读式得出另一个变量,即得到一组解;而一组解就是一个点的坐标,其实二次函数的图象就是由大量个这样的点构成的图形。

设ax^2+bx+c=0的两根为x1,x2。

由韦达定理:(x1+x2)=-b/a,x1x2=c/a==b=-a(x1+x2)c=ax1x2ax^2+bx+c=ax^2-a(x1+x2)+ax1x2=a(x^2-(x1+x2)x+x1x2)。

由十相乘法字法得:ax^2+bx+c=a(x-x1)(x-x2)二次函数两根之积的公式:x1x2=c/a (应是一元二次方程两根之积或是说二次函数与x轴交点)其他公式韦达定理:两根之和公式x1+x2=-b/a 两根之积公式x1x2=c/a二次函数的根计算公式?因为二次函数 y=ax²+bx+c与x轴交点的横坐标,就是当y=0时,即求方程ax²+bx+c=0的根则两个根为:x=(-b±√(b²-4ac))/2a。

韦达定理与根的判别式

韦达定理与根的判别式

韦达定理与根的判别式这个专题是一二次方程是的判别式与韦达定理知识要点和练习韦达定理与根的判别式知识点:1、根的判别式b24ac(1)b24ac 0 ,方程有两个不相等的实数根;(2)b2 4ac 0,方程有两个相等的实数根;(3)b2 4ac 0,方程没有实数根;2、韦达定理已知x1,x2是一元二次方程的两根,则有xb1 x2ax1x2ca例1:已知一元二次方程x22x m 1 0 (1)当m取何值时,方程有两个不相等的实数根?(2)设x21,x2是方程的两个实数根,且满足x1 x1x2 1,求m的值练习:1、方程x23 0的根的情况是()A有两个不等的有理实根B有两个相等的有理实根C有两个不等的无理实根D有两个相等的无理实根2、已知x2 1,x2是方程2x 3x 4 0的两个根,则()A x331 x2 2 ,x1x2 2 B x1 x2 2 ,x1x2 2 C x1 x322,x1x2 2 D x31 x22,x1x2 23、已知方程x2 2 0,则此方程()A 无实数根B两根之和为C两根之积为2D有一根为2 1这个专题是一二次方程是的判别式与韦达定理知识要点和练习4、已知x1,x2是方程2x 3x 1 0的两个根,则3221x11x2的值为()A 3B -3C D5、若将二次三项式x2 px 6因式分解,分解后的一个因式是x-3,则p的值是()A -5 B -1 C 1 D 56、已知x1,x2是方程x 4x 3 0的两个根,那么x1x2的值是() A - 4 B 4 C -3 D 37、在一元二次方程ax2 bx c 0(a 0)中,若a与c异号,则方程()A 有两个不相等的实数根 B 有两个相等的实数根 C 没有实数根 D 根的情况无法确定8、已知一元二次方程的两根分别为x1 3,x2 4,则这个方程为() A (x 3)(x 4) 0 B (x 3)(x 4) 0 C (x 3)(x 4) 0 D (x 3)(x 4) 09、关于x的一元二次方程3x 2x k 1 0有两个不相等的实数根,则k的取值范围是() A k432243且k 1 C k2243D k4310、若关于x的一元二次方程(m 2)x (2m 1)x 1 0有两个不相等的实数根,则m的取值范围为() A m43B m43C m43且m 2 D m43且m 22211、已知一直角三角形的三边为a、b、c,∠B=90 ,那么关于x的方程a(x 1) 2cx b(x 1) 0的根的情况为()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法确定12、设x1,x2是方程2x 4x 3 0的两个根,则2221x11x213、已知关于x的方程x 2(m 2)x m 0有两个实数根,且两根的平方和等于16,则m的值为14、已知方程x (12x20的两根为x1,x2,则x1 x2的值为2215、关于x的一元二次方程mx (3m 1)x m 0,其根的判别式的值为1,求m的值及该方程的根。

苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)

苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)

中考要求知识点基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题例题精讲板块一根的判别式☞定义:运用配方法解一元二次方程过程中得到2224(24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.☞判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=.根的判别式与韦达定理②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.☞根的判别式的应用:☞⑴运用判别式,判定方程实数根的个数;【例1】不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【解析】略【答案】⑴22340x x +-=∵2342(4)410∆=-⨯⨯-=>∴方程有两个不相等的实数根.⑵∵0a ≠∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零∵22()40b a b ∆=--⋅⋅=∵无论b 取任何数,2b 均为非负数∴0∆≥,故方程有两个实数根【巩固】不解方程,判别一元二次方程2261x x -=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【解析】由方程可得3680∆=+>,所以方程有两个不相等的实数根.【答案】A【巩固】不解方程判定下列方程根的情况:⑴22340x x +-=;⑵232x +=21x +=;⑷22(21)220m x mx +-+=;⑸2210x ax a ++-=220+=;⑺4(1)30x x +-=;⑻2(1)(2)x x m --=【解析】略【答案】⑴两个不等的实数根;⑵两个相等的实数根;⑶无实数根;⑷无实数根;⑸两个不等的实数根;⑹无实数根;⑺两个不相等的实数根;⑻两个不相等的实数根【例2】已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++=的根的情况().A .有2个负根B .有2个正根C .有2个异号的实根D .无实根【解析】方程2222()()0x a b c x a b c ++++++=的判别式为:2222()4()a b c a b c ∆=++-++222333222a b c ab bc ca=---+++222222222(2)(2)(2)a ab b b bc c c bc a a b c =-+-+-+-+-+----222222[()()()]a b b c c a a b c =--+-+-+++∵a ,b ,c 不全为0,∴0∆<.∴原方程无实数根.故选D .【答案】D☞⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;【例3】m 取什么值时,关于x 的方程222(3)6x mx +-=有两个相等的实数根【解析】略【答案】1m =±【巩固】如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是()A .1k <B .0k ≠C .10k k <≠且D .1k >【解析】由题可得36360k k ∆=->⎧⎨≠⎩所以10k k <≠且【答案】C【巩固】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【解析】注意二次项系数不为0【答案】9k <且0k ≠【巩固】若关于x 的二次方程2(1)220m x mx m -++-=有两个不相等的实数根,则m 的取值范围是【解析】注意二次项系数不为0【答案】23m >且1m ≠【巩固】若关于x 的一元二次方程2(1)210k x x ++-=有实数根,则k 的最小整数值为【解析】注意题目要求以及二次项系数不为0的条件【答案】2k =-【巩固】已知方程22(21)10m x m x +++=有实数根,求m 的范围.【解析】注意分两种情况讨论:若0m =,则原方程可化为101x x +=⇒=-满足题意;若0m ≠,则由题意可知221(21)404104m m m m ∆=+-≥⇒+≥⇒≥-.综上可知,14m ≥-【答案】14m ≥-【例4】关于x的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【解析】由题意,得4(1)4(12)010120k k k k ++->⎧⎪+≥⎨⎪-≠⎩解得12k -≤<且12k ≠【答案】12k -≤<且12k ≠【巩固】关于x的方程210x ++=有两个不相等的实数根,则k 的取值范围为________.【解析】2400k ⎧∆=->⎪⎨>⎪⎩,解得1k >【答案】1k >【巩固】已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -【解析】∵0>△,∴2m >∴|1||1||2|23m m m m --+-=-【答案】23m -【巩固】已知关于x 的一元二次方程20x m -=有两个不相等的实数根,求m 的取值范围.【解析】由题意可知,原方程的判别式21(41303m m m ∆=+=+>⇒>-.又101m m -≥⇒≤,故113m -<≤.【答案】113m -<≤【巩固】k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【解析】需要分两种情况来讨论:⑴当10k -=时,原方程是一元一次方程,有一个实数根45x =;⑵当10k -≠时,方程是一元二次方程,故0∆≥,解得214k ≥-且1k ≠,所以当214k ≥-且1k ≠时方程有两个实数根.综上所述,当214k ≥-时,方程有实数根.【答案】214k ≥-【例5】关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是.【解析】由一元二次方程根的情况可知240b ac -≥,即()()284660a --⨯⨯-≥,解得263a ≤,故max 8a =.【答案】8【巩固】若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【解析】0∆≥,即()()22414450a a a +-+-≥,解不等式得3a ≤,即123a =,,.【答案】1,2,3【例6】已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【解析】∵()()2212102x a b x b b -+--+=有两个相等的实数根.∴0∆=,即()()222210a b b b ++-+=∴()()22210a b b ++-=,∴0a b +=,10b -=∴1b =,1a =-,因此321a b +=-.【答案】1-【巩固】当a b 、为何值时,方程()2222134420x a x a ab b ++++++=有实根?【解析】要使关于x 的一元二次方程()2222134420x a x a ab b ++++++=有实根,则必有0∆≥,即()()22241434420a a ab b +-+++≥,得()()22210a b a ++-≤.又因为()()22210a b a ++-≥,所以()()22210a b a ++-=,得1a =,12b =-.【答案】1a =,12b =-【例7】已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是()A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【解析】22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b ac b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .【答案】C【巩固】若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=().A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【解析】∵方程2(2)2(1)0m x m x m +-++=只有一个实数根,∴20m +=,得2m =-.∴方程2(1)220m x mx m +-+-=,即为方程2440x x -+-=,∴244(1)(4)0∆=-⨯-⨯-=.∴方程2(1)220m x mx m +-+-=有2个相等的实数根.故选C .特别注意方程2(2)2(1)0m x m x m +-++=只有一个实数根.若20m +≠,则方程要么有2个根(相等或不相等),要么没有实数根.条件指明,该方程只有1个实数根,所以20m +=,且10m +≠.【答案】C☞⑶通过判别式,证明与方程相关的代数问题;【例8】对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【解析】略【答案】∵210m +≠,故方程为一元二次方程.()()()2222422414442016m m m m m m ∆=--++=---()424241616444m m m m =---=-++()222m =-+∵220m +≠,∴0∆<,故方程无实根.【巩固】求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【解析】略【答案】∵2(2)10x m x m -+++=是关于x 的一元二次方程∴[]22(2)4(1)m m m ∆=-+-+=∵20m ≥∴原方程有两个实数根.【巩固】已知实数a 、b 、c 、r 、p 满足2pr >,20pc b ra -+=,求证:一元二次方程220ax bx c ++=必有实根.【解析】略【答案】2(2)4b ac ∆=-,因2b pc ra =+,则222()4()()2(2)pc m ac pc ra ac pr ∆=+-=++-.又2pr >,所以当0ac ≥时,0∆≥;当0ac <时,40ac ->,2()40pc ra ac ∆=+->.因此,一元二次方程220ax bx c ++=必有实根.【巩固】证明:无论实数m 、n 取何值时,方程2()0mx m n x n +++=都有实数根【解析】注意分类讨论.【答案】⑴若0m =,则方程为nx n =-,当0n ≠时,有实数根1x =-;当0n =时,方程的根为任意实数⑵当0m ≠时,原方程为一元二次方程22()4()0m n mn m n ∆=+-=-≥∴方程必有实数根综合⑴⑵可知,原结论成立【巩固】已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【解析】略【答案】当0m =时,()22250mx m x m -+++=可化为450x -+=,此时方程有根,故0m ≠故214(2)4(5)0404m m m m m ∆=+-+<⇒-<⇒>.方程()()25220(5)m x m x m m --++=≠的判别式为:224(2)4(5)4(94)0m m m m ∆=+--=+>故方程()()25220(5)m x m x m m --++=≠有两个实数根.板块二韦达定理☞如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12c x x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.☞利用韦达定理求代数式的值【例9】不解方程224)0x x +-,求两根之和与两根之积【解析】韦达定理成立的前提条件是0∆≥【答案】令此方程的两个实数根为1x 、2x由韦达定理得124422x x --+=-=,122x x ⋅=-=【巩固】设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值⑴12(3)(3)x x --;⑵211211x xx x +++;⑶12x x -【解析】不解方程,即利用韦达定理将12x x +、12x x 的整体构造出来【答案】由韦达定理得1274x x +=,1234x x ⋅=-⑴12121237(3)(3)3()939344x x x x x x --=-++=--⨯+=;⑵221221112121212121212(1)(1)()2()10111(1)(1)132x x x x x x x x x x x x x x x x x x x x ++++-+++===+++++++⑶2221212127397()()4()4()4416x x x x x x -=+-=-⨯-=,∴12x x -=【巩固】已知方程22430x x +-=的两个根为1x 、2x ⑴12x x +=;⑵12_______x x ⋅=;⑶1211_______x x +=;⑷2212_______x x +=【解析】略【答案】⑴2-;⑵32-;⑶43;⑷7【巩固】已知α、β是方程2520x x ++=+的值.【解析】注意α,β均为负数,很多学生求出的结果均为负值【答案】由韦达定理可得,5αβ+=-,2αβ=∴22222()2522a a ββαβαβαβαβαβ++++=++===+=☞利用韦达定理求参数的值【例10】若3-、2是方程20x px q -+=的两个根,则________p q +=【解析】略【答案】7-【巩固】若方程210x px ++=的一个根为1-,则它的另一根等于,p 等于【解析】部分学生喜欢将1x =-代入原方程,求p 的数值,然后再求方程另外一个根,此方法较慢。

根的判别式与韦达定理

根的判别式与韦达定理

第3讲 一元二次方程根的判别式和韦达定理一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。

时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为 【典型例题】1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。

(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。

2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。

3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。

【课堂练习】一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。

2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。

二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+yy C 、021=++x D 、0232=+-x x2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 一、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。

一元二次方程根的判别式及韦达定理

一元二次方程根的判别式及韦达定理

二次函数的解析式.
4
总结:此题和例题的第(2) 问第(II)题考查的内容一样。 只是要求学生通过C点坐标求 出一个系数,然后通过面积 求出线段AB的长度,就变成 了例题的题型。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
巩固训练, 变式迁移
在直角三角形的背景下考查“韦 达定理”。但需要学生利用“勾 股定理”将方程的两根(即 AC,BC)联系,再利用”完全平方 公式和韦达定理”将方程的两根 转化成系数m的方程,从而求解。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
a 1 4
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
例题:已知抛物线y= x2-(m + 2)x +(2m-1).
(1)求证:抛物线与x轴一定有两个交点; (2)设抛物线与x轴的交点分别为A、B两点,且点A在点B左侧. (I)若点A坐标为(1,0),求AB的长; (II)若AB长为 5 ,求m的值.
总结1:韦达定理:x1
+x
2
=-
b a
,x1x
2
=
c a
a1 5, a2 1 a1 2
a 5
总结2:“根与系数”的大前提是 “根的判别式”。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合版)
一 课前热身
1、x1、x2 是关于x的一元二次方程x2 2ax a2 4a 2 0

二次函数根的判别式、韦达定理

二次函数根的判别式、韦达定理

一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到(x b2b24ac b24ac02a)4a2,显然只有当时,才能直接开平方得: x b b24ac.2a4a2也就是说,一元二次方程 ax2bx c0( a0) 只有当系数 a 、 b 、 c 满足条件b2 4 ac 0时才有实数根.这里 b 24ac 叫做一元二次方程根的判别式.2.判别式与根的关系:ax2在实数范围内,一元二次方程bx c0( a0) 的根由其系数a 、b、 c 确定,它的根的情况(是否有实数根 ) 由b24ac 确定.判别式:设一元二次方程为ax2bx c0(a 0) ,其根的判别式为: b 24ac 则①0方程 ax2bx c0(a0) 有两个不相等的实数根x1,2b b24ac .2a②0方程 ax2bx c0(a0) 有两个相等的实数根1x2b .x2a2③0bx c0(a0) 没有实数根.方程 ax若 a , b , c 为有理数,且为完全平方式,则方程的解为有理根;若为完全平方式,同时b b24ac 是 2a的整数倍,则方程的根为整数根.说明 : (1) 用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0;有两个相等的实数根时,0 ;没有实数根时,0 .(2)在解一元二次方程时,一般情况下,首先要运用根的判别式b24ac 判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根) .当b24ac 0时,方程有两个相等的实数根(二重根 ),不能说方程只有一个根.①当 a0 时抛物线开口向上顶点为其最低点;②当 a0 时抛物线开口向下顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用:(1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围;(3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程ax2bx c0 ( a0 )的两根为 x1,x2,那么,就有ax 2bx c a x x1x x2比较等式两边对应项的系数,得x1x2b①,ax1x2c②a①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程ax2bx c0 就一定有①与②式成立.反过来,如果有两数 x1, x2满足①与②,那么这两数 x1,x2必是一个一元二次方程ax2bx c0 的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程ax2bx c0 的根,而知其根的正、负性.在b24ac ≥ 0的条件下,我们有如下结论:当c0 时,方程的两根必一正一负.若b≥ 0 ,则此方程的正根不小于负根的绝对值;若b 0 ,aaa则此方程的正根小于负根的绝对值.当c0 时,方程的两根同正或同负.若b 0 ,则此方程的两根均为正根;若b 0 ,则此方程的aaa两根均为负根.⑴ 韦达定理:如果 ax 2bx c 0(a0) 的两根是 x 1 , x 2 ,则 x 1x 2b, x 1x 2c. (隐含的条件:0 )是 ax 2a a⑵ 若 x 1 , x 2 bx c 0( a 0) 的两根 (其中 x 1x 2 ),且 m 为实数,当0 时,一般地:① ( x 1 m)( x 2 m) 0x 1 m , x 2 m② ( x 1 m)( x 2 m) 0 且 ( x 1 m) (x 2 m) 0 x 1 m , x 2 m ③ ( x 1m)( x 2 m)0 且 ( x 1 m) (x 2 m) 0x 1 m , x 2m特殊地:当 m0 时,上述就转化为2bx c 0(a 0) 有两异根、两正根、两负根的条件.ax ⑶ 以两个数 x 1 , x 2 为根的一元二次方程 (二次项系数为 1)是: x 2 (x 1 x 2 ) x x 1x 2 0 .⑷ 其他:① 若有理系数一元二次方程有一根 a b ,则必有一根 ab ( a , b 为有理数 ).② 若 ac 0 ,则方程 ax 2 bx c 0(a 0) 必有实数根.③ 若 ac 0 ,方程 ax 2 bxc 0(a0) 不一定有实数根.④ 若 ab c0 ,则 ax 2bx c 0(a 0) 必有一根 x 1 .⑤ 若 a b c 0 ,则 ax 2bx c 0(a 0) 必有一根 x 1 .⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值;② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的 .一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例 1】 不解方程,判别下列方程的根的情况:( 1) 2x 2 3 x 4 0 ;(2) 16y 2 9 24 y ;( 3) 5 x 2 17x 0 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -2a 的整数倍,则方程的根为整数根.说明: (1)用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.(2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba-<,则此方程的正根小于负根的绝对值. 当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba-<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a =.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m > ③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:①若有理系数一元二次方程有一根a +a a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根.④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =. ⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程; ④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例1】 不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=。

【例2】 不解方程,判别方程220x k ++=的根的情况。

【例3】 解关于x 的方程()21230m x mx m -+++=【例4】 已知关于x 的方程2(1)10n x mx -++=①有两个相等的实数根.求证:关于y 的一元二次方程222440m y my m n --+=②必有两个相等的实数根.【巩固】已知0a >,b a c >+,判断关于x 的方程20ax bx c ++=的根的情况,并给出必要的说明.【巩固】(1998年山东省竞赛)设a 、b 、c 为互不相等的非零实数,求证:三个方程220ax bx c ++=, 220bx cx a ++=, 220cx ax b ++=,不可能都有2个相等的实数根.二、应用题【例5】 (2006·湛江市)近年来,我市开展以“四通五改六进村”为载体,以生态文明为主要特色的新农村建设活动取得了明显成效.下面是市委领导和市民的一段对话,请你根据对话内容,替市领导回答市民提出的问题(结果精确到%).领导市民【巩固】 (2006·新疆)2004年,自治区党委、人民政府决定在乌鲁木齐、库尔勒等八个城市开办区内初中班,重点招收农牧民子女及其他家庭贫困的学生.某市2004年9月招收区内初中班学生50名,并计划在2006年9月招生结束后,使区内初中班三年招生总人数.......达到450名.若全市一共有13233个自然村,2005年已建成生态文明村2315个,计划到2007年全市生态文领导,按这个计划,从2005年到2007年,平均每年生态文明村增长率约是多少该市区内初中班招生人数平均每年比上年的增长率相同,求这个增长率.【例6】(2006·重庆市)机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克用油的重复利用率是多少【例7】(2006·南安)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元(2)设后来该商品每件降价x元,,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元【例8】(2006·诸暨市)有一根竹竿, 不知道它有多长. 把竹竿横放在一扇门前, 竹竿长比门宽多4尺; 把竹竿竖放在这扇门前, 竹竿长比门的高度多2尺; 把竹竿斜放, 竹竿长正好和门的对角线等长. 问竹竿长几尺【例9】(2006·广东省)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少(2)两个正方形的面积之和可能等于212cm 吗 若能,求出两段铁丝的长度;若不能,请说明理由.三、韦达定理【例10】 (2006·广安市)已知:ABC ∆的两边AB 、AC 的长是关于x 的一元二次方程()2223320x k x k k ++++=-的两个实数根, 第三边BC 的长为5. 试问:k 取何值时,ABC∆是以BC 为斜边的直角三角形【例11】 已知关于x 的一元二次方程()2120x m x m --++=.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+【巩固】 已知关于x 的方程222(1)30x m x m -++-=(1)当m 取何值时,方程有两个不相等的实数根(2)设1x 、2x 是方程的两根,且21212()()120x x x x +-+-=,求m 的值。

【例12】 (2006·济南市)已知关于x 的方程2210kx x +-=有两个不相等的实数根2x x 1,,且满足212()1x x +=,求k 的值.【例13】 已知1x 、2x 是关于x 的一元二次方程2244(1)0x m x m +-+=的两个非零实数根,问:1x 与2x 能否同号若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。

相关文档
最新文档