条件概率与超几何分布及二项分布练习题()

合集下载

超几何分布与二项分布专题练习

超几何分布与二项分布专题练习

超几何分布与二项分布练习资料超几何分布与二项分布的辨析判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征: 1. 不放回抽样;2. 总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A ;若满足上述条件,则可根据()k n k M N MnNC C P X k C --==(0,1,2,,k m = )进行概率计算。

判断一个随机变量服从二项分布,必须同时满足以下两个特征: 1.每一次试验中结果只有A 与A 这两个;2.试验独立重复地进行n 次,每一次事件A 发生的概率都是p ,事件A 发生的概率是1p -.若满足上述条件,则在n 次独立重复试验中事件A 发生k 次的概率是k n kk n p p C k P --==)1()(ξ ,上述二项分布记作),(~p n ξ 【例题演练】1.某学校实验室组织学生进行种植实验,现有10颗种子。

已知其中有4颗是紫花种子,剩下的是白花种子,且每颗种子发芽的概率都是0.4。

(1)若从10种子中任取3颗进行实验,试求其中开紫花的种子数量ξ的分布列; (2)在问题(1)中进行实验的3颗种子,记其发芽数为η,求η的分布列。

2.古人云“书中自有黄金屋,书中自有颜如玉”。

课外阅读对于大学生来讲是一种非常有效的自主学习方式。

某大学对本校五千多名大一学生进行了课外阅读现状的调查,随机选取的100名样本,从中发现大一学生平均每天课外阅读时间的范围是[0,100](单位:分钟),将所得的数据绘制成频率分布直方图,如图所示。

(1)求频率分布直方图中x 的值;(2)若学校计划在样本中平均阅读时间超过60分钟的同学里,选取3名参加该市举办的“全民读书日” 论坛活动,则这3名学生中至少有两人阅读时间超过 80分钟的概率为多少?(3)为了提高学生课外阅读量,学校推出奖惩措施:若平均阅读时间超过40分钟,则在“期末评定”中加10分, 若平均阅读时间低于40分钟,则扣10分。

条件概率与超几何分布及二项分布练习题

条件概率与超几何分布及二项分布练习题

条件概率及乘法公式练习题1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇
数的
条件下第二张也是奇数的概率()
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽
取一粒,求这粒种子能成长为幼苗的概率。

3.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现
(II)若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
3.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
来源:网络转载
(Ⅰ)求直方图中x的值;
可申请在学校住宿,请估计学校600名新生中有
多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名
学生中上学所需时间少于20分钟的人数记为
X,求X的分布列和数学期望.(以直方图中新
生上学所需时间少于20分钟的频率作为每名学
道题中,甲答对其中每道题的概率都是
分球投篮比赛,甲每次投中的概率为
(Ⅱ)我们把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围.
.
来源:网络转载。

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

7.4 二项分布与超几何分布(精练)【题组一 二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A .2764B .964C .364D .34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为14所以3位患者中恰有1为患者被治愈的概率为12133194464P C æöæö=´´=ç÷ç÷èøèø故选:B 2.(2020·北京高二期末)已知随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( )A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =【答案】D【解析】随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =,故选:D.3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).A .60,24B .80,120C .80,24D .60,120【答案】D【解析】设该同学20次罚篮,命中次数为X ,则320,5X B æöç÷èø:,所以()320125E X =´=,()3324201555D X æö=´´-=ç÷èø,所以该同学得分5X 的期望为()551260E X =´=,方差为()224551205D X =´=.故选:D4.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X ,已知()3E X =,则m 等于( )A .2B .1C .3D .5【答案】C【解析】根据题意可得出63()()(33kk m k m P X k C m m-==++ ,即3(6,)3X B m ~+ 所以()36333E X m m=´=Þ=+故选C 5.(多选)(2020·全国高二单元测试)若随机变量ξ~B 1(5,)3,则P (ξ=k )最大时,k 的值为( )A .1B .2C .3D .4【答案】AB【解析】依题意5512()33kkk P k C x -æöæö==ç÷ç÷èøèø,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选:AB ..6.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X 表示抽到“好体能”学生的人数,求X 的分布列【答案】(1)众数和中位数分别是5.8,5.8;(2)19140;(3)分布列见解析;【解析】(1)这组数据的众数和中位数分别是5.8,5.8;(2)设至少有2人是“好体能”的事件为A ,则事件A 包含得基本事件个数为;2134124C C C +g 总的基本事件个数为316C ,213412431619()140C C C P A C +==g (3)X 的可能取值为0,1,2,3,由于该校男生人数众多,故X 近似服从二项分布1(3,)4B 3327(0)()464P x ===,1231327(1)()4464P x C ===g ,223139(2)(4464P x C ===g ,311(3)(464P x ===X 的分布列为:X123P276427649641647.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]L 这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.【解析】(1)由题意可知120名学生中身高大于1.60米的有18人,所以该校学生身高大于1.60米的频率为180.15120= 记d 为学生身高,则()()31.2 1.3 1.7 1.80.025120p p d d ££=<£== ()()151.3 1.4 1.6 1.70.125120p p d d <£=<£==()()()11.4 1.5 1.5 1.6120.02520.1250.352p p d d <£=<£=-´-´=所以0.0250.250.1m == ,0.125 1.250.1n ==,0.353.50.1t ==;(2)由(1)知学生身高在[]1.41.6, 的概率20.350.7p =´=随机变量X 服从二项分布()~3,0.7X B 则()()33010.70.027p x C ==´-= ()()213110.70.70.189p x C ==´-´=()()1223210.70.70.441p x C ==´-´=()33330.70.343p x C ==´=所以X 的分布列为X0123P0.0270.1890.4410.34330.7 2.1EX =´=8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X ,求X 的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【答案】(1)答案见解析;(2)方案一数学期望为110(元),方案二数学期望为100(元);方案一.【解析】(1)由题意易知,方案一和方案二中单次抽到红球的概率为13,抽到白球的概率为23,依题意,X 的取值可能为90,110,130,150.且30328(90)327P X C æö==×=ç÷èø,1213124(110)339P X C æöæö==××=ç÷ç÷èøèø223122(130)339P X C æöæö==××=ç÷ç÷èøèø,33311(150)327P X C æö==×=ç÷èø其分布列为X 90110130150p8274929127(2)由(1)知选择方案一时最终获得返金券金额的数学期望为8421()90110130150110279927E X =´+´+´+´=(元),选择方案二时,设摸到红球的次数为Y ,最终可能获得返金券金额为Z 元,由题意可知,1~3,3Y B æöç÷èø,得1()313E Y =´=()(100)100()100E Z E Y E Y ===由()()E X E Z >可知,该顾客应该选择方案一抽奖.【题组二 超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3,所以()37310350120p X C C===, ()2731016331120p X C C C===, ()1731022132120p X C C C===,()3103313120p X C C===.所以X 的数学期望()35632119012312012012012010E X =´+´+´+´=.(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ×====,所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:员工编号12345678910捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X ,求X 的分布列和数学期望.【答案】(1)25;(2)分布列见解析,65.【解析】(1)10名员工中捐款数额大于200元的有3人,低于200元的有6人故选取的人中捐款恰有一人高于200元,一人低于200元的概率为:1136210182455C C P C ===(2)由题知,10名员工中捐款数额大于200元的有3人,则随机变量X 的所有可能取值为0,1,2,3()4741035102106C P X C ====,()133********12102C C P X C ====,()2237410623221010C C P X C ====()313741071321020C C P X C ====则X 的分布列为X0123P1612310130()1131601236210305E X =´+´+´+´=;(用超几何分布公式()366105nM E X N ´===计算同样得分)3.(2020·河北省盐山中学高二期末)在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a ,b 的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X ,求X 的分布列及数学期望.【答案】(1)10a =,3b =.(2)61天(3)见解析【解析】(1)由题意知从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天,所以空气质量为Ⅰ级的天数为总天数的12,所以5+a=15,8+4+b=15,可得10a =,950.(2)依题意可知,一年中每天空气质量指数为优的概率为51306P ==,则一年中空气质量指数为优的天数约为1366616´=.(3)由题可知抽取的10天的数据中,Ⅰ级的天数为5,Ⅱ级和Ⅲ级的天数之和为5,满足超几何分布,所以X 的可能取值为0,1,2,3,4,4541051(0)21042C P X C ====,135510505(1)21021C C P X C ====,225541010010(2)21021C C P X C ====,3551410505(3)21021C C P X C ====,4541051(4)21042C P X C ====,X 的分布列为X1234P142 521 1021521 142故151051()0123424221212142E X =´+´+´+´+´=.4.(2020·延安市第一中学)在一个袋中,装有大小、形状完全相同的3个红球、2个黄球.现从中任取2个球,设随机变量x 为取得红球的个数.(1)求x 的分布列;(2)求x 的数学期望()E x 和方差()D x .【答案】(1)详见解析(2)6()5E x =,9()25D x =【解析】(1)x 的取值为0,1,2.()0232251010C C P C x ===,()113225631105C C P C x ====,()2032253210C C P C x ===,则x 的分布列为:x012P11035310(2)()1336012105105E x =´+´+´=,2226163639()0125105551025D x æöæöæö=-´+-´+-´=ç÷ç÷ç÷èøèøèø.5.(2020·西藏拉萨市)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有n 天,从这n 天中任取两天,设X 为这两天中客流量超过7万人的天数.求X 的分布列和期望.【答案】(1)①4.15,②4.125;(2)分布列见解析,()23E X =【解析】(1)①平均值为()2.50.2 3.50.25 4.50.4 5.50.05 6.50.057.50.051 4.15´+´+´+´+´+´´=②设中位数为x ,则()0.200.250.4040.5x ++-=解得中位数为 4.125x =(2)可知15n =其中超过7万人次的有5天()2010521545301057C C P X C ====()111052155010110521C C P X C ====()02105215102210521C C P X C ====X012P371021221所以()31022012721213E X =´+´+´=6.(2021·福建莆田市)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设x 为取出的4个球中红球的个数,求x 的分布列和数学期望.【答案】(1)715;(2)见解析.【解析】(1)记事件:A 取出的4个球中恰有1个红球,事件1:A 取出的4个球中唯一的红球取自于甲盒,事件2:A 取出的4个球中唯一的红球取自于乙盒,则12A A A =U ,且事件1A 与2A 互斥,由互斥事件的概率公式可得()()()1221134324122246715C C C C C P A P A P A C C +=+==,因此,取出的4个球中恰有1个红球的概率为715;(2)由题意知随机变量x 的可能取值为0、1、2、3,()22342246105C C P C C x ===,()7115P x ==,()111223243222463210C C C C C P C C x +===,()123222461330C C P C C x ===.所以,随机变量x 的分布列如下表所示:x123P15715310130因此,随机变量x 的数学期望为17317012351510306E x =´+´+´+´=.7.(2020·福建省南安市侨光中学高二月考)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题.(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是34,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平.【答案】(1)45;(2)乙选手比甲选手的答题水平高【解析】解法一:(1)记“甲选手答对i 道题”为事件i A ,1,2,3i =,“甲选手能晋级”为事件A ,则23A A A =U .()()()()2134242323336645C C C P A P A A P A P A C C =È=+=+=;(2)设乙选手答对的题目数量为X ,则3~3,4X B æöç÷èø,故()39344E X =´=,设甲选手答对的数量为Y ,则Y 的可能取值为1,2,3,()124236115C C P Y C ===,()214236325C C P Y C ===,()3436135C P Y C ===,故随机变量Y 的分布列为Y123P153515所以,()1311232555E Y =´+´+´=,则()()E X E Y >,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件A ,则()124236141155C C P A C =-=-=;(2)同解法二.8.(2020·全国高二课时练习)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A 、B 、C 三个不同的专业,其中A 专业2人,B 专业3人,C 专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X 表示取到B 专业的人数,求X 的分布列.【答案】(1)79120(2)见解析【解析】()1令事件A 表示“3个来自于两个不同专业”,1A 表示“3个人来自于同一个专业”,2A 表示“3个人来自于三个不同专业”,()3335131011120C C P A C +==,()111235231030120C C C P A C ==,3\个人来自两个不同专业的概率:()()()1211307911120120120P A P A P A =--=--=.()2随机变量X 有取值为0,1,2,3,()0337310350120C C P X C ===,()1237310631120C C P X C ===,()2137310212120C C P X C ===,()307331013120C C P X C ===,X \的分布列为:X123P3512063120211201120【题组三 二项分布与超几何分布综合运用】1.(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记x 表示抽到 2.5PM 监测数据超标的天数,求x 的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.【答案】(1)45;(2)分布列见解析,45;(3)219.【解析】(1)由茎叶图可得中位数是45.(2)依据条件,x 服从超几何分布:其中15N =,6M =,2n =,x 的可能值为0,1,2,()026921512035C C P C x ===,()116921518135C C P C x ===,()2069215512357C C P C x ====,所以x 的分布列为:x012P1235183517()121814012353575E x =´+´+´=.(3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =,一年中空气质量达到一级或二级的天数为h ,则3365,5B h æöç÷èø:,33652195E h =´=,∴一年中平均有219天的空气质量达到一级或二级.2.(2020·山东高二期末)1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率;(2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.【答案】(1)35 ;(2)49;(3)选择A .【解析】(1) A 恰好答对两个问题的概率为214236C C 3C 5=;(2) B 恰好答对两个问题的概率为223214339C æö´=ç÷èø;(3) X 所有可能的取值为1,2,3. ()124236C C 11C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,所以131()1232555E X =´+´+´=,2221312()(12)(22)(32)5555D X =-´+-´+-´=;而23,3Y B æö-ç÷èø,2()323E Y =´=,212()3333D Y =´´=,所以()()E X E Y =,()()D X D Y <,可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定.所以选择投票给学生A .3.(2021·湖南高二期末)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)拿4次所得分数x 的分布列和数学期望()E x 【答案】(1)34;(2)分布列见解析;期望为2.【解析】(1)一次拿到奇数的概率3162P ==,所以拿2次得分为0分的概率为2021124C æö=ç÷èø所以拿2次得分不小于1分的概率为2211311244C æö-=-=ç÷èø(2)x 可以取值:0,1,2,3,4所以()404121601C P x æö=ç÷èø==()13141112124C P x æöæö´=ç÷ç÷èøèø==()22241132228C P x æöæö´=ç÷ç÷èøèø==()31341112324C P x æöæö´=ç÷ç÷èøèø==()404411122164P C x æöæö´=ç÷ç÷èøèø==分布列x01234P116143814116满足二项分布概率1~42B x æöç÷èø,1()=4=22E x \´4.(2020·武汉外国语学校高二期中)为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记x 表示成绩优良的人数,求x 的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值.【答案】(Ⅰ)分布列见解析;()2E x =;(Ⅱ)7k =.【解析】(Ⅰ)由题意12人中有8人体质优良,x 可能的取值为0,1,2,3,()343121055C P C x ===,()128431212155C C P C x ×===,()218431228255C C P C x ×===,()3831214355C P C x ===,所以x 的分布列为:x0123P155125528551455数学期望()1122814 01232 55555555E x=´+´+´+´=;(Ⅱ)由题意可知,抽取的10人中,成绩是优良的人数210,3X Bæöç÷èø∼,所以()10 102133k k kP X k C-æöæö==××ç÷ç÷èøèø,0,1,210k=×××,令()()10110111010101101110102121333321213333k k k kk kk k k kk kC CC C------+-++ìæöæöæöæö×׳××ïç÷ç÷ç÷ç÷ïèøèøèøèøíïæöæöæöæö×׳××ç÷ç÷ç÷ç÷ïèøèøèøèøî,解得192233k££,又kÎN,所以7k=,所以当7k=时,抽到k人的成绩是优良的可能性最大.。

考点36 超几何分布与二项分布(练习)(解析版)

考点36 超几何分布与二项分布(练习)(解析版)

考点36 超几何分布与二项分布【题组一 超几何分布】1.某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:(1)若所抽调的50名市民中,收入在[35,45)的有15名,求a ,b ,c 的值,并完成频率分布直方图.(2)若从收入(单位:百元)在[55,65)的被调查者中随机选取2人进行追踪调查,选中的2人中恰有X 人赞成“楼市限购令”,求X 的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果. 【答案】(1)0.2,0.3,10a b c ===,频率分布直方图见解析;(2)分布列见解析,()45E X =;(3)来自[)65,75的可能性最大.【解析】(1)由频率分布表得:0.10.20.10.11a b +++++=,即0.5a b +=. 收入在[)35,45的有15名,150.350b ∴==,0.2a ∴=,0.25010c ∴=⨯=,则频率分布直方图如下:(2)收入在[)55,65中赞成人数为2,不赞成人数为3, X ∴可能取值为0,1,2,则()23253010C P X C ===;()113225315C C P X C ===;()22251210C P X C ===, X ∴的分布列为:()4012105105E X ∴=⨯+⨯+⨯=. (3)来自[)65,75的可能性更大.2.某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧对和理想队的构成数据如下表所示,现要求选出的4名大学生中两队中的大学生都要有.(1)求选出的4名大学生仅有1名女生的概率;(2)记选出的4名大学生中女生的人数为X ,求随机变量X 的分布列和数学期望.【答案】(1)2968;(2)见解析. 【解析】(1)选出的4人中智慧队和理想队的都要有,所以选法种数是:12223144444416361668C C C C C C ++=++=(种)选出的4名大学生仅有1名女生的选法有:从智慧队中选取1女生的选法共有12213232369C C C C +=+=(种)从理想队中选取1女生的选法共有103112121223223223212620C C C C C C C C C ++=++=(种)或者用排除法:1335129C C -=(种)所以,选出的4名大学生仅有1名女生的概率为920296868+= (2)随机变量X 的可能取值为0,1,2,3则()221323233250686868C C C C P X ++====, ()2112132323253620291686868C C C C C C P X ++++====, ()225313101292686868C C P X -⨯-====, ()15536868C P X ===, 所以随机变量X 的分布列为5292951023012368686868682EX =⨯+⨯+⨯+⨯==. 3.某电视台举行一个比赛类型的娱乐节目,A B 、两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A 队第六位选手的成绩没有给出,并且告知大家B 队的平均分比A 队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.(1)根据茎叶图中的数据,求出A 队第六位选手的成绩;(2)主持人从A 队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;(3)主持人从A B 、两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列.【答案】(1)20;(2)35;(3)答案见解析. 【解析】(1)B 队选手的平均分为111221252736226+++++=,设A 队第6位选手的成绩为x , 则911132431186x+++++=,得20x(2)A 队中成绩不少于21分的有2个,从中抽取2个至少有一个为“晋级”的对立事件为两人都没有“晋级”,则概率2426135C P C -== (3)ξ的可能取值有0,1,2,3,4,()2242226660225C C P C C ξ===()1122112424422266561225C C C C C C P C C ξ+=== ()111122222442224422661012225C C C C C C C C P C C ξ++=== ()1111122422442266563225C C C C C C P C C ξ+=== ()1224226664225C C P C C ξ===∴ξ的分布列为【题组二 二项分布】1.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为34,且甲、乙两人是否答对每个试题互不影响.(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y ,求Y 的分布列及数学期望和方差.【答案】(1)甲通过自主招生初试的可能性更大.(2)见解析,()15E Y =,75()4D Y =. 【解析】(1)参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,在这8个试题中甲能答对6个,∴甲通过自主招生初试的概率314626144881114C C C P C C =+= 参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.在这8个试题中乙能答对每个试题的概率为34, ∴乙通过自主招生初试的概率43324313189()444256P C ⎛⎫=+= ⎪⎝⎭ 1118914256>,∴甲通过自主招生初试的可能性更大. (2)根据题意,乙答对题的个数X 的可能取值为0,1,2,3,4.~X B 34,4⎛⎫ ⎪⎝⎭()4431()0,1,2,3,444k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭且5Y X =∴Y 的概率分布列为:()554154E Y np ∴==⨯⨯= ()25(1)254444D Y np p =-=⨯⨯⨯=.2.2020年1月10日,引发新冠肺炎疫情的9COVID -病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关.(1)求一个接种周期内出现抗体次数K 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.本着节约成本的原则,选择哪种实验方案. 【答案】(1)分布列见解析;(2)①825元;②选择方案二.【解析】(1)由题意可知,随机变量K 服从二项分布13,2KB ⎛⎫⎪⎝⎭, 故()331122kkk P K k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0,1,2,3k =)则X 的分布列为(2)①设一个接种周期的接种费用为ξ元,则ξ可能的取值为200,300,因为()12004P ξ==,()33004P ξ==,所以()1320030027544E ξ=⨯+⨯=. 所以三个接种周期的平均花费为()()33275825E X E ξ==⨯=. ②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或3次抗体”,由(1)知,()311882P A =+=. 所以()()13002P Y P A ===, ()()()160014P Y P A P A ==-⨯=⎡⎤⎣⎦, ()()()19001114P Y P A P A ==-⨯-⨯=⎡⎤⎡⎤⎣⎦⎣⎦, 所以()111300600900525244E Y =⨯+⨯+⨯= 因为()()E X E Y >. 所以选择方案二.3.某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p .(1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值.【答案】(1)49(2)理论上至少要进行27轮游戏.2123p p == 【解析】(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (2)他们在一轮游戏中获“优秀小组”的概率为()()()122221222222211222122221221212121()()1()()23()()P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1243p p +=,所以22121283()()3P p p p p =- 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤= ⎪⎝⎭所以121499p p <≤,令12t p p =,以1499t <≤,则()2833P h t t t ==-+ 当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足()~,B n p ξ由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p == 4.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关.(1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.比较随机变量X 和Y 的数学期望的大小.【答案】(1)分布列答案见解析.(2)()()E X E Y >【解析】(1)由题意可知,随机变量k 服从二项分布13,2B ⎛⎫ ⎪⎝⎭,故3311()(0,1,2,3)22k kk P k C k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.则k 的分布列为(2)①设一个接种周期的接种费用为ξ元,则ξ可能的取值为200,300,因为1(200)4P ξ==,3(300)4P ξ==, 所以13()20030027544E ξ=⨯+⨯=. 所以三个接种周期的平均花费为()3()3275825E X E ξ==⨯=.②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或3次抗体”,由(1)知,311()882P A =+=.所以1(300)()2P Y P A ===, 1(600)[1()]()4P Y P A P A ==-⨯=, 1(900)[1()][1()]14P Y P A P A ==-⨯-⨯=, 所以111()300600900525244E Y =⨯+⨯+⨯=. 所以()()E X E Y >.【题组三 超几何分布与二项分布综合运用】1.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望.【答案】(1)众数为4.6和4.7,中位数为4.75(2)①19140②见解析,3()4E X =【解析】(1)由题意知众数为4.6和4.7,中位数为4.7 4.8 4.752+=. (2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.则()()213112423331616()C C C P A P A P A C C =+=+19140=②因为这16名学生中是“好视力”的频率为14,所以该地区学生中是“好视力”的概率为14.由于该地区学生人数较多,故X 近似服从二项分布13,4B ⎛⎫⎪⎝⎭.3327(0)464P X ⎛⎫=== ⎪⎝⎭, 2131327(1)4464P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 223139(2)4464P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 311(3)464P X ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为X 的数学期望为13()344E X =⨯=.。

二项分布与超几何分布的区别练习题

二项分布与超几何分布的区别练习题

超几何分布与二项分布的区别[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B NM 个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k MN M n NC C P Xk C(0,1,2,,km )进行处理就可以了.二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p ;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p . 1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。

将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ):若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.3、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.视觉视觉记忆能力偏低中等偏高超常听觉记忆能力偏低0 7 5 1 中等 1 8 3 b 偏高 2 a0 1 超常0 2 1 1由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为25.(Ⅰ)试确定a、b的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的分布列.4、在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?听觉。

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练一、知识梳理知识点一n重伯努利试验及其特征1.n重伯努利试验的概念将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.知识点二二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X〜B(n,p).知识点三二项分布的均值与方差若X〜B(n,p),则E(X)=np,D(X)=np(1-p).知识点四超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C kMC N-M,k=m,m+1,m+2,其中n,N,M E N*,M W N,n W N,m=max{0,n—N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2•均值:E(X)=N・二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X;②从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数;③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X.【例1-2】下列例子中随机变量E服从二项分布的有.①随机变量E表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数E;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,E表示n次抽取中出现次品的件数(M 〈N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,E表示n次抽取中出现次品的件数.r.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.27 81 现从中任取4个球,有如下几种变量:① X 表示取出的最大号码;② X 表示取出的最小号码;③ 取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④ X 表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④2•下列随机事件中的随机变量X 服从超几何分布的是()A. 将一枚硬币连抛3次,记正面向上的次数为XB. 从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC •某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X 3•下列例子中随机变量服从二项分布的个数为()① 某同学投篮的命中率为0.6,他10次投篮中命中的次数g ;② 某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数g ;③ 从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数g ;④ 有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,g 表示n 次抽取中出现次品的件数4•下列选项中的随机变量不服从两点分布的是()A. 抛掷一枚骰子,所得点数XB. 某射击手射击一次,击中目标的次数X D.某医生做一次手术,手术成功的次数X 考点二:二项分布的均值与方差【例2】•已知随机变量:,耳满足2C +H =9,且匚〜B (8,p ),E (匚)二2,则E (q ),D (q )分别是()【考点精练】(1、1•设随机变量X,Y 满足:Y=3X-1,X 〜B 2,-,则V(Y)=()V 3丿 A.4B.5C.6D.72•设随机变量B (2,p),q ~B (4,p),若P(g >1)=9,则P (q >2)的值为()9 A.0 B.1 C.2D.3C. 从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设X 1,取出白球 <0,取出红球A.5,3B.5,6C.8,3D.8,6A. 32 81 D. 16 813•已知随机变量X〜B(5,0.2),随机变量Y=5X+10,则()27 81A.E(Y)=5B.E(Y)=10C.D(Y)=20D.D(Y)=30考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.687288955667891000(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.学生视力测试结果666777S12(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”•①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为丄,两人各投1次称为一轮投篮.2(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量g,求g的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟)•将统计数据按[5,10),110,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求乘客A,B乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示11叶6 87 24698 1391Z(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X表示所抽取的3名同学的得分在[70,80)的人数,求X的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行•它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:~s^rTO高二8986361269765007345799611呂025788771109133589根据学生的竞赛成绩,将其分为四个等级:(1)从样本中任取2名同学的竞赛成绩,在成绩为优秀的情况下,求这2名同学来自同一个年级的概率;(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间•将成绩结果按如下方式分成五组:第一组b0,100),第二组1100,110),…,第五组1130,140]•按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一五组中共随机取出两个成绩,记X为取得第一组成绩的个数,求X的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X,求X的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y,求Y的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答3这道题目,而乙班级4人中能正确回答这道题目的概率均为二,甲、乙两班级每个人对问题的回答都是相4互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X,Y,求随机变量X,Y的期望E(X),E(Y)和方差D(X),D(Y),并由此分析由哪个班级代表学校参加大赛更好.2.PM2.5是指大气中直径小于或等于2.5pm的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35p g/m3以下空气质量为一级;在35〜75p g/m3之间空气质量为二级;在75p g/m3以上空气质量为污染•某市生态环境局从该市2021年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)•PM2.5日均值(pg/m123)28537143445638791从这15天的数据中任取1天,求这天空气质量达到一级的概率;2从这15天的数据中任取3天的数据,记g表示其中空气质量达到一级的天数,求g的分布列和数学期望;3以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频863925(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品•设每个零件是次品的概率为P(0<P<1),且相互独立.(I)若20个零件中恰有2个次品的概率为f(p),求f(p)的最大值点p;(II)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍.已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级.当P满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A,A,A中的一个,每个乙系列盲盒可以开出123玩偶B1,B2中的一个.(1)记事件E:一次性购买n个甲系列盲盒后集齐玩偶A,A,A玩偶;事件F:—次性购买n个乙系n123n列盲盒后集齐B1,B2玩偶;求概率P(三)及P(佇);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选2择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为亍,购买乙系113列的概率为-;而前一次购买甲系列的消费者下一次购买甲系列的概率为;,购买乙系列的概率为匚,前344一次购买乙系列的消费者下一次购买甲系列的概率为1,购买乙系列的概率为1;如此往复,记某人第n次22购买甲系列的概率为Q.n①求{Q}的通项公式;n②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为求g的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k人为“活动爱好者”的可能性最大,试求k的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为P(0<P<1).(1)求该组试验只需第一轮注射的概率(用含P的多项式表示);(2)记该组动物需要注射次数X的数学期望为E(X),求证:10<E(X)<10(2-p)。

超几何分布与二项分布

超几何分布与二项分布


此时我们称随机变量X服从二项分布,记作:
n Cnn pnq0
数学期望E(X)=np,方差D(X)=np(1-p)
例题解析与示范
例1. 袋中有3个白球、2个黑球,从中随机地连续抽取3次,每 次取1个球.求有放回抽样时,取到黑球的个数X的分布列. 例2 .袋中有3个白球、2个黑球,从中任意摸出3个球, 记得到黑球的个数为Y,求随机变量Y的分布列。
【解析】(1)随机变量X的可能取值为0,1,2, 随机变量X服从超几何分布,
P( X
0)
C30C72 C120
21 7 45 15
因此,X的分布列为:
X01
2
P( X
1)
C31C71 C120
21 7 45 15
P
7 15
7 15
1 15
P( X
2)
C32C70 C120
3 45
1 15
2.在 15 个村庄中有 7 个村庄交通不方便,现从中任意选
10 个村庄,用 X 表示这 10 个村庄中交通不方便的村庄数,
下列概率等于CC471C15086的是( C ) A.P(X=2)
B.P(X≤2)
C.P(X=4)
D.P(X≤4)
解析:此为一个超几何分布问题.15 个村庄中有 7 个村庄交通 不方便,8 个村庄交通方便,C47C68表示选出的 10 个村庄中恰有 4 个交通不方便,6 个交通方便的村庄,故 P(X=4)=CC47C110568.
(1)根据频率分布直方图, 求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中 任取 2 件,设 Y 为重量超过 505 克的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k07.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k08.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k9道题分清超几何分布和二项分布参考答案与试题解析一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123PE(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,所以,所以X的分布列为X 0 1 2P所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.∴Y的分布列为:Y012P期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0 1 2 3 4P∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络偶尔或从不进行网络合计购物购物男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k0【分析】(1)由列联表数据求出K2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数性别(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X0123P则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9615女41115总计131730k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X012P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。

二项分布和超几何分布(含答案)

二项分布和超几何分布(含答案)

超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)
广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国
粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的
(-100)
1
e- 200
10√2π
株高,得出株高 X(单位:cm)服从正态分布,其密度曲线函数为 f(x)=
法正确的是(
4
5
率为 ,则连续测试 4 次,至少有 3 256
625
64
625
B.
C.
)
D.
64
125
3.从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量 ξ 表示所选 3 人中女生的人数,则
P(ξ≤1)等于
A.
(
1
5
2
5
3
5
B.
C.
D.
)
4
5
4.(历年福建福州高三检测)某市一次高三年级数学统测,经抽样分析,成绩 X 近似服从正态分布
)
A.该地水稻的平均株高为 100 cm
B.该地水稻株高的方差为 10
2
,x∈(-∞,+∞),则下列说
C.随机测量一株水稻,其株高在 120 cm 以上的概率比株高在 70 cm 以下的概率大
D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大
8.设事件 A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件 A 至少发生一次的概率
到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求质量超过 500 克的产品数量;
(2)在上述抽取的 40 件产品中任取 2 件,设 Y 为质量超过 505 克的产品数量,求 Y 的分布列.

考点20 超几何分布与二项分布(新高考地区专用)(解析版)

考点20 超几何分布与二项分布(新高考地区专用)(解析版)

考点20 超几何分布与二项分布一.分布列1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量. (2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X 的概率分布列,简称为X 的分布列,具有如下性质: ①p i ≥0,i =1,2,…,n ;①p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 二.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量X =1)称为成功概率. 三.超几何分布1.概念:一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -kN -MC n N(k =0,1,2,…,m ).即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果一个随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 2.特征(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数 (2)考察对象分两类 (3)已知各类对象的个数(4)从中抽取若干个个体,考查某类个体数X 的概率分布.,超几何分布主要用于抽检产品、摸不同类别的知识理解小球等概率模型,其实质是古典概型 四.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数.设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.五.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P ABP A(P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n ABn A .(2)条件概率具有的性质①0≤P (B |A )≤1;①如果B 和C 是两个互斥事件,则P (B ①C |A )=P (B |A )+P (C |A ).考向一 离散型随机变量的分布列的性质【例1】(1)(2020·全国高三专题练习)随机变量X 的分布列如表:X124P12ab若()2E X =,则()D X =( ) A .32B .43C .54D .65(2)(2021·浙江高三)已知随机变量X 的分布列是X123P1213a则()2E X a +=( )考向分析A .53B .73C .72D .236【答案】(1)A (2)C【解析】(1)由分布列的性质以及期望公式可得()1242212E X a b a b ⎧=++=⎪⎪⎨⎪+=⎪⎩,解得14a b ==.()()()()22211131222422442D X =-+-+-=.故选:A. (2)由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭.故选:C.【方法总结】1.随机变量是否服从超几何分布的判断若随机变量X 服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n 次;(2)随机变量X 表示抽取到的次品件数(或类似事件),反之亦然. 2.离散型随机变量分布列的求解步骤三.若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则 (1)E (k )=k ,D (k )=0,其中k 为常数; (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ); (3)E (X 1+X 2)=E (X 1)+E (X 2); (4)D (X )=E (X 2)-(E (X ))2;(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2);(6)若X ~N (μ,σ2),则X 的均值与方差分别为:E (X )=μ,D (X )=σ2.【举一反三】1.(2020·全国高三专题练习)随机变量X 的分布列如下,()14P X ≤<的值为( )A .0.6B .0.7C .0.8D .0.9【答案】C【解析】随机变量X 的分布列知:10.10.20.30.10.3x =----=,()()()()14123P X P P P ≤<=++0.20.30.3=++0.8=.故选:C .2.(2020·全国高三专题练习)随机变量ξ的分布列如表所示,若1()E X =-,则(31)D X +=( )A .4B .5C .6D .7【答案】B【解析】根据题意,可知:112a b ++=,则12a b +=,()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=,∴5(31)D X +=.故选:B. 3.(2020·全国高三专题练习)若随机变量X 的分布列为则a 的值为( )A .0.1B .0.2C .0.3D .0.4【答案】B【解析】由题意可得,0.231a a ++=,解得0.2a =.故选:B.4.(2020·浙江高三其他模拟)随机变量X 的分布列如下表,已知()122P x ≤=,则当b 在10,2⎛⎫⎪⎝⎭内增大时( )A .()E X 递减,()D X 递减B .()E X 递增,()D X 递减C .()E X 递减,()D X 递增 D .()E X 递增,()D X 递增【答案】B【解析】因为()122P x ≤=,所以12a b +=,12c =, 所以()232E X a b c b =++=+,所以当b 在10,2⎛⎫ ⎪⎝⎭内增大时,()E X 递增;所以()()()()2222115122232224D X a b b b b b ⎛⎫=-++-++-+=-++⎡⎤⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭, 所以当b 在10,2⎛⎫ ⎪⎝⎭内增大时,()D X 递减.故选:B.考向二 超几何分布【例2】(2020·全国高三)“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm 及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.【答案】(1)168.5cm ;(2)710;(3)分布列见解析,98. 【解析】(1)根据志愿者的身高茎叶图知文学院志愿者身高为:158,159,161,162,165,168,169,173,174,176,180,181,其升高的中位数为:168169168.52+=cm ; (2)由茎叶图可知,“高个子”有8人,“非高个子”有12人, ∴按照分层抽样抽取的5人中“高个子”为85220⨯=人,“非高个子”为125320⨯=人, 则从这5人中选2人,至少有1人为高个子的概率23257110C P C =-=;(3)由题可知:文学院的高个子只有3人,则ξ的可能取值为0、1、2、3,故305338105(0)5628C C P C ξ⋅====,2153383015(1)5628C C P C ξ⋅====, 12533815(2)56C C P C ξ⋅===,0353381(3)56C C P C ξ⋅===, 即ξ的分布列为:所以19()0123282856568E ξ=⨯+⨯+⨯+⨯=. 【举一反三】1.(2021·全国高三专题练习)为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;(2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 【答案】(1)240人;(2)分布列见解析,2;(3)2212s s >.【解析】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.所以随机变量X 的分布列为 ∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >.2.(2020·全国高三专题练习)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名五年级学生进行了问卷调查得到如下列联表(平均每天喝500mL 以上为常喝,体重超过50kg 为肥胖):已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415. (1)请将上面的列联表补充完整;(2)是否在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关?请说明你的理由; (3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,设正好抽到的女生为X 名,求随机变量X 的分布列与期望.参考数据:(参考公式:22()()()()()n ad bc K a b a c c d b d -=++++,其中n a b c d =+++)【答案】(1)答案见解析;(2)在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关;理由见解析;(3)答案见解析.【解析】(1)设常喝碳酸饮料肥胖的学生有x人,则243015x +=,解得6x =, 填表如下:(2)由已知数据可求得:2230(61824)8.5237.8791020822K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关; (3)依题意,常喝碳酸饮料的肥胖者男生有4名,女生有2名, 随机变量X 的取值分别为0、1、2,∴0224262(0)5C C P X C ⋅===, 1124268(1)15C C P X C ⋅===, 2024261(2)15C C P X C ⋅===, 则随机变量X 的分布列为:因此随机变量X的期望2812 ()0121515153E X=⨯+⨯+⨯=.3.(2020·全国高三)巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是8 15.(1)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?(2)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”人数为X,求X 的分布列和均值.附:参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,n a b c d=+++.【答案】(1)填表见解析;没有充足的理由认为“通过电视收看世界杯”与性别有关;(2)分布列见解析;均值为54.【解析】(1)设“通过电视收看世界杯”的女生为x人,则1083015x+=,解得6x=,由已知数据得:2230(10866) 1.158 3.84116141614K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有充足的理由认为“通过电视收看世界杯”与性别有关; (2)X 可能取值为0、1、2,则:262161(0)8C P X C ===,116102161(1)2C C P X C ===, 2102163(2)8C P X C ===,∴X 的分布列为:X 的均值为:()0128284E X =⨯+⨯+⨯=.考向三 条件概率【例3】(2020·四川省新津中学高三开学考试)长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =( )A .12B .34C .25D .38【答案】B【解析】由题意,可知421(),(),()151510P A P B P AB ===, 利用条件概率的计算公式,可得1()310(|)2()415P AB P A B P B ===,故选B.【举一反三】1.(2020·江苏省溧阳中学高三开学考试)甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则()|P A B =( )A .89B .29C .38D .34【答案】B【解析】事件AB :甲选羽毛球且四名同学所选项目各不相同,所以其它3名同学排列在其它3个项目,且互不相同为33A ,事件B :甲选羽毛球,所以其它3名同学排列在其它3个项目,可以安排在相同项目为33,()()()3343424|394A P AB P A B P B ===.故选:B(2)(2020·四川眉山市·仁寿一中高三月考)现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()P B A =( ) A .13B .47C .23D .34【答案】A【解析】由已知得22432793()217C C P A C +===,232731()217C P AB C ===, 则()P B A =1()173()37P AB P A ==,故选:A 3.(2020·黑龙江大庆市·大庆实验中学高三开学考试)2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=( ) A .29B .13C .49D .59【答案】A【解析】由题意444()4A P A =,()()P AB P A =,3443()4P B ⨯=, ∴44434()24(|)43()94A P AB P A B P B ===⨯.故选:A . 4.(2020·黑龙江牡丹江市·牡丹江一中高三开学考试)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球,如果不放回的依次取出2个球.在第一次取出的是黑球的条件下,第二次取出的是白球的概率是( ) A .12B .310C .35D .25【答案】A【解析】第一次取出黑球后,剩余4个球,其中2个白球,所以第二次取出的是白球的概率是2142=.故选:A.考向四 二项分布【例4】(2020·全国高三专题练习)某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些; (2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X的分布列和均值.【答案】(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38. 【解析】(1) 1=8x 甲(7+9+11+13+13+16+23+28)=15, 1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616kkk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=. 【举一反三】1.(2020·全国高三专题练习)为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h 的有15人;在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100km/h 且为男性驾驶员的车辆为X ,求X 的分布列. 【答案】(1)2552;(2)分布列答案见解析. 【解析】(1)平均车速不超过100km/h 的驾驶员有40人,从中随机抽取2人的方法总数为240C ,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为111525C C ⋅,所以所求的概率()1115252402552C C P A C ==. (2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100km/h 且为男性驾驶员的概率为4021005=,故2(3,)5X B .所以()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12132354155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()2232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()3033238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以X 的分布列为2.(2020·全国高三专题练习)某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.【答案】(1)1728;(2)分布列见解析,()34E X =.【解析】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫===⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=.3.(2020·凯里市第三中学高三月考)北京是历史悠久的千年古都,现在是中国的政治、经济、文化等多领域的中心,历史文化积淀深厚,自然人文景观丰富,科学技术发达,教育资源众多,成为当代绝大多数人的理想向往之地.凯里市为了将来更好的推进“研学游学”项目来丰富中学生的课余生活,帮助中学生树立崇高理想,更好地实现人生价值.为了更好了解学生的喜好情况,某组织负责人把项目分为历史人文游、科技体验游、自然风光游三种类型,并在全市中学中随机抽取10所学校学生意向选择喜好类型,统计如下:在这10所中小学中,随机抽取了3所学校,并以统计的频率代替学校选择研学游学意向类型的概率(假设每所学校在选择研学游学类型时仅能选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游学类型是历史人文游、自然风光游,求这两种都有学校选择的概率; (2)设这3所学校中选择科技体验游学校的随机数X ,求X 的分布列与数学期望. 【答案】(1)18125;(2)分布列见解析,6()5E X =. 【解析】(1)由题设学校选择历史人文游、科技体验游、自然风光游的概率分别为()P A 、()P B 、(C)P ,则易知2()5P A =,2()5P B =,1()5P C =, 所以这3所学校选择的研学游学类型是历史人文游、自然风光游的概率为1222133()()()()P C P A P C C P A P C =⋅+⋅1222332121()()5555C C =+61218125125125=+=; (2)由题知这3所学校中选择科技体验游学校的概率为2()5P B =, 选择非科技体验游学校的概率为2213()()555P P A P C =+=+=,所以X 的所有可能值有:0,1,2,3, 则03033232327(0)()()()55125P X C P B P C ====,1121123232354(1)()()()55125P X C P B P C ====,2212213232336(2)()()()55125P X C P B P C ====,330330323238(3)()()()55125P X C P B P C ====,所以X 的分布列如下:所以X 的数学期望为86()01231251251251255E X =⨯+⨯+⨯+⨯=.1.(2020·全国高三专题练习)已知随机变量X 的分布列如下:若随机变量Y 满足31Y X =-,则Y 的方差()D Y =( )A .1B .2C .3D .9【答案】D【解析】由分布列的性质,可得11132a ++=,解得16a =,则()1110121326E X =⨯+⨯+⨯=, 所以()()()()2221110111311326D X =-⨯+-⨯+-⨯=,又因为31Y X =-,所以()()23919D Y D X =⨯=⨯=.故选:D.2.(2020·全国高三专题练习)随机变量ξ的分布列如下:强化练习其中a ,b ,c 成等差数列,则D ξ的最大值为( ) A .23B .59C .29D .34【答案】A【解析】因为a ,b ,c 成等差数列,122b a c,a b c 1,b ,c a,33∴=+++=∴==-2E ξa c 2a 3∴=-+=-+,2222222D ξ12a a 2a b 12a a 3333⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-⨯++-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22821224a a 439333a ⎛⎫=-++=--+≤ ⎪⎝⎭.则D ξ的最大值为233.(2020·全国高三专题练习)已知ξ的分布列为设25ηξ=-,则()E η=( ) A .12B .13C .23D .32【答案】C【解析】由分布列的性质可得:1111663m +++=,解得13m =所以()111117123466336E ξ=⨯+⨯+⨯+⨯=因为25ηξ=-,所以()()172252563E E ηξ=-=⨯-=故选:C 4.(2020·内蒙古包头市·高三二模)X 表示某足球队在2次点球中射进的球数,X 的分布列如下表,若()1E X =,则()D X =( )A .3B .2C .4 D .3【答案】D【解析】由()1E X =,可得1()01213E X a b =⨯+⨯+⨯=①,又由113a b ++=②,由①和②可得,13a =,13b =,所以,2221112()(01)(11)(21)3333D X =⨯-+⨯-+⨯-=故选:D 5.(2020·全国高三专题练习)某射手射击所得环数ξ的分布列如下:已知ξ的数学期望()8.9E ξ=,则y 的值为( )A .0.8B .0.6C .0.4D .0.2【答案】C【解析】由表格可知:0.10.31780.190.3108.9x y x y +++=⎧⎨+⨯+⨯+⨯=⎩ , 解得0.4y =.故选:C .6.(2020·全国高三专题练习)某小组有5名男生、3名女生,从中任选3名同学参加活动,若X 表示选出女生的人数,则()2P X ≥=( ) A .17B .1556C .27D .57【答案】C【解析】当2X =时,()12533815256C C P X C ===; 当3X =时,()33381356C P X C ===,则()()()151222356567P X P X P X ≥==+==+=, 故选:C.7.(2020·莆田第二十五中学高三期中)2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .48125【答案】A【解析】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A.8.(2020·全国高三专题练习)一个盒子中装有6个完全相同的小球,将它们进行编号,号码分別为1、2、3、4、5、6,从中不放回地随机抽取2个小球,将其编号之和记为S .在已知S 为偶数的情况下,S 能被3整除的概率为( ) A .14B .13C .512D .23【答案】B【解析】记“S 能被3整除”为事件A ,“S 为偶数”为事件B ,事件B 包括的基本事件有{1}3,,{1}5,,{3}5,,{24},,{26},,{46},共6个. 事件AB 包括的基本事件有{1}5,、{24},共2个.则()21(|)()63n AB P A B n B ===,故选:B . 9.(2020·全国高三专题练习)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )A .3/5B .3/4C .1/2D .3/10【答案】C【解析】记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”, 则事件AB 为“两次都取到白球”, 依题意知3()5P A =,3263()542010P AB =⨯==, 所以,在第一次取到白球的条件下,第二次取到白球的概率是3110()325P B A ==.故选:C.10.(2020·全国高三专题练习)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件A 为“恰有2名同学所报项目相同”,事件B 为“只有甲同学一人报关怀老人项目”,则()|P B A =( )A .16B .13C .23D .56【答案】A【解析】事件AB 为“4名同学所报项目恰有2名同学所报项目相同且只有甲同学一人报关怀老人项目”.()2143421439C C P A ⨯⨯== , ()21324112327C C P AB ⨯⨯==所以()()()2127|469P AB P B A P A ===故选:A 11.(2020·浙江高三专题练习)已知随机变量X 的分布列如表,且()4(1)E X P X =,则a b +=__,()E X 的取值范围为__.【答案】12 6[5,3]2【解析】由概率之和等于1可得12a b +=, 由1()22E X a b =++,可知1242a b a ++,即1132()22a a --,解得310a , 又0a ,故3010a .又13()222E X a b a =++=-,∴63()52E X , 故答案为:12,6[5,3]212.(2020·全国高三专题练习)随机变量ξ的分布列如表格所示,0ab ≠,则14a b+的最小值为______.【答案】9【解析】根据概率分布得1a b +=,且0,0a b >>,14144()()559b a a b a b a b a b ∴+=++=++≥+= 当且仅当223b a ==时取等号 即14a b+的最小值为9 故答案为:913.(2020·全国高三专题练习)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则()P A B =________. 【答案】29【解析】小赵独自去一个景点共有4333108⨯⨯⨯=种情况,即()108n B =,4个人去的景点不同的情况有4424A =种,即()24n AB =,所以()()242()1089n AB P A B n B ===.故答案为:29. 14.(2020·全国高三其他模拟)伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用A 表示事件“抽到的2名队长性别相同”,B 表示事件“抽到的2名队长都是男生”,则()|P B A =______.【答案】1543【解析】由已知得()22682144391C C P A C +==,()262141591C P AB C ==, 则()()()151591|434391P AB P B A P A ===. 故答案为:154315.(2020·全国高三专题练习)夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为_________. 【答案】13【解析】解析设事件A 为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为该雌性个体成功溯流产卵繁殖,由题意可知()0.15P A =,()0.05P AB =,()0.051(|)()0.153P AB P B A P A ===. 故答案为:13. 16.(2020·全国高三)一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则()P B A 是________【答案】47【解析】由题可知:()()5545=,88714P A P AB ⨯==⨯所以()()()47P AB P B A P A ==故答案为:4717.(2020·四川省内江市第六中学高三)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________. 【答案】14【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一 个给甲,再将余下的4个人全排列有1444C A ⋅种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有2444A A ⋅种,故总的有()14244444n A C A A A =⋅+⋅.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有1444C A ⋅种故()()()14441424444414n AB C A P B A n A C A A A ⋅===⋅+⋅. 故答案为:1418.(2020·浙江高三其他模拟)随机变量X 分布列如下表,则a =______;()E X =______.【答案】2; 1; 【解析】23224a a +=,∴12a =,∴()1110121424E X =⨯+⨯+⨯=.故答案为:12;1.19.(2020·全国高三专题练习)已知随机变量ξ的分布列如下:则a =___,方差()=D ξ___. 【答案】12 1116【解析】由题意可得22112201012a a a a⎧++=⎪⎪<<⎨⎪⎪<<⎩,解得12a =,()112P ξ==,()124P ξ==,()134P ξ==,()11171232444E ξ=⨯+⨯+⨯=,()2221717171112324444416D ξ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上,12a =,()1116D ξ=. 故答案为:12;1116.20.(2020·四川内江市·高三一模)网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数ξ的分布列.(附:()()()()()22n ad bc k a b c d a c b d -=++++)【答案】(1)列联表答案见解析,可以在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关;(2)分布列答案见解析. 【解析】(1)由题意可得列联表如下:根据列联表中的数据可得,()2100203045565352575k ⨯⨯-⨯=⨯⨯⨯1003 3.297 2.706137⨯=≈>⨯所以可以在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关;(2)由频率分布直方图可知,网购迷共有25名,由题意得年龄超过40岁的市民人数ξ的所有值为0,1,2,则()22022519030C P C ξ===,()11205225113C C P C ξ===,()252251230C P C ξ===∴ξ的分布列为21.(2020·全国高三专题练习)我国城市空气污染指数范围及相应的空气质量类别如下表:我们把空气污染指数在0~100内的称为A 类天,在101~200内的称为B 类天,大于200的称为C 类天.某市从2014年全年空气污染指数的监测数据中随机抽取了18天的数据制成如下茎叶图(百位为茎):(1)从这18天中任取3天,求至少含2个A 类天的概率;(2)从这18天中任取3天,记X 是达到A 类天或B 类天的天数,求X 的分布列. 【答案】(1)23408;(2)分布列见解析. 【解析】(1)从这18天中任取3天,取法种数为318816C =种不同的取法, 其中3天中至少有2个A 类天的取法种数为213315346C C C +=种,所以这3天至少有2个A 类天的概率为4623816408P ==. (2)X 的所有可能取值是3,2,1,0,当3X =时,()3831873102C P X C ===,当2X =时,()21810318352102C C P X C ===, 当1X =时,()1281031815134C C P X C ===,当X 0=时,()3103185034C P X C ===, 所以X 的分布列为22.(2020·全国高三专题练习)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算? 【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==, 所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===, ()1217310770040C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-, 由已知可得3~3,10Y B ⎛⎫⎪⎝⎭,故()3931010E Y =⨯=,。

高二数学小练习(4):二项分布与超几何分布

高二数学小练习(4):二项分布与超几何分布

小练习(4):二项分布与超几何分布1.某校组织计算机知识竞赛,已知竞赛题目共有10道,随机抽取3道让参赛者回答,规定至少要答对其中2道才能通过初试,若某一参赛者只能答对其中6道,则他能通过初试的概率为_________2.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X< 2)等于_______),则P(ξ≤3)等于___________3.设随机变量ξ服从二项分布ξ~B(6,124.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少有3人被治愈的概率为(用数字作答).5.袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的次数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.二项分布与超几何分布一、选择题(本大题共3小题,共15.0分)1. 某校组织计算机知识竞赛,已知竞赛题目共有10道,随机抽取3道让参赛者回答,规定至少要答对其中2道才能通过初试,若某一参赛者只能答对其中6道,则他能通过初试的概率为( )A. 23B. 34C. 14D. 13 【答案】A【解析】【分析】本题考查超几何分布,属于基础题.分两种情况:只答对两道和三道都答对,再结合组合数的计算列式可求.【解答】解:通过初试包括两种情况,即答对其中2道或3道题目,所以所求概率为C 62C 41C 103+C 63C 103=23. 故选A .2. 有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P(X <2)等于( )A. 715B. 815C. 1415D. 1 【答案】C【解析】【分析】本题考查超几何分布,与互斥事件的概率,解题的关键是找到与每个X 的值相对应的概率P 的值.【解答】解:由题意,知X 取0,1,2,则P(X =0)=C 72C 102=715, P(X =1)=C 71⋅C 31C 102=715,P(X =2)=C 32C 102=115.所以P(X<2)=P(X=0)+P(X=1)=715+715=1415.故选C.3.设随机变量ξ服从二项分布ξ~B(6,12),则P(ξ≤3)等于()A. 1132B. 732C. 2132D. 764【答案】C【解析】【分析】本题考查二项分布与n次独立重复试验的模型,是一个基础题根据条件中所给的变量符合二项分布,写出变量取值不同时对应的概率公式P(ξ≤3)=P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)可以得出答案.【解答】解:P(ξ≤3)=P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=C 60×(12)6+C 61·(12)6+C 62·(12)6+C 63·(12)6=2132.故选C.二、填空题(本大题共1小题,共5.0分)4.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少有3人被治愈的概率为(用数字作答).【答案】0.9477【解析】【分析】本题考查了n次独立重复试验概率计算,考差了分析问题的能力,属于中档题.病人被治愈的人数X~B(4,0.9).分情况求解,若有3人被治愈,则P1=C430.93×(1-0.9)=0.2916;若有4人被治愈,则P2=C440.94=0.6561,从而可得结果.【解答】解:病人被治愈的人数X ~B (4,0.9).分情况求解,若有3人被治愈,则P 1=C 430.93×(1-0.9)=0.2916;若有4人被治愈,则P 2=C 440.94=0.6561,故至少有3人被治愈的概率P =P 1+P 2=0.9477.三、解答题(本大题共1小题,共12.0分)5. 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的次数X 的分布列;(2)不放回抽样时,取到黑球的个数Y 的分布列.【答案】解:(1)有放回抽样时,取到的黑球的次数X 可能的取值为0,1,2,3.由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则X ~B (3,15),则P(X =0)=C 30×(15)0×(45)3=64125, P(X =1)=C 31×(15)1×(45)2=48125, P(X =2)=C 32×(15)2×(45)1=12125,P(X =3)=C 33×(15)3×(45)0=1125.所以X 的分布列为(2)不放回抽样时,取到的黑球数Y 可能的取值为0,1,2,则P(Y =0)=C 20C 83C 103=715, P(Y =1)=C 21C 82C 103=715, P(Y =2)=C 22C 81C 103=115. 所以Y 的分布列为【解析】本题考查离散型随机变量及其分布列,属于中档题.(1)有放回时,可看做二项分布,由二项分布的知识易得答案;(1)不放回时,可看做超几何分布,由超几何分布的知识易得答案.。

(完整版)二项分布、超几何分布、正态分布总结归纳及练习

(完整版)二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;333141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.7162.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.19273.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答) 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 答案:不合格三、解答题9.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.参考答案1、解析:P (ξ=3)=C 36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2、解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13 ,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D.3、解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4、解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p ,∴p ≥0.4.又∵p <1,∴0.4≤p <15、解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.6、解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 7、解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:8、解析:根据3σ原则,在4-3×0.5=2.5~4+3×0.5=5.5之外为异常,所以这批零件不合格. 9、解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2. B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,i =1,2. C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10、解析:(1)P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445。

超几何分布、二项分布、正态分布 练习

超几何分布、二项分布、正态分布 练习

北京四中【过关练习】1、一个班级有30名学生,其中有10名女生,现在从中任选3名学生当班委,令变量x表示3名班委中女生的人数,令变量y表示3名班委中男生的人数,试求x与y的概率分布。

2、设20件商品中有15件一等品,其余为二等品,现从中随机选购2件,用x表示所购2件中的二等品件数,写出x的概率分布。

3、甲、乙、丙3人独立地破译一密码,每人译出此密码的概率为0.25,假定随机变量x表示译出此密码的人数:(1)写出x的分布列;(2)密码被译出的概率。

4、对患某种病的人,假定施行手术的生存率是70%,现有8个这种病人施行该种手术,设x为8个病人中生存下来的人数:(1)求p(x=7);(2)写出x的概率分布。

5、某种灯泡使用寿命在1000h以上的概率为0.2,求3个灯泡使用1000h后,至多只坏一个的概率。

6、假定随机变量z~N(0,1),查表求:(1)P(z≤2.75);(2)P(z<0.5);(3)P(z >-1.5);(4)P(2<z<2.9);(5)P(-2<z<2.9)。

7、设~N(0,1),查表求:(1)P(0<<1.9);(2)P(-1.83<<0);(3)P(||<1)。

8、设随机变量x只能取5,6,7,……,16这12个值,且取每个值的机会是均等的,试求:(1)P(x>8);(2)P(6<x≤14);(3)P(x≥10)。

9、设15件同类型的零件中有2件是不合格品,从其中任取3件,以x表示取出的3件中的不合格品件数,试求x的概率分布。

10、随机变量x的分布列为P(x=k)=(k=1,2,3,4,5),试求:(1)P(x<3);(2)P;(3)P(2≤x≤4)。

11、一制药厂组织两组技术人员分别独立地试制不同类型的新药,设每组试制成功的概率都是0.40。

当第一组成功时,该组研制的新药的年销售额为400万元,若失败则没有收入;当第二组成功时,该组研制的新药的年销售额为600万元,若失败则没有收入,以x表示这两种新药的年销售总额,求x的概率分布。

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)

9道题分清超几何分布和二项分布(含答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March9道题分清超几何分布和二项分布(含答案)一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k07.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:步数(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)性别男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X 名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k08.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人男性录用人男性录用比女性应聘人女性录用人女性录用比数数例数数例A26916762%402460% B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k9道题分清超几何分布和二项分布参考答案与试题解析一.解答题(共9小题)1.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.【分析】(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望值.【解答】解:(1)甲恰好通过两个项目测试的概率为;……(4分)(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P…………(8分)所以,X的数学期望为.……(10分)【点评】本题考查了离散型随机变量的分布列与数学期望问题,是基础题.2.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(Ⅱ)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求随机变量X的分布列及数学期望.【分析】(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(Ⅰ)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(Ⅱ)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列为:X0123PE(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.3.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:步数[0,4000)[4000,16000)[16000,+∞]人数61812现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.(1)求这两人健步走状况一致的概率;(2)求“健步超人”人数X的分布列与数学期望.【分析】(1)记事件A,这2人健步走状况一致,利用互斥事件概率计算公式能求出这两人健步走状况一致的概率.(2)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)记事件A,这2人健步走状况一致,则.(2)X的可能取值为0,1,2,所以,所以X的分布列为X 0 1 2P所以.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查互斥事件概率计算公式、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.4.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长%.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于500万元的城市个数;(2)在上述抽取的40个城市中任取2个,设Y为产值不超过500万元的城市个数,求Y的分布列及期望和方差.【分析】(1)根据频率分布直方图,能求出产值小于500万元的城市个数.(2)由Y的所有可能取值为0,1,2.分别滶出相应的概率,由此能求出Y的分布列及期望和方差.【解答】解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(+)×5]×40=14.(2)Y的所有可能取值为0,1,2.,,.∴Y的分布列为:Y012P期望为:,方差为:.【点评】本题考查概率的求法,考查离散型随机变量的分布、期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.5.生蚝即牡蛎(oyster)是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜生蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产生蚝,生蚝乃软体有壳,衣服寄生的动物,咸淡水交界所产尤为肥美,因此生蚝称为了一年四季不可或缺的一类美食,某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到结果如表所示:质量(g)[5,15)[15,25)[25,35)[35,45)[45,55]数量 6 10 12 8 4(1)若购进这批生蚝500kg,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[5,25)间的生蚝的个数为X,求X的分布列及数学期望.【分析】(1)估算妹纸生蚝的质量为,由此能估计这批生蚝的数量.(2)任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由表中的数据可以估算妹纸生蚝的质量为:,所以购进500kg,生蚝的数量为500000÷≈17554(只).(2)由表中数据知,任意挑选一只,质量在[5,25)间的概率为,X的可能取值为0,1,2,3,4,则,,∴X的分布列为:X 0 1 2 3 4P∴.【点评】本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.6.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:经常进行网络购物偶尔或从不进行网络购物合计男性5050100女性6040100合计11090200(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.附:,其中n=a+b+c+dP(K2≥k0)k0【分析】(1)由列联表数据求出K2≈<,从而不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有3人,偶尔或从不进行网购的有2人,由此能求出从这5人中选出3人至少有2人经常进行网购的概率.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),由此能求出X的期望和方差.【解答】解:(1)由列联表数据计算K2=≈<,∴不能在犯错误的概率不超过的前提下认为该市市民网购情况与性别有关.(2)由题意,抽取的5名女性网民中,经常进行网购的有5×=3人,偶尔或从不进行网购的有5×=2人,故从这5人中选出3人至少有2人经常进行网购的概率是p=+=.(3)由列联表可知,经常进行网购的频率为,由题意,从该市市民中任意抽取1人恰好是经常进行网购的概率是,由于该市市民数量很大,故可以认为X~B(10,),∴E(X)=,D(X)==.【点评】本题考查独立性检验及应用,考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.手机QQ中的“QQ运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的QQ朋友圈里有大量好友参与了“QQ运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如表所示:(0,2500)[2500,5000)[5000,7500)[7500,10000)[10000,+∞)步数性别男02472女13731(Ⅰ)以样本估计总体,视样本频率为概率,在小明QQ朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有X 名,求X的分布列和数学期望;(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“QQ运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关积极型消极型总计男女总计附:.P(K2≥k0)k0【分析】(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅱ)完成2×2列联表求出k2的观测值k0≈<.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【解答】解:(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.X可能取值分别为0,1,2,3,∴,,,,∴X的分布列为X0123P则.(Ⅱ)完成2×2列联表如下:积极型消极型总计男9615女41115总计131730k2的观测值=.据此判断没有95%以上的把握认为“评定类型”与“性别”有关.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查独立检验的应用,考查古典概型、二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例A26916762%402460%B401230%2026231%C1775732%1845932%D442659%382258%E3267%3267%总计53326450%46716936%(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;(Ⅱ)从应聘E岗位的6人中随机选择2人.记X为这2人中被录用的人数,求X的分布列和数学期望;(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【分析】(I)根据录用总人数与应聘总人数的比值得出概率;(II)根据超几何分布列的概率公式得出分布列和数学期望;(III)去掉一个岗位后计算剩余4个岗位的男女总录用比例得出结论.【解答】解:(Ⅰ)因为表中所有应聘人员总数为533+467=1000,被该企业录用的人数为264+169=433,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(Ⅱ)X可能的取值为0,1,2.因为应聘E岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:X012P.(Ⅲ)取掉A岗位后,男性的总录用比例为≈%,女性的总录用比例为≈%,故去掉A岗位后,男、女总录用比例接近.∴这四种岗位是:B、C、D、E.【点评】本题考查了古典概型的概率计算,离散型随机变量的分布列,属于中档题.9.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.文科生理科生合计获奖5不获奖合计200附表及公式:K2=,其中n=a+b+c+dP(K2≥k)k【分析】(1)列出表格根据公式计算出K2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).即可得出.【解答】解:(1)文科生理科生合计获奖53540不获奖45115160合计50150200k==≈>,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),X0123PE(X)=3×=.【点评】本题考查了独立性检验原理、二项分布列的概率计算公式与数学期望,考查了推理能力与计算能力,属于中档题.。

高中试卷-专题7.4 二项分布与超几何分布(含答案)

高中试卷-专题7.4 二项分布与超几何分布(含答案)

专题7.4 二项分布与超几何分布姓名: 班级:重点二项分布与超几何分布的特征难点二项分布与超几何分布的计算一、超几何分布例1-1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )。

A 、41004901C C -B 、4100390110490010C C C C C ⋅+⋅C 、4100110C CD 、4100390110C C C ⋅【答案】D【解析】由超几何分布概率公式可知,所求概率为4100110390C C C ⋅,故选D 。

例1-2.有8名学生,其中有5名男生。

从中选出4名代表,选出的代表中男生人数为X ,则其数学期望为=)(X E ( )。

A 、2B 、5.2C 、3D 、5.3【答案】B【解析】随机变量X 的所有可能取值为1、2、3、4,141)1(483315=⋅==C C C X P 、73)2(482325=⋅==C C C X P 、73)3(481335=⋅==C C C X P 、141)4(48345=⋅==C C C X P ,X 的分布列为:X1234P1417373141∴2514137337321411)(=⨯+⨯+⨯+⨯=X E ,故选B 。

例1-3.在含有3件次品的10件产品中,任取4件,X 表示取到的次品数,则==)2(X P 。

【答案】103【解析】X 满足超几何分布,∴103)2(4102723=⋅==C C C X P 。

例1-4.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望 。

【答案】109【解析】由题设知含有红色乒乓球个数ξ的可能取值是0、1、2、3,247)0(3103703=⋅==ξC C C P ,4021)1(3102713=⋅==ξC C C P ,407)2(3101723=⋅==ξC C C P ,1201)3(310733=⋅==ξC C C P ,109120134072402112470)(=⨯+⨯+⨯+⨯=ξE 。

高中数学 7.4 二项分布与超几何分布 课后练习、课时练习

高中数学  7.4 二项分布与超几何分布 课后练习、课时练习

一、单选题1. 某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为,,且满足,每局之间相互独立.记甲、乙在轮训练中训练过关的轮数为,若,则从期望的角度来看,甲、乙两人训练的轮数至少为()A.27 B.24 C.32 D.282. 从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于A.B.C.D.3. 1654年,法国贵族德•梅雷骑士偶遇数学家布莱兹•帕斯卡,在闲聊时梅雷谈了最近遇到的一件事:某天在一酒吧中,肖恩和尤瑟纳尔两人进行角力比赛,约定胜者可以喝杯酒,当肖恩赢20局且尤瑟纳尔赢得40局时他们发现桌子上还剩最后一杯酒.此时酒吧老板和伙计提议两人中先胜四局的可以喝最后那杯酒,如果四局、五局、六局、七局后可以决出胜负那么分别由肖恩、尤瑟纳尔、酒吧伙计和酒吧老板付费,梅雷由于接到命令需要觐见国王,没有等到比赛结束就匆匆离开了酒馆.请利用数学知识做出合理假设,猜测最后付酒资的最有可能是()A.肖恩B.尤瑟纳尔C.酒吧伙计D.酒吧老板4. 甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是,则甲回家途中遇红灯次数的数学期望是()A.1.2 B.1.6 C.1.5 D.25. 将一枚硬币连掷5次,如果出现k次正面向上的概率等于出现k+1次正面向上的概率,那么k的值为()A.0 B.1 C.2 D.36. 如果,那么当X,Y变化时,使P(X=k)=P(Y=r)成立的(k,r)的个数为()A.21 B.20 C.10 D.0二、多选题7. 下列结论正确的有()A.若随机变量满足,则B.用相关指数来刻画回归效果,模型1的相关指数,模型2的相关指数,则模型1的拟合效果更好.C.若线性相关系数越接近1,则两个变量的线性相关性越强D.设随机变量服从二项分布,则8. 为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学开展了冬奥会项目科普活动.为了了解学生对冰壶这个项目的了解情况,在北京市中小学中随机抽取了10 所学校,10所学校中了解这个项目的人数如图所示:若从这10所学校中随机选取2所学校进行这个项目的科普活动,记为被选中的学校中了解冰壶的人数在30以上的学校个数,则()A.的取值范围为B.C.D.三、填空题9. 已知随机变量,则______.10. 随机变量,若,则___________.11. 一批产品的一等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的一等品件数,则__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率及乘法公式练习题
1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的
条件下第二张也是奇数的概率( )
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽
取一粒,求这粒种子能成长为幼苗的概率。

3•某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的
1 1
概率是2,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3,求两次闭合都出现红灯的概率。

4.市场供应的灯泡中,甲厂产品占有70%乙厂产品占有30%甲厂产品的合格率为95% 乙厂产品的合格率为80%现从市场中任取一灯泡,假设A= “甲厂生产的产品” ,A = “乙厂生产的产品”,B=“合格灯泡”,B = “不合格灯泡”,求:
(1) P(B|A) ; (2) P( B |A) ; (3) P(B| A ) ; ( 4) P( B | A).
超几何分布及二项分布练习题
1. 一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的5个红球与编号为1,2,3,4
的4个白球,从中任意取出3个球.
(I)求取出的3个球颜色相同且编号是三个连续整数的概率;
(n)求取出的3个球中恰有2个球编号相同的概率;
2.今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的
名额分配如下:
(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;
(II )若将4名教师安排到三个年级 (假设每名教师加入各年级是等可能的,且各位教师
的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
3.某学校随机抽取部分新生调查其上学所需时间(单位:分钟) ,并将所得数据绘制成频率
分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),
[20,40),[40,60),[60,80),[80,100].
(I)求直方图中x的值;
(n)如果上学所需时间不少于1小时的学生可申请在学校
住宿,请估计学校600名新生中有多少名学生可以申请住宿;
(川)从学校的新生中任选4名学生,这4名学生中上学所需
时间少于20分钟的人数记为X,求X的分布列和数学期望
•(以直方图中新生上学所需时间少于20
分钟的频率作为每名学生上学所需时间少于20分钟的概率)
4•甲、乙两人参加某种选拔测试•在备选的10道题中,甲答对其中每道题的概率都是-,
5 乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(I)求乙得分的分布列和数学期望
(n)求甲、乙两人中至少有一人入选的概率.
1
5.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为一,乙每次投中的概率
3
为一,每人分别进行三次投篮.
2
(I)记甲投中的次数为E ,求E的分布列及数学期望E E ;…]
(n)求乙至多投中2次的概率;
(川)求乙恰好比甲多投进2次的概率.
6.某游乐场将要举行狙击移动靶比赛•比赛规则是:每位选手可以选择在A区射击3
次或选择在B区射击2次,在A区每射中一次得3分,射不中得0分;在B区每射中一次
1
得2分,射不中得0分.已知参赛选手甲在A区和B区每次射中移动靶的概率分别是和
4
p(0 ::: p ::: 1).
(I )若选手甲在A区射击,求选手甲至少得3分的概率;
(II)我们把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围•。

相关文档
最新文档