工程力学-应力状态
土木工程力学应力状态

研究方法: 三、研究方法:取单元体
单元体:ห้องสมุดไป่ตู้单元体:微小的正六面体 原始单元体: 原始单元体:单元体各侧面上应力均已知
四、主平面 主应力 主方向
主平面:单元体中剪应力等于零的平面 主平面: 主应力: 主应力:主平面上的正应力 主方向:主平面的法线方向 主方向:
五、应力状态的分类
单向应力状态:三个主应力中, 单向应力状态:三个主应力中,只有一个 主应力不等于零的情况 二向应力状态: 二向应力状态:三个主应力中有两个主应 力不等于零的情况 三向应力状态: 三向应力状态:三个主应力皆不等于零的 情况
§2 平面应力状态分析—解析法 平面应力状态分析— 一、斜截面上的应力
已知: 已知:单元体 σx,σy,τxy=τyx, α 研究与z轴平行的任一斜截面 上的应力 轴平行的任一斜截面c 上的应力。 研究与 轴平行的任一斜截面 e上的应力。 符号规则: 符号规则: θ 角:从x轴正方向反时针转至斜截面的 轴正方向反时针转至斜截面的 外法线方向为正,反之为负。 外法线方向为正,反之为负。 正应力:拉为正,压为负。 正应力:拉为正,压为负。 剪应力: 剪应力:使微元体或其局部产生顺时针方 向转动趋势者为正,反之为负。 向转动趋势者为正,反之为负。
σ max ≤ [σ ] τ max ≤ [τ ]
实际问题:杆件的危险点处于更复杂的 实际问题: 受力状态
σ
τ
薄壁圆筒承受内压
δ
σt
σx
破坏现象
脆性材料受压 和受扭破坏
钢筋混凝土梁
二、一点的应力状态
在受力构件内,在通过 在受力构件内, 同一点各个不同方位的 截面上, 截面上,应力的大小和 方向是随截面的方位不 同而按照一定的规律变 化 通过构件内某一点的各 个不同方位的截面上的 应力及其相互关系, 应力及其相互关系,称 为点的应力状态
工程力学---应力状态分析

τα =
ห้องสมุดไป่ตู้
2
sin2α +τ xcos2α
上述关系建立在静力学基础上, 上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况, 论既适用于各向同性与线弹性情况,也适 用于各向异性、 用于各向异性、非线弹性与非弹性问题
单辉祖:工程力学 12
应力圆
应力圆原理
σα = σ x +σ y σ x −σ y
17
例 2-2 利用应力圆求截面 m-m 上的应力
解: :
σ m = −115 MPa
τ m = 35 MPa
18
单辉祖:工程力学
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 : A点对应截面 x, B点对应截面 y 点对应截面 点对应截面 τ 2. 由应力圆求 σm 与 m 顺时针转60 由A点(截面 x )顺时针转 。至D点(截面 y ) 点 点
解: σ x = −100 MPa τ x = −60 MPa σ y = 50 MPa α = −30o :
σm =
σ x + σ y σ x −σ y
2 +
τm =
单辉祖:工程力学
σ x −σ y
2
2
cos2α −τ xsin2α = −114.5MPa
sin2α +τ xcos2α = 35.0MPa
(τ ydAsinα)sinα + (σ ydAsinα)cosα = 0
σα = σ xcos2α +σ ysin2α − (τ x +τ y )sinα cosα
τα = (σ x −σ y )sinα cosα +τ xcos2α −τ ysin2α
工程力学第1节 应力状态的概念

单元体的上、下侧面和前、后侧面均无应力。
圆杆在扭转时 如图所示,对于其表面 上的 B 点,可以围绕该点以 杆的横截面和径向、周向纵 截面截取代表它的单元体进 行研究。横截面上在 B 点处 的切应力: 杆在周向截面上没有应力。 式中: 又由切应力互等定理可知, MT — 横截面上的扭矩; 杆在径向截面上 B 点处应该 WP — 抗扭截面系数, 有与相等的切应力。于是此 单元体各侧面上的应力如图 T — 扭矩。
工 字
钢
实 例
如图所示,设拉杆的任一斜截面m-m与其横截面 相交成 角。采用截面法研究此斜截面上的应力,取 左边部分研究,由平衡方程可得到斜截面上的内力为
F Fห้องสมุดไป่ตู้
设杆由许多纵向 纤维组成,杆拉伸时 伸长变形是均匀的, 因此斜截面上的分布 内力必然是均匀分布 的,即各点处的应力 相等,于是
MT T B max WP WP
三、主平面、主应力、应力状态的分类 主单元体:在一般情况下,表示一点处应力状态的 应力单元体在其各个表面上同时存在有正应力和切 应力。但是可以证明:在该点处以不同方式截取的 各个单元体中,必有一个特殊的单元体,在这个单 元体的侧面上只有正应力而没有切应力。这样的单 元体称为该点处的主应力单元体或主单元体。
F F p A A
式中:p—斜截面上任一点处的 总应力,其方向沿x 轴正向;
根据斜截面面积A与横截面面积A的几何关系得到:
F p 0 cos A / cos
杆横截面上的正应力 为研究方便,将分解为沿斜 截面m-m的法线分量和切线分 量,如图c所示。分解得:
0 F / A
1)单向应力状态 2)二向应力状态
工程力学第七章应力状态

σy τ
τ x 0.2
σ y 0.4
τy σy
τ y 0.2
25
解: (1) 画应力圆 OB1 = x= - 1MPa , B1 D1 = x= - 0.2MPa,定出 D1点;
OB2 =y= - 0.4MPa 和 B2D2 = y = 0.2MPa , 定出 D2 点 .
35
250KN 解: 首先计算支反力, 并作出 梁的剪力图和弯矩图 A C 1.6m 2m QC左 = 200 kN
200KN
B
+ MC = 80 kN•m
50KN
+
36
6 4 120300 111270 8810 mm IZ 12 12 3 3
ya 135mm
S
* za
120 15 (150 7.5) 256000mm3
2
x y
o
C
σ x σ y
2
图 13-2
19
2
应力圆作法
(b)
在 - 坐标系内 , 选定比例尺 o 量取 OB1 = x , B1D1 = x , 得 D1点 x B1
D1
τy
σy
σx τx
τy
σx
图 13-3
τx
σy
20
量取 OB2=y , B2D2= y , 得D2 点 o y B2 D2 x B1
23
3
利用应力圆求单元体上任一 截面上的应力
从应力圆的半径 CD 1 按方位角 的转向转动 2 , 得到半径 CE , 圆周上 E 点的 ¸ 坐标 就依次为 ¸ 。
24
例题7-1
工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
工程力学第十一章应力状态及强度理论

17
工 程 力 学 电 子 教 案
第十一章 应力状态及强度理论
需要注意的是,图中所示单元体顶,底面上的切应力y
按规定为负值,但在根据图d中的体元列出上述平衡方程
时已考虑了它的实际指向,故方程中的y仅指其值。也正 因为如此,此处切应力互等定理的形式应是x=y。 由以上两个平衡方程并利用切应力互等定理可得到以
5
工 程 力 学 电 子 教 案
第十一章 应Leabharlann 状态及强度理论1. 单轴应力状态——受力物体内一点处取出的单元体, 其三对相互垂直平面上只有一对平面上有应力的情况。
F
F
90
90
0
0
0 cos2
0
2
sin 2
6
工 程 力 学 电 子 教 案
2为参变量的求 斜截面上应力,的公式:
x y x y
2
2
2
cos 2 x sin 2
x y
sin 2 x cos 2
18
工 程 力 学 电 子 教 案
第十一章 应力状态及强度理论
Ⅱ. 应力圆 为便于求得, ,也为了便于直观地了解平面应力
算公式中以2 为参变量这个前提。
22
工 程 力 学 电 子 教 案
第十一章 应力状态及强度理论
利用应力圆求 斜截面(图a)上的应力,时,只
需将应力圆圆周上表示x截面上的应力的点D1所对应的半
径 C D1 按方位角的转向转动2角,得到半径 C E ,那 么圆周上E点的座标便代表了单元体斜截面上的应力。 现证明如下(参照图b):
工程力学-10应力状态分析和强度计算

边的长度变化,所以广义胡克定律为:
y yx
z
x zy yz xz x
zx xy
z
y
x
1 E
[ x
( y
z)
]
y
1 E
[
y
( x
z) ]
14z
1 E
[
z
( x
y) ]
—— 广义胡克定律
在平面应力状态下,胡克定律变为:
x
1 E
( x
y )
y
y
1 E
( y
x )
z
E
( x
●
90 x y 10
90
——平面应力状态分析
过一点总存在三对相互垂直的主平面,对应三 个主应力
主应力排列规定:按代数值由大到 小。
剪应力为零的面为主平面; 主平面上的正应力为主应力; 全部由主平面构成的单元体 为主单元体。
1 2 3
10
50 单位:MPa
1 50; 30 2 10;
主 讲:谭宁 副教授 办公室:教1楼北305
——概 述
(1)、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
P 铸铁拉伸
铸铁压缩
M
P
低碳钢
铸铁
P
P
(2)、组合变形杆将怎样破坏?
2
M
过一点有无数的截面
——概 述
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
过一点不同方位截面上应力的集合,称为一点的应力状态(State of the Stresses of a Given Point)。
(1)各个面上的应力均匀分布; (2)相互平行的平面上,应力大小和性质完全相同。 (3) 相邻垂直面上的切应力根据切应力互等定理确定.
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
工程力学第11章 应力状态和强度理论

而最大正应力的方位角α0则可由下式确定
式中, 负号表示由x面到最大正应力作用面沿顺时针方向旋转。 因为 tan2α0=tan(180°+2α), 所以式(11-4) 给出两个相差90°的 α0 角, 即α0和 α0'=90°+α0(或α'0=α0-90°), 即这两个面互相垂直。 考虑到图11-8a中A、 B两点位于应力圆上同一直径两端, 即最大正应力所在截面和最小正应力所在截 面互相垂直 , 所以式 (11-4) 所求两个 α0 值即是 A 、B 两点所代表截面的方向。 它们之间的对应关系可以利用下述规则来确定 : 在 α0 和 α0+90°两个方向中 , σmax的方向总是在τx所指向的那一侧。 所以, 最大和最小正应力所在截面的方 位如图11-8b所示。 从图11-8a中还可以看出, 应力圆上存在K、M两个极值点, 由此得单元体在平 行于z轴的截面中最大和最小切应力分别为
11.2.2 平面应力状态分析的图解法
由式(11-1)和(11-2)可知, 任一斜截面α上的正应力σα和切应力τα均随参量α变 化。 所以σα和τα间必有确定的函数关系。 为建立它们间直接关系式, 先将式 (11-1)和式(11-2)改写为
式(c)、式(d)两边平方相加, 即有
从式(e)可以看出, 在以τ、σ为纵横坐标轴的平面内, 式(e)所对应的曲线为圆 (图11-5), 其圆心C的坐标为 , 半径为 , 而圆上任何一点的 纵、横坐标分别代表了单元体上某斜截面上的切应力和正应力。 此圆称为应力 圆。 并按以下步骤绘制应力圆。
的构件, 则必须研究危险点处的应力状态。 所谓一点的应力状态, 就是通过受 力构件内某一点的各个截面上应力情况。 由于构件内的应力分布一般是不均匀的, 所以在分析各个不同方向截面上的应 力时, 不宜截取构件的整个截面来研究, 而是围绕构件中的危险点截取一单元体 来分析, 以此来反映一点的应力状态。 例如, 螺旋桨轴工作时既受拉、又受扭 (图11-1a),若围绕轴表面上一点用纵、横截面截取单元体, 其应力情况如图 11-1b所示, 即处于正应力和切应力的共同作用下; 又如, 在导轨和车轮的接触 处(图11-2a), 单元体A除在垂直方向直接受压外, 由于其横向变形受到周围材 料的阻碍, 因而侧向也受到压力作用, 即单元体A处于三向受压状态。 显然, 要解决这类构件的强度问题, 除应全面研究危险点处各截面的应力外, 还 应研究材料在复杂应力作用下的破坏规律。 前者为应力状态理论的任务, 后者 则为强度理论所要研究的问题。
工程力学 第10章 应力状态分析

(a) (b)
对于法线为 y′ 的方向面,也可以写出类似的关于σ y′和τy′x′ 的方程。于是,从这些方程 中消去 dA 后,得到关于相互垂直的、任意方向面上正应力和切应力的公式: σ x′=σ x cos2 θ+σ ysin 2 θ-τxycos θsin θ -τyx sin θcos θ σ y′=σ x sin 2 θ+σ ycos2 θ+τxycos θsin θ +τyx sin θcos θ τx′y′=σ xcos θsin θ-σ ysin θcos θ+τxycos2 θ-τyx sin 2 θ τy′x′=-σ xcos θsin θ+σ ysin θcos θ+τxysin 2 θ-τyx cos 2 θ (10-1) (10-2) (10-3) (10-4)
图 10-3 正负号规则
n θ角-从 x 正方向反时针转至 x′正方向者为正;反之为负。 n 正应力—拉为正;压为负。 n 切应力—使微元或其局部产生顺时针方向转动趋势者为正;反之为负。
图 10-3 中所示的θ角及正应力和切应力τxy 均为正;τyx 为负。
10-2-2 微元的局部平衡
为确定平面应力状态中任意方向面(法线为 x′ ,方向角为 θ)上的应力,将微元从任意方 向面处截为两部分。考察其中任意部分,其受力如图 10-3b 所示,假定任意方向面上的正 应力σ x′和切应力τx′y′ 均为正方向。 于是,根据力的平衡方程 ∑ Fx′=0 和 ∑ F y′=0 , 可以写出:
图 10-4 不同坐标系中应力状态的表达形式
或者说从一种坐标系 Oxy 变换到另一坐标系 Ox′ y′ 。例如图 10-4a、b 中所示的两种微元, 若二者的应力满足式(10-1)-(10-4) ,则二者表示了同一点的应力状态。由于坐标系 Ox′ y′ 是任意的,因此,同一点的应力状态可以有无穷多种表达形式。在无穷多种表达形式 中有没有一种简单的、 但又能反映一点应力状态本质内涵的表达形式?为了回答这一问题需 要引入主应力的的概念。
工程力学-应力状态p

x
O A2
21 D1(sx ,txy)
20
C
s
A1
D2(sy , -txy)
四、最大(小)剪应力及其所在截面
t min
t max t min
s
x
s
2
y
2
t
2 xy
s max s min
2
t
max所在截面方位角1为:1
0
4
( 0 为s max所在主平面方位角)
[例3]单元体应力状态如图。试求主应力并确定主平面位置。
§7.1应力状态概述
一、引言 1、铸铁与低碳钢的拉、压、扭试验破坏现象是怎样的?
P 铸铁拉伸
铸铁压缩
Me
P
低碳钢
铸铁
P
2、组合变形杆将怎样破坏?
P 铸铁
Me
二、一点的应力状态 通过受力构件内一点有无数个截面,这些过一点处不同方位
截面上应力情况的集合,称为这点的应力状态。
三、单元体 单元体——构件内的点的代表物,是包围被研究点的无限小
代入公式,得斜截面上正应力:
s
sx
sy
2
sx
s y
2
cos 2
t xy
sin 2
50 30 50 30 cos 60o 20sin 60o 32.7 MPa
2
2
斜截面上剪应力:
t
sx
s y
2
sin 2
t xy
cos 2
50 30 sin 60o 20 cos 60o 2
18.7 MPa
规定:s以拉为正;
sx
t 以其对作用对象内任一点的
txy
y
工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位y x xytg σστα--=2204、主应变12122x y xyx y()tg εεεεγϕεε⎡=+±⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A 点偏上和偏下的一对与xz 平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:z M y I σ=bI QS z z*=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。
工程力学第13章应力状态分析和强度理论

max
m in
x
y
2
(
x
2
y
)2
2 xy
——主应力的大小
3)、 切应力 的极值及所在截面
由
x
y
2
sin 2
xy cos 2 ,
令 d
0
d 1
tan
21
x 2 xy
y
(1 ; 1 1 900 )
——最大切应力 所在的位置
z
x
y y
x
z x
2
I 3 1
(1)求平行于σ1的方向面的应力σα 、 τα ,其上之应力与σ1 无关.
1
3
II 2
(2)求平行于σ2的方向面的应力σα、 τα ,其上之应力与σ2 无关.
2
III 1 3
2
(3)求平行于σ3的方向面的应力σα 、 τα ,其上之应力与σ3 无关.
例2、槽形刚体内放置一边长为a = 10 cm 正方形钢块,试求钢 块的三个主应力。F = 8 kN,E = 200 GPa, μ = 0.3。
Fy
解:1) 研究对象ຫໍສະໝຸດ 正方形钢块y F 80 MPa, A
x
?,
z 0.
x 0, y ?, z ? .
y
x b
a
c x x
y
b x
x
a y
c
y t
n 单元体各面面积
x bc : dA
ab: dAcos ac : dAsin
设:斜截面面积为dA,由分离体平衡得:
《工程力学》第 10 章 应力状态理论和强度理论

作应力圆:(1) 注意截面的选取
(2) 注意应力的符号,特别是剪应力 求斜截面上的应力: (1) (2) (3) (4) (5) 找准起始点 角度的旋转以C为圆心 旋转方向相同 2倍角的关系 应力的符号
工程力学电子教案
应力状态理论和强度理论
18
角度的取值范围和对应关系:
y
x
D 2 2 Dx
工程力学电子教案
应力状态理论和强度理论
12
T
T
T I
F
FS
F
x
X
X
M y IZ
QSZ IZb
X
M
X
Y
X
X
工程力学电子教案
应力状态理论和强度理论
13
§10-2 平面应力状态分析
X
Y
Y
x
X
y y
x
X
X
x
Y
Y
1. 求斜截面上的应力
y
平面应力状 态 n
0
dA ( xdA cos ) cos ( xdA cos ) sin ( ydA sin ) sin ( ydA sin ) cos 0
工程力学电子教案
应力状态理论和强度理论
15
y
y
n
Y
X
X
dA
Y
X
x
p
X
x
工程力学 应力状态

d 令 0 d
x y tg 2 2 x
可解出两个相差 的极值平面,一 2 个面上为极大值,另一个面上为极小值。
23
1 1 x y 将 tg 2 2 x
代入(7-2)式,可得:
60.8MPa
26
x y 60 sin 120 x cos120 2
70 sin 120 50 cos 120 2
55.3MPa
② 求主应力
2 x 2 50 tg 2 0 1.429 x y 70
A
B
横截面
横截面 外轮廓线
7
① 材料单元体上相对坐标面上的 应力大小相等、方向相反。 ② 材料单元体上任意方向面上的 应力视作均匀分布。
8
§7-2 平面应力状态分析
一、解析法求斜截面的应力
应力状态分析:已知材料单元体坐标平面的应
力,求任意方向面上的应力。
9
最常见的情况:有一对方向面上的应力为 零,单元体上所有的应力 在同一平面内,称为二向
(1) (2)
(1)2 (2)2 得:
x y 2 x y 2 ( ) ( cos 2 x sin 2 ) 2 2 2 x y ( sin 2 x cos2 ) 2 2
30
整理可得: x y 2 x y 2 2 2 ( ) ( ) x
(7-1)记忆
同理,利用
F
t
0 ,可得:
x y sin 2 x cos 2 2
(7-2)记忆
13
工程力学 第9章 应力状态分析 习题及解析

习题9-1图 x15-'x x'σy'x'τ 1.25MPa15 (b-1)15a 4MP15-y'x'τx'x'σa1.6MP x (a-1) 习题9-2图302MPa 0.5MPa-60x'σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。
试求: 1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。
知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:(a )平行于木纹方向切应力6.0))15(2cos(0))15(2sin(2)6.1(4=︒-⨯⋅+︒-⨯---=''y x τMPa 垂直于木纹方向正应力84.30))15(2cos(2)6.1(42)6.1(4-=+︒-⨯---+-+-='x σMPa (b )切应力08.1))15(2cos(25.1-=︒-⨯-=''y x τMPa正应力625.0))15(2sin()25.1(-=︒-⨯--='x σMPa9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。
若已知胶层切应力不得超过1MPa 。
试分析是否满足这一要求。
知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:55.1))60(2cos(5.0))60(2sin(2)1(2-=︒-⨯⋅+︒-⨯---=''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。
9-3 结构中某点处的应力状态为两种应力状态的叠加结果。
试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。
知识点:平面应力状态分析 难度:难 解答:习题9-2图yσxσxyτ=yσxσxyτx=yσxσxyτ=左微元⎪⎪⎪⎩⎪⎪⎪⎨⎧-='-='-=-='+=--+='000000022cos 122sin )2sin(222cos 10)2cos(22σθσσσσθθστσθθσσσx y xy x 叠加 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+'=-=+=+=+'=''000022cos 1022sin 022cos 3σθσσσθττσθσσσy y y x xy x x0)cos 1()cos 1( )22sin (4)22cos 122cos 3(21222cos 122cos 330020202021=⎩⎨⎧-+=-+--+±-++=⎭⎬⎫σσθσθσθσθθσθθσσ 面内最大切应力:θσσστcos 2021max=-='该点最大切应力:031max2cos 12σθσστ+=-=左微元0023))30(2sin()(ττσ=︒-⨯-='x ,0230τσσ-='-='x y ,2))30(2cos(00τττ=︒-⨯='xy 右微元0023)302sin()(ττσ=︒⨯-=''x,0230τσσ-=''-=''x y ,2))30(2cos()(00τττ-=︒⨯-=''xy 叠加 03τσσσ='+'=y x x ,03τσσσ-=''+'=y y y ,0=''+'=xyxy xy τττ 013τσ=,02=σ,033τσ-= 面内031max32||τσστ=-='xABOσOσαα(a)习题9-4图A60CB60100-x σxσyxτxyτ92MPa(a)习题9-5图该点031max 32||τσστ=-=叠加[]⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡︒-⨯--+==--+==⎥⎦⎤⎢⎣⎡︒-⨯--+-++=MPa 30))45(2sin(2)30(5070MPa 1010)3050(0MPa 90))45(2cos(2)30(502)30(5080xy y x σσσ主应力0MPa 0MPa100304)]100(90[212109022231=⎩⎨⎧=⨯+-±+=⎭⎬⎫σσσ面内及该点:5021002||||31max max=-=-=='σσττMPa9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。
工程力学之应力状态分析和强度计算

工程力学之应力状态分析和强度计算工程力学是研究物体受力和变形规律的学科,其基础之一就是应力状态分析和强度计算。
应力状态分析主要是通过计算和评估物体内部的应力分布情况,强度计算则是根据应力状态来确定物体的强度和稳定性。
应力状态分析是力学中的一个重要步骤,它不仅可以用来评估物体的受力情况,还可以为工程设计提供依据。
在进行应力状态分析时,首先需要确定物体所受的外力,然后利用力学原理和相关公式计算物体内部的应力分布。
具体来说,首先我们需要确定物体所受的外力,包括静力、动力以及热力等,这些外力会作用在物体的不同部位上。
然后,通过应用牛顿第二定律、平衡方程等力学原理,可以计算得到物体内部的应力分布情况。
在实际工程中,通常使用数值计算方法来解决这些力学方程,比如有限元法和边界元法等。
强度计算则是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。
在进行强度计算时,首先需要确定物体的强度参数,比如抗拉强度、屈服强度、抗剪强度等。
然后,根据物体所受的应力状态,通过应力分析和计算,可以得到物体内部的应力大小。
接下来,比较物体内部的应力和其强度参数,就可以判断物体是否安全和稳定。
应力状态分析和强度计算在各个工程领域中都有广泛的应用。
在土木工程中,它可以用来评估建筑物、桥梁和道路等结构的受力情况,以确保它们的安全使用。
在机械工程中,它可以用来评估机械零件和设备的强度和稳定性,以确保它们能够正常工作。
在航空航天工程中,它可以用来评估飞机和航天器在各种飞行状态下的受力情况,以确保它们在高速和极端环境下的安全性。
总之,应力状态分析和强度计算是工程力学的重要内容,它们不仅可以为工程设计提供依据,还可以用来评估物体的强度和稳定性。
在实际应用中,我们可以通过数值计算的方法来解决应力分析和强度计算问题,从而确保工程项目的安全性和可靠性。
在工程实践中,应力状态分析和强度计算是非常重要的步骤,涉及到许多领域,如结构工程、材料工程、土木工程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院
二、应力状态的研究方法 在构件危险点处取微小六面体——单元体 dx、dy、dz分析。 一般情况下,在单元体的各个面上分布有s、t 。 单元体各面应力:sx、sy、sz、txy、txz、tyz
F 1 F2
6
y
sy
tyz
A
Fn
txy
txz
x
sx
z
sz
由于单元体各面面积很小,可认为各面上的 s、t 均布。 此外:平行平面上,s 大小相等;垂直平面上,t 大小相等。
2
s
st或σu源自nt或 τ max [t ]
τu n
可建立强度条件: σmax [s ] 如:直升机螺旋桨轴
但实际中常见较复杂问题:危险点同时受 s 、t 作用。
上海应用技术学院
3
t
s
A
s t
工作时受轴向力F、外力偶矩Me作用,横截面同时存在s 、t 。 取轴表层A点:
σ FN A
tx
a
sa a
a
ta
ty
e
2
合力: sxdAcosa、 txdAcosa
bc面积:bc×1= dAsina 合力: sydAsina、 tydAsina 静力平衡条件:法线方向上
Σ Fn 0
b
sy
cos α
sin α
2
1 cos2 α 2 1 cos2 α
2 2sin α cos α sin2 α
2
上海应用技术学院
,0)
满足应力圆方程。
2
σx σy 2
∴
σx σy 2 半径: CD CF FD τx R 2
单元体a 斜截面ae上的应力sa、ta 在应力圆上从D点同向转过2a到H点,
a
ty
sy sa
d
19 n
则H点的坐标即为a 斜截面上的应力sa、ta, 证明: H点横坐标: OM 纵坐标:
a
ty
sy sa
d
20 n
a sx
c
2a
ta
b
tx
D
x
t
G O
H (sa, ta) 2a0 CM F
MH CHsin(2 α0 2 α ) (CDsin2 α0 )cos2 α (CDcos2 α0 )sin2 α
DFcos2 α CFsin2 α
σx σy 2
s
E
sin2 α τ x cos2 α τ α
上海应用技术学院
σx σy 2
sin2 α τ x cos2 α
n
14 x
sx
tx
a
sa a
a
ta
ty
e
b
∴
σα τ α σx σy 2 σx σy 2
sy
cos2 α τ x sin2 α
σx σy 2
sin2 α τ x cos2 α
可知:sa、ta与sx、sy、tx(ty)有关,并随斜截面位置a而变化。
100 50 2
sin[2 ( 30)] ( 60)cos[2 ( 30)] 35.0MPa
讨论:
σα
σx σy 2
σx σy 2
cos2 α τ x sin2 α
16
τ α
σx σy 2
sin2 α τ x cos2 α
当在单元体上截取两个相互垂直的斜截面时:
MH
a sx
c
2a
ta
b
tx
D
x
t
G O E
H (sa, ta) 2a0 CM F
CD与s 轴夹角为2a0
OM OC CM
OC CHcos(2 α0 2 α ) OC CHcos2 α0 cos2 α CHsin2 α0 sin2 α OC (CDcos2 α0 )cos2 α (CDsin2 α0 )sin2 α
即:a、a1= a + 90º 则: σ α 1
σx σy 2 σx σy 2 cos2 α τ x sin2 α
有:sa+ sa1 = sx+ sy =常数 即:过单元体中相互垂直的两个截面上的正应力之和为一常数。
τ α 1 σx σy 2 sin2 α τ x cos2 α τ α
2
σx σy 2
,0)
半径:
σx σy 2
2 τx
2
通常称作应力圆(Stress Circle)或莫尔圆(Mohr's Circle)。
三、应力圆的应用——图解法
已知单元体,作出其应力圆。
即已知两点:D (sx,tx,E(sy,ty,作应力圆。
a
ty
sa与截面垂直,拉应力为正,反之为负; ta与截面相切,绕研究对象内任一点顺时针时为正,反之为负。
左半部分受力:sx、sy、tx、ty、sa、ta,处于平衡状态。
上海应用技术学院
设单元体沿 z 方向厚度为1:
n
12 x
ae面积:dA
合力: sadA、 tadA ab面积:ab×1= dAcosa
sx
1
第 十三 章
§13–1 §13–2 §13–3 §13–4 §13–5
应力状态分析
引 言 平面应力状态应力分析 极值应力与主应力 复杂应力状态的最大应力 广义胡克定律
主要介绍:平面应力状态分析、最大应力与主应力、 应力与应变的一般关系
上海应用技术学院
§13–1 引 言
一、应力状态的概念 基本变形下,危险点只受正应力或只受切应力作用:
sy
e c
斜截面位置:用斜截面外法线 n 与 x 轴的夹角 a 表示。 规定:从 x 到 n 逆时针时, a 为正,反之为负。
上海应用技术学院
a
ty
sy sa ta sy
e c
n
n
11 x
d
sx
b
a tx
a
sx
x
sx
tx
a
sa a
a
ta
ty
e
b
sy
截面法:沿斜截面ae假想地切开单元体,取左半部分研究。 截面ae上应力:
σ α d A (σ x d A cos α )cos α ( τ x d A cos α )sin α (σ y d A sin α )sin α ( τ y d A sin α )cos α 0
∴ σα σ x cos2 α σ y sin 2 α 2 τ x sin α cos α
sy
d
18
sx
b c
取坐标系:横轴s,纵轴t 。
取比例尺:MPa/mm 。 作出D(sx,tx、E(sy,ty , 连D、E两点,交横轴于C点, 以C点为圆心、CD为半径作圆,
O
tx
D
x
t
G C E
σx σy 2
2 2
F
s
即得单元体的应力圆。
证明: ∵ DDCF ≌ DECG ∴ C为GF中点。 圆心C:( ∵ CF FG
σx σy 2
2
cos2 α τ x sin2 α
sin2 α τ x cos2 α
τ α0
二式平方后相加,得
(σα
σx σy 2
) τ α 0
2
为一以sa、ta为变量的圆方程,其 圆心: (
上海应用技术学院
σx σy 2 2 ( ) τx 2
上海应用技术学院
F 1
F2
y
sy
txy txz
x
7
tyz
A
Fn
sx
z
sz
当 dx、dy、dz 足够小时,单元体各面上的应力便可作为A点 应力。 一般情况下,单元体处于平衡状态。