二次函数与根的判别式韦达定理
一元二次方程判别式和韦达定理

一元二次方程根的判别式及根与系数的关系1.根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.k x k x x 有实根,求方程已知关于0132=--a x a x a x 为一元二次方程,求方程已知关于03)2(2=++-数根?)方程有两个不等的实(数根?)方程有两个相等的实(?)方程只有一个实数根(为何值时,当的方程例:已知关于32101)1(2)2(2m m x m x m x =++---的值。
求没有实数根求的值。
有两个相等的实数根,,有两个不相等的实数根的一元二次方程关于为整数、已知n m n x m x n x m x n x m x x n m ,01)4(06)4(03)7(,,2222=++--=++++=++-+2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,注意它的使用条件为a ≠0, Δ≥0. 根与系数的关系(韦达定理)⎪⎪⎩⎪⎪⎨⎧=⋅-=+acx x a bx x 2121常见变形:2212x x += 1211x x +=12(5)(5)x x -- =12||x x -==+3231x x例1、若1x 和2x 分别是一元二次方程03522=-+x x 的两根.(1)求12||x x -(2)求221211x x +(3)求3231x x +变式训练1、212,046x x m x x x 有两个实数根的一元二次方程已知关于=++-(1)的取值范围求m(2)的值求满足若m x x x x ,23,2121+=例2、设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = ,q = .变式训练1、。
第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。
韦达与根的判别式

韦达与根的判别式根(root )是一元整式方程的解的别称。
阿拉伯人阿尔.花拉子米(783-850)在公元820年左右出版了《代数学》一书。
书中给出了一元二次方程的求根公式,并把方程的未知数叫做“根”,其后译成拉丁文radix 。
花拉子米在数学史上地位很高,他的名字被误传为拉丁化的 “algorism ”,后来该词具有“计算艺术”的意思,即我们今天所称的“算术”(arithmetic )。
我国清代数学家梅谷城(1681-1763)把西方传入的代数学译为“借根方”,把代数看成求解方程的科学。
法国十六世纪最有影响的数学家之一韦达(Viete ,Francois ,seigneurdeLa Bigotiere ),第一个引进系统的代数符号,并对方程论做了改进。
他生于法国的普瓦图。
年青时学习法律当过律师,后从事政治活动,当过议会的议员。
韦达是第一个使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。
韦达还讨论了方程根的各种有理变换,发现了方程根与系数之间的关系,所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”。
在一元二次方程的特例,两个根的和等于方程的一次项系数除以二次项系数的相反数;两个根的乘积等于方程的常数项除以二次项系数。
阿尔.花拉子米(783-850) 韦达 法国人(1540年- 1603年12月13日)设,是一元二次方程的两根,那么,韦达定理的逆定理同样成立。
仍然以一元二次方程为例:给定一个一元二次方程。
如果有两个数,它们的和等于该方程的一次项系数除以二次项系数的相反数,它们的积又等于该方程的常数项除以二次项系数,那么它们就是该方程的两根。
设关于的一元二次方程为,且,,、必定是一元二次方程的两个根。
韦达定理还有拓广,如当一元二次方程不存在实数根时,韦达定理在虚数范围内依然存在。
对于一元n次方程,也有类似的结论。
韦达从事数学研究只是出于律师工作外的爱好,但就是这个爱好让他名垂千史。
关于判别式法与韦达定理的论述

关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。
别式法与韦达定理说明了一元二次方程中根和系数之间的关系。
它们都有着广泛的应用在整个中学阶段。
一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
判别式法与韦达定理在方程论中有着广泛的应用。
二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。
这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。
判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。
二次方程根公式大全,二次函数两个根的公式推导

二次方程根公式大全,二次函数两个根的公式推导二次方程根公式大全?一元二次方程_31、大多数情况下形式ax²+bx+c=0(a≠0)这当中ax²是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
2、变形式ax²+bx=0(a、b是实数,a≠0);ax²+c=0(a、c是实数,a≠0);ax²=0(a是实数,a≠0)。
一元二次方程的根与根的判别式当中有请看下方具体内容关系:(1)当△0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△0时,方程无实数根,但有2个共轭复根。
(这当中,△=b²-4ac,a、b、c分别是一元二次方程的二次项系数、一次项系数还有常数项。
)二次函数两个根的公式?二次函数y=ax2+bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定这当中一个变量,就可利用剖析解读式得出另一个变量,即得到一组解;而一组解就是一个点的坐标,其实二次函数的图象就是由大量个这样的点构成的图形。
设ax^2+bx+c=0的两根为x1,x2。
由韦达定理:(x1+x2)=-b/a,x1x2=c/a==b=-a(x1+x2)c=ax1x2ax^2+bx+c=ax^2-a(x1+x2)+ax1x2=a(x^2-(x1+x2)x+x1x2)。
由十相乘法字法得:ax^2+bx+c=a(x-x1)(x-x2)二次函数两根之积的公式:x1x2=c/a (应是一元二次方程两根之积或是说二次函数与x轴交点)其他公式韦达定理:两根之和公式x1+x2=-b/a 两根之积公式x1x2=c/a二次函数的根计算公式?因为二次函数 y=ax²+bx+c与x轴交点的横坐标,就是当y=0时,即求方程ax²+bx+c=0的根则两个根为:x=(-b±√(b²-4ac))/2a。
判别式和韦达定理

第三讲:判别式和韦达定理知识要点:设一元二次方程),,;0(02为实数c b a a c bx ax ≠=++的判别式为⊿ac b 42-=,二根为21,x x ,则(1)当⊿>0时,方程有二不等实数根,反之,亦成立;当⊿<0时,方程无实数根,反之亦成立;当⊿=0时,方程有二相等实数根,反之,亦成立。
(2)a b x x -=+21,a c x x =21。
反之,若二数21,x x 满足a b x x -=+21,a c x x =21,则次二数是方程02=++c bx ax 的二根,这就是韦达定理,即根与系数的关系。
应用举例:一、判别根的性质例1, 已知方程02=++c bx x 的两根为1,4,是判断方程022=++bx cx 的根的情况。
例 2 已知方程022=--m x x 无实数根(m 为实数),试判断方程0)1(22=+++m m mx x 有么有实数根。
二、求某些值21x x + 21x x 21x x -2221x x + 2221x x -2111x x +例3设21,x x 是方程03622=+-x x 的两根,试求2112x x x x +,21x x -的值。
例4 已知方程0)12(22=+++k x k x 的两实数根的平方和等于7,求k 的值。
三、求方程的解提示:已知方程和它的一个根,最好用韦达定理求解例5已知2=x 是方程032=+-b x x 的一根,求此方程的另一根及b 的值。
例6 解方程组:21,311=-=+xy y x 。
1、已知关于x 的一元二次方程02=++c bx x 有两个实数根,则下列关于判别式c b 42-的判断正确的是( )A .042≥-c b ;B .042≥-c b ;C .042≥-c b ;D .042≥-c b .2、已知一元二次方程ax 2+bx +c =0(a ≠0)中,下列命题是真命题的有( )个.①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+bx +c =0两根为-1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根。
韦达定理与根的判别式

韦达定理与根的判别式这个专题是一二次方程是的判别式与韦达定理知识要点和练习韦达定理与根的判别式知识点:1、根的判别式b24ac(1)b24ac 0 ,方程有两个不相等的实数根;(2)b2 4ac 0,方程有两个相等的实数根;(3)b2 4ac 0,方程没有实数根;2、韦达定理已知x1,x2是一元二次方程的两根,则有xb1 x2ax1x2ca例1:已知一元二次方程x22x m 1 0 (1)当m取何值时,方程有两个不相等的实数根?(2)设x21,x2是方程的两个实数根,且满足x1 x1x2 1,求m的值练习:1、方程x23 0的根的情况是()A有两个不等的有理实根B有两个相等的有理实根C有两个不等的无理实根D有两个相等的无理实根2、已知x2 1,x2是方程2x 3x 4 0的两个根,则()A x331 x2 2 ,x1x2 2 B x1 x2 2 ,x1x2 2 C x1 x322,x1x2 2 D x31 x22,x1x2 23、已知方程x2 2 0,则此方程()A 无实数根B两根之和为C两根之积为2D有一根为2 1这个专题是一二次方程是的判别式与韦达定理知识要点和练习4、已知x1,x2是方程2x 3x 1 0的两个根,则3221x11x2的值为()A 3B -3C D5、若将二次三项式x2 px 6因式分解,分解后的一个因式是x-3,则p的值是()A -5 B -1 C 1 D 56、已知x1,x2是方程x 4x 3 0的两个根,那么x1x2的值是() A - 4 B 4 C -3 D 37、在一元二次方程ax2 bx c 0(a 0)中,若a与c异号,则方程()A 有两个不相等的实数根 B 有两个相等的实数根 C 没有实数根 D 根的情况无法确定8、已知一元二次方程的两根分别为x1 3,x2 4,则这个方程为() A (x 3)(x 4) 0 B (x 3)(x 4) 0 C (x 3)(x 4) 0 D (x 3)(x 4) 09、关于x的一元二次方程3x 2x k 1 0有两个不相等的实数根,则k的取值范围是() A k432243且k 1 C k2243D k4310、若关于x的一元二次方程(m 2)x (2m 1)x 1 0有两个不相等的实数根,则m的取值范围为() A m43B m43C m43且m 2 D m43且m 22211、已知一直角三角形的三边为a、b、c,∠B=90 ,那么关于x的方程a(x 1) 2cx b(x 1) 0的根的情况为()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法确定12、设x1,x2是方程2x 4x 3 0的两个根,则2221x11x213、已知关于x的方程x 2(m 2)x m 0有两个实数根,且两根的平方和等于16,则m的值为14、已知方程x (12x20的两根为x1,x2,则x1 x2的值为2215、关于x的一元二次方程mx (3m 1)x m 0,其根的判别式的值为1,求m的值及该方程的根。
二次函数及其根的分布

二次函数及其根的分布【摘要】 二次函数根的分布是二次函数中的重要内容,但解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
结合二次函数图象寻找有关一元二次方程的根的分布特点。
结合例题和图像师生共同探讨二次函数根的分布情况。
【关键词】 二次函数 根的分布 判别式 韦达定理 图像法二次函数根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
很多同学遇到这些问题总是感到很头痛。
问题的实质就是关于实系数一元二次方程的根的分布,一旦把实系数一元二次方程的根的分布的情况(规律)搞清楚了,上述问题也就不那么难了。
回顾我们在解答这类题目时,总是要运用到判别式,韦达定理,然后结合二次函数图象我们从中并不难发现有关一元二次方程的根的分布的特点。
设方程()200ax bx c a ++=≠的两根为12,x x ,相应的二次函数为()()为常数c b a a c bx ax x f ,,,02≠++=,不妨设0>a ,方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数)0(02≠=++=a c bx ax y 的抛物线与x 轴交点的横坐标。
一元二次方程实根分布,简单地说就是方程的根与某些确定的常数大小关系比较。
下列将举例进行学习:教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。
教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。
教学难点:图形问题转化成代数表达式(不等式组)并求解。
教学方法:启发式、探究式、讲练结合基本知识点回顾:1、什么叫一元二次方程?2、一元二次方程实根个数怎样判定?(△成立的前提条件?)3、一元二次方程)0(02≠=++a c bx ax 的韦达定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与根的判别式、韦达定理讲点1:公共点问题
【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围.
【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
讲点2:距离问题
【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D
,在抛物线上共有三个点到直线BC的距离为m,求m
是抛物线的顶点,已知CD
的值.
【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物
线与直线y=2x的最近点之间的距离为,求a的值.
讲点3:隐藏判别式
【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.
【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD
与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
讲点4:交点间的距离
【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x
1
,
y
1),B(x
2
,y
2
)(x
1
<x
2
)两点.
(1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想.
【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式.
【练】如图,抛物线C
1
:y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物
线C
1沿y轴翻折得新抛物线C
2
,过点C作直线l交抛物线C
1
于点M,交抛物线C
2
于
点N,若MN=,求直线l的解析式.三、对称问题
【例6】如图,已知抛物线y=x2-2x-3,直线y=kx-1与抛物线交于P,Q两点,
且y轴平分线段PQ,求k的值.
【练】如图,已知抛物线y=x2-4x+3,过点D(0,-5
2
)的直线与抛物线交于点M,N,与x轴交于点E,且点M,N关于点E对称,求直线MN的解析式.
四、与面积结合
【例7】如图,抛物线y=x2-4x+5顶点为M,平移直线y=x交抛物线于点H,K,
若S
△MHK
=3,求平移后直线的解析式.
【课后反馈】
1.如图,已知抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,将抛物线沿对称轴向上平移k个单位长度后与线段BC交于D,E两个不同的点,求k的取值范围.
2.如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线不通过直线y=2x上方的点,求抛物线顶点纵坐标的取值范围.
3.如图,抛物线y=1
4x2+3
2
x+2与x轴交于A,B两点(点A在点B的左边),与y
轴交于点C,将抛物线沿直线BC平移,与射线AC(含点A)仅有一个公共点,求抛物线顶点横坐标的值或取值范围.
4.如图,已知抛物线C:y=x2-2x+4和直线l:y=-2x+8,直线y=kx(k>0)与抛物线C交于A,B两点,与直线l交于点P,分别过A,B,P作x轴的垂线,垂足
依次为A
1、B
1
、P
1
,若
1
1
OA
+
1
1
OB
=
1
u
OP
,求u的值.
5.如图1,抛物线C
1:y=x2+4x+3顶点为M,抛物线C
2
与抛物线C
1
开口方向相反,
形状相同,顶点为N,且M,N关于点P(0,2)对称.
(1)求抛物线C
2
的解析式;
(2)直线y=m交抛物线C
1于点A,B,交抛物线C
2
于点C,D,若AB=2CD,求m的值;。