二次函数常见题型含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数考查重点与常见题型

1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是

2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内

考查两个函数的图像,试题类型为选择题,如:

如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )

3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题

和选拔性的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为3

5=x ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:

已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.

5.考查代数与几何的综合能力,常见的作为专项压轴题。

【例题经典】

由抛物线的位置确定系数的符号

例1 (1)二次函数2y ax bx c =++的图像如图1,则点),(a

c b M 在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

(2)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )

A .1个

B .2个

C .3个

D .4个

(1) (2)

【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.

例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1O;③4a+cO ,其中正确结论的个数为( )

A 1个 B. 2个 C. 3个 D .4个

答案:D

会用待定系数法求二次函数解析式

例3.已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( )

A(2,-3) B.(2,1) C(2,3) D .(3,2)

答案:C

例4、(2006年烟台市)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y m 2.

(1)写出y 与x 的关系式;

(2)当x=2,3.5时,y 分别是多少?

(3)当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间?求抛物线顶点坐标、

对称轴.

例5、已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.

(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.

【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.

例6.已知:二次函数y=ax 2-(b+1)x-3a 的图象经过点P(4,10),交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x <,交y 轴负半轴于C 点,且满足3AO=OB .

(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M ,使锐角∠MCO>∠A CO?若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由.

(1)解:如图∵抛物线交x 轴于点A(x 1,0),B(x2,O),

则x 1·x 2=3<0,又∵x 1

∴x 2>O ,x 1

∴x 1·x 2=-3x 12=-3.∴x 12=1.

x 1<0,∴x 1=-1.∴.x 2=3.

∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3 ∴.二次函数的解析式为y-2x 2-4x-6.

(2)存在点M 使∠MC0<∠ACO .

(2)解:点A 关于y 轴的对称点A ’(1,O),

∴直线A ,C 解析式为y=6x-6直线A'C 与抛物线交点为(0,-6),(5,24).

∴符合题意的x 的范围为-1

当点M 的横坐标满足-1∠ACO .

例7、 “已知函数c bx x y ++=221的图象经过点A (c ,-2),

求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A (c ,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。

[解答] (1)根据c bx x y ++=221的图象经过点A (c ,-2),图象的对称轴是x=3,得⎪⎪⎩

⎪⎪⎨⎧=⋅--=++,3212,

2212b c bc c 解得⎩

⎨⎧=-=.2,3c b 所以所求二次函数解析式为.23212+-=

x x y 图象如图所示。 (2)在解析式中令y=0,得0232

12=+-x x ,解得.53,5321-=+=x x 所以可以填“抛物线与x 轴的一个交点的坐标是(3+)0,5”或“抛物线与x 轴的一个交点的坐标是).0,53(-

令x=3代入解析式,得,2

5

-=y 所以抛物线23212+-=

x x y 的顶点坐标为),2

5,3(- 所以也可以填抛物线的顶点坐标为)25,3(-等等。 函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。

用二次函数解决最值问题

例1已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.

例2 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:

x (元) 15 20 30 …

y (件) 25 20 10 …

若日销售量y 是销售价x

相关文档
最新文档