速算与巧算(综合)

合集下载

第1讲 速算与巧算

第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。

1.加法巧算。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。

如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。

字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。

(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。

字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。

字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。

如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。

(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。

速算与巧算(后附答案)

速算与巧算(后附答案)

速算与巧算(后附答案)一【要点提示】1、简便运算是计算中的一个非常重要的组成部分,掌握一些简便算法,有助于提高我的计算能力和思维能力。

而简便算法往往要根据一定的运算定律和运算性质通过对算式进行“有的放矢”从而使计算简便。

2、在巧算的方法里,蕴含着重要的解决问题的策略:转化法。

即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整,从而变成一个易于算出结果的算式。

3、运算定律和运算性质:如交换律、结合律、乘法分配律、添括号、拆分法。

除法的性质:如4、在分解因数凑整相乘时,记住一些特殊的积有益于速算,如25=10 25258=200 1258=1000 6258=5000等等。

但是,凑整法需要灵活运用,要想算的快又准,最根本的是抓住题目特点,灵活运用乘、除法运算定律进行计算。

二【经典题型】例1计算(1)9+99+999 (2)479+478+477+476+481+482(3)326+289+74-189 (4)354+(146-78)(5) 735-(335-287) (6)735-487+187【模仿提升】第1页共 5 页1、99999+9999+999+99+92、9+98+997+9996+999953、80+81+82+83+84+854、998+999+1000+1001+10025、1306-889-3066、2426-589+74+8897、564-(212-236) 8、639+(410-239)9、632-385+185 10、458-889+188911、12345+23451+34512+45123+51234第2页共 5 页【奥数训练营】速算与巧算速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。

++++例1. 计算889899899989999例2. 计算:20191817161514134321…+--++--+++--⨯例3. 44425⨯+⨯例4. 375480625048⨯例5. 计算:333333333333第3页共 5 页第 4 页 共 5 页例6. 计算:343535353434⨯-⨯【模拟试题】(答题时间:40分钟)1. 用简便方法计算(1)678354322++()(2)283147171653+++ (3)38437184-+()(4)29041327173-- (5)653197-(6)12517125⨯-(7)23599⨯(8)()130052013-÷ ( 9)672118218579⨯+⨯+⨯(10)222222999999⨯ (11)399999399993999399393+++++第 5 页 共 5 页(12)201918174321-+-++-+-… (13)8888125⨯ (14) 34534515015÷。

速算与巧算方法完整版

速算与巧算方法完整版

速算与巧算方法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】速算与巧算一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28解:①式=(36+64)+87②式=(99+101)+136 ③式=(1361+639)+(972+28) =200+136=336 =100+87=187 =2000+1000=30003.拆出补数来先加。

例2 ①198+873 ②548+996 ③9898+203解:①式=(198+2)+(873-2)(熟练之后,此步可略) ③式=(9898+102)+(203-102) =200+871=1071 ②式=(548-4)+(996+4) =10000+101=10101=544+1000=1544二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3① 300-73-27 ② -10解:①式= 300-(73+ 27) ②式=1000-(90+80+20+10) =1000-200=800 =300-100=2002.先减去那些与被减数有相同尾数的减数。

第一章 速算与巧算

第一章     速算与巧算

第一章速算与巧算计算1、2010×2009-2009×2008+2008×2007-2007×2006+…+2×1解答:原式=2009×(2010-2008)+2007×(2008-2006)+…+3×(4-2)+2×1 =(2009+2007+…+3+1)×2=1010025×2=2020050这道题主要考察了在计算题里组合、找公因式、等差数列等知识。

2、计算1994.5×79+0.24×790+7.9×31解答:原式=1994.5×79+2.4×79+79×3.1=(1994.5+2.4+3.1)×79=2000×79=158000【小结】这道题是运用积不变、商不变定理,找出公因数,然后再提取公因数,从而简化运算,得出结果。

3、计算:计算:解答:找规律,先看分子,找每一项之间的关系。

发现:2×4×6=(1×2)×(2×2)×(3×2)=(1×2×3)×(2×2×2)=(1×2×3)×23;3×6×9=(1×3)×(2×3)×(3×3)=(1×2×3)×(3×3×3)=(1×2×3)×33;2008×4016×6024=(1×2008)×(2×2008)×(3×2008)=(1×2×3)×(2008×2008×2008)=(1×2×3)×20083再看分母,6×8×10=(3×2)×(4×2)×(5×2)=(3×4×5)×(2×2×2)=(3×4×5)×239×12×15=(3×3)×(4×3)×(5×3)=(3×4×5)×(3×3×3)=(3×4×5)×336024×8032×10040=(3×2008)×(4×2008)×(5×2008)=(3×4×5)×(2008×2008×2008)=(3×4×5)×20083所以原式:4、计算计算:38765432-3876542×3876544解答:本题一看好大的数字,肯定有绝招,我们发现3876542=3876543-13876544=3876543+1原式=38765432-(3876543-1)×(3876543+1)=38765432-(38765432-1)=1做这道题目,你会发现,奥数的很多题目不仅仅是记公式就能解决的很多时候需要对公式进行消化吸收,达到灵活应用才能在用时得心应手。

速算与巧算

速算与巧算

整数、小数四则混合运算的速算和巧算在进行有关的四则混合运算时一定要注意观察、认真思考、抓住题目中数的特征,通过对数的分解、合并、转化等形式,依据四则运算的定律、性质、法则或利用和、差、积、商的变化规律,采取正确、合理、灵活的方法,使问题得到最圆满的解决,提高正确率,同时也可以使我们的大脑反应更加敏捷。

例1、计算下面各题。

(1)5.17+3.28+4.83+6.72(2)16.49-3.47-2.53(3)4.54×2.9+5.46×2.9(4)7.43×0.4×2.5例2、计算下面各题。

(1)2.5×0.125×3.2(2)13÷2.5(3)7.43×6.5-74.3×0.55(4)34.8×0.25(5)999+99.9+9.99+0.999(6)83.4÷2.3+31.6÷2.3例3、计算下面各题。

(1)4978.4978÷49.78×497.8(提示:改变一下运算顺序,先算497.8÷49.78.)(2)7.5×4.8×6.4÷2.5÷2.4÷3.2(提示:先算7.5÷2.5,4.8÷2.4……)(3)0.625×0.625×……×0.625×8×8……×8×2×2×……×210个0.625 11个8 12个2(提示:0.625×8×2=10,共有几组这样的数相乘?)(4)(1.3+3.4+0.72)×(3.4+0.72+6.51)-(1.3+3.4+0.72+6.51)×(3.4+0.72)设1.3+3.4+0.72=a 3.4+0.72=b原式=a×(b+6.51)-(a+6.51)×b=ab+6.51a-ab-6.51b=6.51a-6.51b=6.51(a-b) 而a-b=1.3=6.51×1.3=8.463(5)a+b 列竖式 0.000 (025)+ 0.000 (0008)0.000 (0258)1999个0求a×b . 0.000……025×0.000……0008=0.000……0200=0.000 (02)(2001+2002)位 4000个0习题81、计算下面各题。

《速算与巧算》课件

《速算与巧算》课件

学习乘方运算的基本法则和 运算规律,能够快速算出各 种数字及变量的幂值。
学习倍数相同的乘除法,能 够快速计算各种数字或变量 的倍数和。
大数的简便计算
1
快速求数字各位数之和
采用数位拆分法,令各位数之和等于原数字
简单计算任意两整数之积
2
加上各个位数上的数字,以此类推。
使用竖式计算法,将要相乘的各个数字交叉
四则运算的技巧
1
整数加减
学习使用不进位加减、凑整和逆运算等方法,
整数乘法
2
快速计算两数之和或差。
学习口诀和倍数法等技巧,能够免除繁琐的
乘法计算,快速得出正确结果。
3
整数除法
学习用近似值代替真值的方法,或者人工展 开除法计算,快速得出商和余数。
小数的加减法
小数相加
通过对齐小数点后的数字,使用竖 式计算法或逐位相加等方法,快速 计算小数的和。
小数相减
通过增补小数位或对齐小数点后的 数字,使用竖式计算法或逐位相减 等方法,快速计算小数的差。
小数乘法
学习对齐小数点后的数字,从左向 右逐个相乘,并最后加上个位数后 位置的小数点得到结果。
乘法口诀表的应用
1 简便乘法
2 乘方运算
3 倍数乘除
通过将两个乘数按照其各位 数字对位相乘,使用竖式计 算法或节约计算等方法,快 速得出两数之积。
通过考虑质因数的分解等方 法,简化根式的表示,从而 便于进行根式运算。
针对带有根号的算式,使用 四则运算的规则和方法,正 确得出最终结果。
针对实数和虚数的不同运算 和表示,学习有效的计算方 法,轻松解决各种根式运算 问题。
总结:速算和巧算索数学、计算的过 程中逐渐发展起来的。在古代,人们就通过各种方法 完成了日常计算;如今,计算机的出现和普及,也让 速算和巧算技巧的应用更加便捷和广泛。

速算与巧算大全

速算与巧算大全

一、速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300二、速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

【解答】原式=464+836-545-455=1300-(545+455)=300思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?三、速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例:73.15×9.9【分析】把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185四、速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。

四年级 速算与巧算

四年级 速算与巧算

速算与巧算(一)综合运用整数加法、乘法的运算律、运算性质,不仅能使计算简便而且可以提高计算的正确率。

要想在计算中达到准确、简便、迅速,一定要注意审题,关键在对算式进行合理的变化(难点),巧妙地把题目引导到运算技巧中来,从而运用技巧使计算简便。

一、例题指导1.计算99×98+2982.计算(1+3+5+...+1998)-(2+4+6+ (1988)3.计算999×778+333×6664.计算(4942+4943+4938+4939+4941+4943)÷65.计算27×25+13×13+13×126.计算9999×2222+3333×33347.计算1999+999×9998.计算35×62+47×38+12×129.计算99…99×99…99+199…99所得的结果末尾有多少个零。

(题中每处都连续有1988个9)10.小红在计算(28+□)×5时,漏看了小括号,算出的结果是128.妈妈帮她检查时发现了错误,又让小红重新计算,这道题的正确结果是多少?你能用不同的方法解答吗?二、培优训练1.(1)1834-(359+234)(2)2000-368-132(3)568-(68+178)(4)478-256-1442.(1)199+99×99 (2)999×998+29983.(1)41×24+82×88 (2)111×54+666×914.(1)73×73+27×27 +27×46 (2)23×54+34×54-57×44(3)52×222+12×888 (4)38×333+31×666(5)65×43+35×67+24×15 (6)3×999+3+99×8+8+2×9+2+95. 计算999999×780536. 计算(1988+1986+1984+…6+4+2)-(1+3+5+…+1983+1985+1987)7.计算1-2+3-4+5-6+…+1991-1992+19938.算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-1019.已知一个因数是888…8(1993个8),另一个因数是999…9(1993个9),它们的积多少?10.玲玲在计算(40-□)×6时,漏看了漏看了小括号,算出的结果是22.她检查时发现了错误,又重新计算,这道题的正确结果是多少?你能用不同的方法解答吗?速算与巧算(二)1.有两个算式:①98765×98769 ②98766×98768请先不要计算出结果,用最简单的方法很快比较出哪个数大,大多少?2.比较568×764和567×765哪个积大?3.比较下面两个积的大小A=987654321×123456789B=987654322×1234567884.计算(1)321321×789-789789×321(2)456×123123123-123×456456456。

速算与巧算(一)(含答案)-

速算与巧算(一)(含答案)-

速算与巧算(一)速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。

(一)指导探索:例L 计算8 + 89 + 899 + 8999 + 89999分析与解:观察题目的特点发现:8可以看作9-1, 89可以看作90-1, 899可以看作900-1……,又是连加的算式。

根据这个特点,可以看作9, 90, 900, 9000与90000的和再减去5个1的和。

8 + 89÷899+ 8999 + 89999= (9-1) + (90-1) + (900-1) + (9000-1)÷ (90000-1)=(9+90 ÷ 900+ 9000 +90000)-(1 + 1 +1 + 1 + 1)=99999 - 5=99994还可以这样想:8 + 89 + 899 + 8999 + 89999= 4 + 1 + 1 + 1 + 1 + 89 + 899 + 8999 + 89999= 4 + (89 + 1) + (899 + 1) + (8999 + 1) + (89999 +1)= 4 + 90 + 900 + 9000 + 90000=99994例 2.计算:20+19 — 18—17 + 16+15—14- 13+・・・+4 + 3 — 2 — 1分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。

观察发现:20-18 = 2, 19-17 = 2, 16-14 = 2, 15-13 = 2, -4-2 = 2,3-1 = 2,因此通过前后次序的交换,把某些数结合在一起算,比较简便。

20+19-18-17 + 16+15-14-13+ ∙∙∙+4 + 3-2-l=(20-18)+ (19-17)+ (16-14) + - ÷(4-2)+ (3-1)= 2 + 2+∙∙∙+2 + 210个2=20例 3. 444 × 25分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4o方法一:444 × 25= (400 + 40 + 4)×25= 400×25 + 40×25 + 4×25=10000+1000+100= 11100方法二:444 × 25= (111×4)×25= 111×(4×25)= 11100方法三:444 × 25=(444 ÷4)× (25 × 4)= lll×100= 11100例 4. 375×480 + 6250×48分析与解:观察题目的特点发现:“乘、力∏,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000o 375 × 480 + 6250 × 48=375 × 480 + 625 × 480=480 × (375 ÷ 625)= 480×1000=480000例 5.计算:333333×333333分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道333333 × 3 = 999999 ,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另 一个因数缩小3倍,变成111111。

速算与巧算

速算与巧算

速算与巧算知识要点在各类数学竞赛中,都有一定数量的计算题。

计算题一般可以分为两类:一类是基础题,主要考查对基础知识理解和掌握的程度;另一类则是综合性较强和灵活性较大的题目,主要考查灵活、综合运用知识的能力,一般分值在10分到20分之间。

这就要求有扎实的基础知识和熟练的技巧。

1.速算与巧算主要是运用定律:加法的交换律、结合律,减法的性质,乘法的交换律、结合律和乘法对加法的分配律,除法的性质等。

2.除法运算规律:(1)A÷B=1÷B A(2)a÷b±c÷b=(a±c)÷b3.拆项法:(1)1111(1) n n n n=+++(2)11 ()dn n d n n d=-++(3)1111() ()n n d d n n d=-++(4)1111 (1)(2)2(1)(1)(2) n n n n n n n⎡⎤=-⎢⎥+++++⎣⎦(5)22(1)11111(1)11n n n nn n n n n n +++=+=-++ +++(6)将1A分拆成两个分数单位和的方法:先找出A的两个约数a1和a2,然后分子、分母分别乘以(a1+a2),再拆分,最后进行约分。

1 A =12121()()a aA a a⨯+⨯+=121212()()a aA a a A a a+⨯+⨯+=12121211()()A Aa a a aa a+⨯+⨯+4.等差数列求和:(首项+末项)×项数÷2=和5.约分法简算:将写成分数形式的算式中的分子部分与分母部分同时除以它们的公有因数或公有因式。

典例巧解例1 (第五届“希望杯”邀请赛试题)2007÷200720072008=。

点拨一被除数是2007,除数是一个带分式,整数部分和分数部分的分子都是2007,我们可以把200720072008化为假分数,再把分子用两个数相乘的形式表示,便于约分和计算。

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6①100+(10+20+30)② 100-(10+20+3O)③ 100-(30-10)解:①式=100+10+20+30=160②式=100-10-20-30=40③式=100-30+10=80例7 计算下面各题:① 100+10+20+30 ② 100-10-20-30 ③ 100-30+10解:①式=100+(10+20+30)=100+60=160②式=100-(10+20+30)=100-60=40③式=100-(30-10)=100-20=802.带符号“搬家”例8计算 325+46-125+54解:原式=325-125+46+54=(325-125)+(46+54)=200+100=300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325.3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+3解:原式=9-9+2+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”.例10计算 78+76+83+82+77+80+79+85=640解:原式=80×8-2-4+3+2-3+0-1+5习题一一、直接写出计算结果:① 1000-547 ② 100000-85426③ 11111111110000000000-1111111111 ④ 78053000000-78053二、用简便方法求和:①536+(541+464)+459 ② 588+264+148③ 8996+3458+7546 ④567+558+562+555+563三、用简便方法求差:① 1870-280-520 ② 4995-(995-480)③ 4250-294+94 ④ 1272-995四、用简便方法计算下列各题:① 478-128+122-72 ② 464-545+99+345 ③ 537-(543-163)-57 ④ 947+(372-447)-572五、巧算下列各题:① 996+599-402 ② 7443+2485+567+245③ 2000-1347-253+1593 ④3675-(11+13+15+17+19)。

整数的速算和巧算

整数的速算和巧算

整数的速算和巧算在加法、减法和加减混合运算中,常常利用改变运算顺序进行巧算,其中有利用两数互补关系进行凑整巧算、借数凑数巧算、选择合适的数作为基数巧算等,还可以利用加法的交换律和结合律进行巧算。

整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。

要达到“凑整”的目的,就要对一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简单化。

1. 同学们要记住一些速算结果,如2×5=10,25×4 =100,125×8=1000,625×8 =5000,625×16= 10000等,这样,在计算时才能迅速而准确。

2. 灵活地运用“头同尾合十”和“尾同头合十”的巧算法求积。

“头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上两个数字的乘积。

如23×27 =2×(2+l)×100+3×7=621.“尾同头合十”的巧算方法是:十位数字的乘积加上个位数字的和,再乘100,最后加上个位上的数字的积。

如:如72×32=(7×3+2)×100+2×2 =2304。

4. 另外有一些常用方法。

(1)乘数凑整法乘数凑整法是利用特殊数的乘积特性进行速算,如:5×2= 10,25×4= 100,125×8=1000,…运算时可将包含这几个因子的乘数分解然后提出这几个因子,实现速算。

例如:32×625 =4×8×125×5。

(2)乘法分配律、结合律该方法利用求几个乘积之和时拥有共同乘数的特点,直接利用乘法结合律,先求和再求积。

例如:87×28+28×73-28×10=28×(87+73-10)。

速算与巧算大全

速算与巧算大全
以上这些就是小学数学中的提取公因式的方法,掌握这些重要的内容,我们的小学数学成绩才能不断提升。因此,希望大家能够多多理解小学数学中的这些最为关键的重点内容。
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
例: 8.1+8.2+8.3+7.9+7.8+7.7
【分析】:例题中6个加数都在8的附近,可用8作为基准数,先求出6个8的和,再加上比8大的数中少加的那部分,减去比8小的数中多加的那部分。
【解答】原式=8×6+0.1+0.2+0.3-0.1-0.2-0.3=48+0=48
例题讲解
(1)计算:23+20+19+22+18+21
速算与巧算之凑整先算
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502
【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
(3)积不变规律(主要是小数点的变化)
例6.3×2.57+25.7×0.37
【分析】可根据“乘法积不变性质,一个因数扩大,一个因数缩小相同的倍数,积不变”把25.7×0.37转化成2.57×3.7,两部分就有了相同的因数2.57,创造出了可以用乘法分配律的条件。
【解答】原式=6.3×2.57+2.57×3.7=2.57×(6.3+3.7)=25.7
例:2356-159-256

(完整版)三年级-速算与巧算

(完整版)三年级-速算与巧算

速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。

即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。

相反,一个数减去几个数的和,等于连续减去这几个数。

即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。

如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。

如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。

例如:1+9=10,1叫做9的补数。

判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。

分数的速算与巧算综合未排版

分数的速算与巧算综合未排版

第一讲 分数的速算与巧算知识导航在分数的运算中,一般有以下四种技巧与方法:①运用四则运算定律和性质快速合理地运算。

例如:乘法分配律、商不变的性质。

②利用化简或约分将分子与分母同时扩大或缩小若干倍,从而简化计算过程。

③用裂项、约分、转化、提取公因数法进行巧妙的计算。

④用凑整法、代换法、错位相减法、分组法进行巧妙的计算。

精典例题例1:① 97×9596 +47×4748 ②999991999 ÷4思路点拨在①中,两个乘法算式的一个因数与另一个因数的分母很接近,如果将整数进行适当的变化可以使计算简便。

例如:97×9596 =97×(1-196 )=97-97×196 =959596 或97×9596 =(96+1)×9596 =959596 。

在②中,999991999 接近1000,所以可以将原题目变成:(1000-8999 )×14。

模仿练习(1)139111÷1401(2006年成都七中育才(东区)初中招生考试题)(2)9811198÷98(2007年成都七中育才学校(东区)衔接班招生考试题1)例2:1×2×3+7×14×211×3×5+7×21×35 (1995年小学数学奥林匹克初赛民族卷试题)思路点拨此类题属于a ×b ×c+xa ×xb ×xc+……+ya ×yb ×yc A ×B ×C+xA ×xB ×xC+……+yA ×yB ×yC特型题,我们可以用提取公因式的方法把此类题转化为abc ×(1+x 3……+y 3)ABC ×(1+x 3……+y 3) =abc ABC,再进行化简。

二年级速算与巧算之综合第3讲(奥数拓展+测试)

二年级速算与巧算之综合第3讲(奥数拓展+测试)

速算与巧算之综合知识点四则运算的运算顺序1.同级运算,从左到右依次计算解释:同级运算是指加号、减号同级,乘号、除号同级。

在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

2.先乘除后加减解释:在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。

3.先做小括号,再中,最后大解释:算式有括号,先算括号里面的,再算括号外面的;括号里面的算式的计算顺序按照上面的计算顺序。

典型例题例、1计算:4+9+99+999+2999=______。

【练习1】计算:30+95+995+3995=_______.【练习2】计算:6998+995+97=________.例、2计算:1234+2341+3412+4123=________.【练习3】计算:123+312+231=_________.【练习4】计算:9876+8769+7698+6987=_________. 例、3计算:12+23+34+45+56+67+78+89+91=_______.【练习5】计算:15+24+32+43+51=________.【练习6】计算:36+41+53+62+15+24=__________.例、4计算:(2+4+6+...+100)-(1+3+5+...+99)=________.【练习7】计算:(20+18+16+14+12+10)-(19+17+15+13+11+9)=________.例、5 (1) 1+2+3+4+3+2+1=_______.(2)1+2+3+4+5+6+5+4+3+2+1=_______.(3)1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=_______.(4)1+2+3+4+......+98+99+100+99+98+......+4+3+2+1=_______.【练习10】计算:1+2+3+4+5+...+48+49+50+49+48+...+5+4+3+2+1=________. 例、6(1)计算:800-(1+2+3+...+19+20+19+...+3+2+1)=______.(2)计算:(1+2+3+4+5+6+5+4+3+2+1)÷6=______.【练习12】计算:(1+2+3+4+5+...+29+30+29+...+5+4+3+2+1)÷9=________. 例、7计算:1+2+3+4+5+6+......+1000=______.【练习13】计算:1+2+3+4+5+6+......+99=________.【练习14】计算:11+12+13+14+15+16+......+89=_________.例、8计算:1000-(88-80÷40)÷43=_______.【练习15】计算:〖28+320÷(40-30)〗×2=_______.【练习16】计算:102-(25-96÷16)=_________.例、9判断下面的计算有没有错误,如果有错,把它改正过来。

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数『速算与巧算』专项练习题及答案世界上很多国家都有国内的奥数竞赛,国际间的奥数竞赛也开展得如火如荼.奥数现在已经奥数成了一些国家发现杰出数学人才的平台.下面就是给大家带来的四年级奥数『速算与巧算』专项练习题及答案,希望能帮助到大家!四年级奥数『速算与巧算』专项练习题及答案【速算与巧算】1.难度:★★★★计算899998+89998+8998+898+88【解答】利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.难度:★★★★计算799999+79999+7999+799+79【解答】利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.四年级奥数『速算与巧算』专项练习题及答案例题:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比拟麻烦.根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便. 20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0例题:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整〞,有时为了便于口算,还要将一些算式凑成特殊的数.例如,可以将27变为“3×9〞,将37乘3得111,这是一个特殊的数,这样就便于计算了.236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764例题:计算333×334+999×222分析与解答:外表上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算.333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000四年级奥数『速算与巧算』专项练习题及答案计算:58×138-80÷15+42×137-70÷15=考点:四则混合运算中的巧算.分析:通过观察,运用加法交换律以及减法的性质,原式变为(58×138+42×137)-(80÷15+70÷15),第一个括号内把58×138看作58×(137+1)=58×137+58,再运用乘法分配律计算;第二个括号运用除法的性质简算,进而解决问题.解答:解:58×138-80÷15+42×137-70÷15=(58×138+42×137)-(80÷15+70÷15)=(42×137+58×137+58)-(80+70)÷15=(42+58)×137+58-150÷15=100×137+58-10=13700+48=13748.故答案为:13748.点评:注意观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算. 四年级奥数『速算与巧算』专项练习题及答案【例题】计算489+487+483+485+484+486+488【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数. 489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?.练习题:1.50+52+53+54+512.262+266+270+268+2643.89+94+92+95+93+94+88+96+874.381+378+382+383+3795.1032+1028+1033+1029+1031+10306.2451+2452+2446+2453.【例题】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000.在计算这类题目时,常使用减整法,例如将99转化为100-1.这是小学数学计算中常用的一种技巧.9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习题:1.计算99999+9999+999+99+92.计算9+98+996+99973.计算1999+2998+396+4974.计算198+297+396+4955.计算1998+2997+4995+59946.计算19998+39996+49995+69996【例题】计算下面各题.(1)286+879-679(2)812-593+193【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号.(1)286+879-679=286+(879-679)=286+200=868(2)812-593+193=812-(593-193)=812-400=412练习题:计算下面各题.1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+286)6.756+1478+346-(256+278)-246【例题】计算下面各题.(1)632-156-232(2)128+186+72-86【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置.(1)632-156-232=632-232-156=400-156=244(2)128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=300练习题:计算下面各题2.283+69-1833.132-85+684.2318+625-1318+375【例题】计算下面各题.1.248+(152-127)2.324-(124-97)3.283+(358-183)【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+〞号,去括号时,括号内的符号不变;如果括号前面是“-〞号,去括号时,括号内的加号就要变成减号,减号就要变成加号.1.248+(152-127)=248+152-127=400-127=2732.324-(124-97)=324-124+97=200+97=2973.283+(358-183)=283+358-183=283-183+358=100+358=458我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号.练习题:计算下面各题1.348+(252-166)2.629+(320-129)3.462-(262-129)4.662-(315-238)5.5623-(623-289)+452-(352-211)6.736+678+2386-(336+278)-186。

速算与巧算大全

速算与巧算大全

速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464 减545 根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

【解答】原式=464+836-545-455=1300- (545+455)=300思考:4.75 - 0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413 分成1400、2 与11 三个数的和。

【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例: 73.15 X 9.9【分析】把9.9 看作10减0.1 的差,然后用乘法分配率可简化运算。

【解答】原式=73.15 X (10-0.1 )=73.15 X 10-73.15 X 0.1=731.5-7.315=724.185速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。

速算与巧算

速算与巧算

速算与巧算(一)【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。

325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。

运用了乘法交换律和结合律。

25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43 【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43 =125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2 【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速算与巧算(一年级,二年级,三年级)
1.加法/连加
2.减法/加减混合
1)300-73-27(考察:凑整、减号后加括号变号)
=300-(73+27)
=300-100
=200
2)4723-(723+189)(考察:凑整、减号后去括号变号)
=4723-723-189
=4000-189
=3811
3)506-397(考察:拆分法、补数法)
=500+6-400+3
=109
3.乘法/连乘
1)12345679*54(考察:凑等式)
=12345679*9*6=111111111*6=666666666
2)99*4*25(考察:乘法结合律、凑整、凑等式)
=99*100=9900
3)125*72(考察:整数乘法拆分)
=125*8*9=1000*9=9000
4)45*9(考察:9凑整、乘法分配律)
=45*(10-1)=45*10-45*1=450-45=405
5)45*11(考察:乘11法)
=495
6)99999*77778+33333*66666(考察:拆分、提取公因数)
=99999*77778+33333*3*22222=99999*(77778+22222)=99999*100000=9999900000 7)347*81+472*19(考察:拆分、提公因数、凑公式)
=347*81+(347+125)*19
=347*81+347*19+125*19
=347*(81+19)+125*19
=34700+125*(10+8+1)
=34700+1250+1000+125
=34700+2375
=37075
8)2999+999*999(考察:乘法的意义)
=2000+999+999*999
=2000+999*1000
=2000+999000
=1001000
9)197*198+196*199(考察:减法拆分、提取公因数)
=197*(199-1)-196*199
=197*199-197-196*199
=199*(197-196)-197
=199-197
=2
10)53*57-47*43(考察:首同尾合十)
=3021-2021=1000
11)33333×33333(※:把因数分解组合成1或9)
=33333×(3×11111)
=99999×11111
=(100000-1)×11111
=1111100000-11111
=1111988889
4.除法/乘除混合
1)1428÷68÷7(考察:除法除数交换律)
=1428÷7÷68=204÷68=3
2)12200÷25(考察:商不变的性质)
=122*100÷25=122*4=488
3)4900÷4÷25(考察:除号后加括号注意括号里面变号)
=4900÷(4*25)=4900÷100=49
4)(2*3*5*7*11*13*17*19)÷(38*51*65*77)(考察:抵消法)=(38*51*77*65)÷(38*51*65*77)=1
5)11÷17+17÷19+20÷17+40÷19+37÷17(考察:除数分配律)=11÷17+20÷17+37÷17+17÷19+40÷19
=(11+20+37)÷17+(17+40)÷19
=68÷17+57÷19=4+3=7。

相关文档
最新文档