高考数学总复习之函数的奇偶性

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性

2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性

2024年高考数学总复习第二章《函数与基本初等函数》§2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.概念方法微思考1.如果已知函数f (x ),g (x )的奇偶性,那么函数f (x )±g (x ),f (x )·g (x )的奇偶性有什么结论?提示在函数f (x ),g (x )公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f (x )满足下列条件,你能得到什么结论?(1)f (x +a )=-f (x )(a ≠0);(2)f (x +a )=1f (x )(a ≠0);(3)f (x +a )=f (x +b )(a ≠b ).提示(1)T =2|a |(2)T =2|a |(3)T =|a -b |题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(0,+∞)是偶函数.(×)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√)题组二教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.答案-2解析f (1)=1×2=2,又f (x )为奇函数,∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )-4x 2+2,-1≤x <0,x ,0≤x <1,则f 32______.答案1解析f 32=f -124×-122+2=1.4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题组三易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13 B.13C.12D .-12答案B 解析∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.答案3解析∵f (x )为偶函数,∴f (-1)=f (1).又f (x )的图象关于直线x =2对称,∴f (1)=f (3).∴f (-1)=3.题型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f (x )=36-x 2+x 2-36;(2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )2+x ,x <0,x 2+x ,x >0.解(1)-x 2≥0,2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称,∴f (x )=36-x 2+x 2-36=0.∴f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)-x 2>0,-2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ),∴函数f (x )为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1(1)下列函数中,既不是奇函数也不是偶函数的是()A .f (x )=x +sin 2xB .f (x )=x 2-cos xC .f (x )=3x -13xD .f (x )=x 2+tan x答案D解析对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x-13-x =-x f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)(2018·石景山模拟)下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数为()A .y =xB .y =-x 3C .y =12log xD .y =x +1x答案B解析由题意得,对于函数y =x 和函数y =12log x 都是非奇非偶函数,排除A ,C.又函数y=x +1x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.题型二函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________.答案-2解析f (7)=f (-1)=-f (1)=-2.2.已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f(2020)=f(4).因为f(2+2)=1-f(2),所以f(4)=-1f(2)=-12-3=-2- 3.故f(2020)=-2- 3.3.(2017·山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.答案6解析∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.4.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f(1)+f(2)+________.答案2-1解析依题意知:函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.∴f(1)+f(2)+=0+f(0)+=f(0)+=f(0)=122-1+20-1=2-1.思维升华利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三函数性质的综合应用命题点1求函数值或函数解析式例2(1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2021)=________.答案-12解析设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案e-x -1-x ,x ≤0,e x -1+x ,x >0解析∵当x >0时,-x <0,∴f (x )=f (-x )=e x -1+x ,∴f (x )e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2求参数问题例3(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________.答案1解析∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2),∴ln[(a +x 2)2-x 2]=0.∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f 12=f 32,则a +3b 的值为________.答案-10解析因为f (x )是定义在R 上且周期为2的函数,所以ff (-1)=f (1),故从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________.答案[-1,0]解析因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0-a -2=a 2≤0,1-a ≤0,≤0,≥-1,即-1≤a ≤0.命题点3利用函数的性质解不等式例4(1)(2018·聊城模拟)已知函数f (x )=|x |(10x -10-x ),则不等式f (1-2x )+f (3)>0的解集为()A .(-∞,2)B .(2,+∞)C .(-∞,1)D .(1,+∞)答案A解析由于f (-x )=-f (x ),所以函数为奇函数,且为单调递增函数,故f (1-2x )+f (3)>0等价于f (1-2x )>-f (3)=f (-3),所以1-2x >-3,x <2,故选A.(2)设函数f (x )=ln(1+|x |)-11+x2,解不等式f (x )>f (2x -1).解由已知得函数f (x )为偶函数,所以f (x )=f (|x |),由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|).当x>0时,f(x)=ln(1+x)-11+x2,因为y=ln(1+x)与y=-11+x2在(0,+∞)上都单调递增,所以函数f(x)在(0,+∞)上单调递增.由f(|x|)>f(|2x-1|),可得|x|>|2x-1|,两边平方可得x2>(2x-1)2,整理得3x2-4x+1<0,解得13<x<1.所以符合题意的x思维升华解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2(1)定义在R上的奇函数f(x)满足f(x),当x ,12时,f(x)=12log(1)x ,则f(x)()A.减函数且f(x)>0B.减函数且f(x)<0 C.增函数且f(x)>0D.增函数且f(x)<0答案D解析当x ,12时,由f(x)=12log(1-x)可知,f(x)单调递增且f(x)>0,又函数f(x)为奇函数,所以在区间-12,f(x)<0.由f(x)知,函数的周期为32,f(x)<0.故选D.(2)(2018·烟台模拟)已知偶函数f(x)在[0,+∞)上单调递增,且f(1)=-1,f(3)=1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[3,5]B.[-1,1]C.[1,3]D.[-1,1]∪[3,5]答案D解析由偶函数f(x)在区间[0,+∞)上单调递增,则在区间(-∞,0)上单调递减,又f(1)=-1,f(3)=1,则f(-1)=-1,f(-3)=1,要使得-1≤f(x-2)≤1,即1≤|x-2|≤3,即1≤x-2≤3或-3≤x-2≤-1,解得-1≤x≤1或3≤x≤5,即不等式的解集为[-1,1]∪[3,5],故选D.(3)已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)3,x≤0,(x),x>0,解不等式f(6-x2)>f(x).解∵g(x)是奇函数,∴当x>0时,g(x)=-g(-x)=ln(1+x),易知f(x)在R上是增函数,由f(6-x2)>f(x),可得6-x2>x,即x2+x-6<0,∴-3<x<2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1(1)(2017·全国Ⅰ)已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案C解析f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误;∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确;∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10]答案B解析依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(3)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确命题的序号是________.答案①②③解析由f(x)+f(x+2)=0可得f(x+4)=-f(x+2)=f(x),∴函数f(x)的最小正周期是4,①对;由f(4-x)=f(x),可得f(2+x)=f(2-x),f(x)的图象关于直线x=2对称,②对;f(4-x)=f(-x)且f(4-x)=f(x),∴f(-x)=f(x),f(x)为偶函数,③对.二、函数性质的综合应用例2(1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则()A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案D解析因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).(3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________.答案{a |a >4或a <0}解析∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是()A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案B解析函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于()A .-3B .-54C.54D .3答案A 解析由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是()①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x .A .①③B .②③C .①④D .②④答案D解析由奇函数的定义f (-x )=-f (x )验证,①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数;③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;④f (-x )+(-x )=-[f (x )+x ],为奇函数.可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f (1)等于()A .-2B .0C .2D .1答案A解析∵函数f (x )为定义在R 上的奇函数,且周期为2,∴f (1)=-f (-1)=-f (-1+2)=-f (1),∴f (1)=0,124=-2,∴f (1)=-2.5.(2018·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为()A .(2,+∞)(2,+∞)(2,+∞)D .(2,+∞)答案B解析f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2018·海南联考)已知函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),当x ∈[0,6]时,f (x )=log 6(x +1),若f (a )=1(a ∈[0,2020]),则a 的最大值是()A .2018B .2010C .2020D .2011答案D解析由函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),可得f (-x )=f (12+x ),即f (x )=f (12+x ),故函数的周期为12.令log 6(a +1)=1,解得a =5,∴在[0,12]上f (a )=1的根为5,7;又2020=12×168+4,∴a 的最大值在[2004,2016]上,即2004+7=2011.故选D.7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立,所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ________.答案-ln 2解析由已知可得ln 1e2=-2,所以f (-2).又因为f (x )是奇函数,所以f (-2)=-f (2)=-ln 2.9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.答案9解析由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+2f (1),那么t 的取值范围是________.答案1e,e 解析由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=由f (ln t )+2f (1),得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增的,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e.11.已知函数f (x )x 2+2x ,x >0,,x =0,2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)-2>-1,-2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2023)=________.答案1解析因为f (x )>0,f (x +2)=1f (x ),所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2023)=f (506×4-1)=f (-1).因为函数f (x )为偶函数,所以f (2023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2023)=f (1)=1.14.(2018·天津河西区模拟)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2+1,0≤x <1,-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m的最大值是()A .-1B .-13C .-12D.13答案B解析易知函数f (x )在[0,+∞)上单调递减,又函数f (x )是定义在R 上的偶函数,所以函数f (x )在(-∞,0)上单调递增,则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立,当m =-1时,g (x )=0,符合要求,当m ≠-1(m )=(3m -1)(m +1)≤0,(m +1)=(m +1)(3m +1)≤0,解得-1<m ≤-13,所以-1≤m ≤-13,即m 的最大值为-13.15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为______________________________.答案2解析易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2](-2)<0,(2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2020)的值.解因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f(x)的周期为4,所以f(4)=f(0)=0,f(3)=f(-1)=-f(1).在f(x+1)=f(-x+1)中,令x=1,可得f(2)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2020)=0.。

2025届高考数学一轮复习讲义函数之 函数的奇偶性、周期性与对称性

2025届高考数学一轮复习讲义函数之 函数的奇偶性、周期性与对称性
D 都有 x + T ∈ D ,且⑨
f ( x + T )= f (做周期函数.非零
常数 T 叫做这个函数的周期.
(2)最小正周期
如果在周期函数 f ( x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫
做 f ( x )的⑩
注意
最小
正周期.
并不是所有的周期函数都有最小正周期,如 f ( x )=5.
1
f(x)= +|x|

4. 已知函数 f ( x )为R上的偶函数,且当 x <0时, f ( x )= x ( x -1),则当 x >0时,
f ( x )= x ( x +1)
.

5. 已知定义在R上的函数 f ( x )满足 f ( x )= f ( x -2),当 x ∈[0,2)时, f ( x )= x 2-4
x ,则当 x ∈[4,6)时, f ( x )=
x 2-12 x +32
.

[解析] 设 x ∈[4,6),则 x -4∈[0,2),则 f ( x -4)=( x -4)2-4( x -4)= x 2-12 x
+32.又 f ( x )= f ( x -2),所以函数 f ( x )的周期为2,所以 f ( x -4)= f ( x ),所以当 x
a |;
(2)若函数 f ( x )的图象既关于点( a ,0)对称,又关于点( b ,0)对称,则函数 f ( x )的周
期为2| b - a |;
(3)若函数 f ( x )的图象既关于直线 x = a 对称,又关于点( b ,0)对称,则函数 f ( x )的
周期为4| b - a |.
二、基础题练习

,那么

高考数学知识点汇总函数的奇偶性与周期性

高考数学知识点汇总函数的奇偶性与周期性

高考数学知识点汇总函数的奇偶性与周期性高考数学知识点汇总函数的奇偶性与周期性知识要点:一、函数的奇偶性1.定义:关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=f(x),那么f (x)为偶函数;2.性质:(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;(2) f(x),g(x)的定义域为D;(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;(5)任意一个定义域关于原点对称的函数f(x)总能够表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x) =-[f(x)-f(-x)]为奇函数;(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。

3.判定方法:(1)定义法(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;f(-x)-f(x)=0,f(x)为偶函数。

4.拓展延伸:(1)一样地,关于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2 b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;(2)一样地,关于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a -x),则它的图象关于x=a成轴对称。

二、周期性:1.定义:关于函数y=f(x),假如存在一个非零常数T,使得当自变量x 取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。

2.图象特点:将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。

函数的奇偶性、周期性与对称性-高考数学复习

函数的奇偶性、周期性与对称性-高考数学复习
±1,解得 a =0(舍去)或 a =2,故选D.
法二

− −1
因为 f ( x )是偶函数,所以 f (1)- f (-1)= - −
−1
−1
− −1

=0,所以 a -1=1,所以 a =2.故选D.
−1
目录
高中总复习·数学
解题技法
利用函数的奇偶性求参数值的解题策略
目录
高中总复习·数学
考向3 利用奇偶性求解析式及函数值
【例3】 (1)已知偶函数 f ( x ),当 x ∈[0,2)时, f ( x )=2
π
sin x ,当 x ∈[2,+∞)时, f ( x )=log2 x ,则 f (- )+ f (4)
3
=(

B. 1
D. 3
目录
高中总复习·数学
解析:∵函数 f ( x )是偶函数,当 x ∈[0,2)时, f ( x )=2 sin
所以 f ( x )既是奇函数又是偶函数.
目录
高中总复习·数学
(3) f ( x )=
36− 2
|+3|−3
解:由 f ( x )=

36− 2
|+3|−3
,可得
36 − 2 ≥ 0,
−6 ≤ ≤ 6,
⇒ቊ
故函数 f ( x )的定义域为

| + 3| − 3 ≠ 0 ≠ 0且 ≠ −6,
1(符合题意).故选A.
目录
高中总复习·数学
2. (多选)下列函数中为非奇非偶函数的是(

A. y = x +e x
目录
高中总复习·数学
解析:
记 f ( x )= x +e x ,则 f (-1)=-1+e-1, f (1)=

高三数学复习课件【函数的奇偶性及周期性】

高三数学复习课件【函数的奇偶性及周期性】

f(x)=- x,4x02≤+x2<,1,-1≤x<0, 则 f 32=________. 解析:∵f(x)是定义在 R 上的周期为 2 的函数,
且 f(x)=-x,4x02≤+x2<,1,-1≤x<0, ∴f 32=f -12=-4×-122+2=1. 答案:1
返回 2.已知定义在 R 上的函数满足 f(x+2)=-f1x,x∈(0,2]时,f(x)
关 于 _原__点_ 对称
f(x)就叫做奇函数
返回 2.函数的周期性 (1)周期函数
对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)=f(x) ,那么就称函数 f(x)为周期函数,称 T 为这个函数的周期. (2)最小正周期 如果在周期函数 f(x)的所有周期中存在一个 最小的正数 , 那么这个 最小正数 就叫做 f(x)的最小正周期.
关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项
定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数也
不是偶函数. 答案:B
返回
3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b
的值是
()
A.-13
B.13
C.12
D.-12
解ห้องสมุดไป่ตู้:∵f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,∴a-
奇函数,所以 f 121=f -12=-f 12=123=18. 答案:B
返回
5.函数 f(x)在 R 上为奇函数,且 x>0 时,f(x)=x+1,则当 x<0 时,f(x)=________. 解析:∵f(x)为奇函数,x>0 时,f(x)=x+1, ∴当 x<0 时,-x>0,f(x)=-f(-x)=-(-x+1), 即 x<0 时,f(x)=-(-x+1)=x-1. 答案:x-1

高中数学高考总复习函数的奇偶性习题及详解

高中数学高考总复习函数的奇偶性习题及详解

高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)以下函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,假设x =0在定义域内,那么应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,应选A.(理)以下函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.应选D.2.(2021·安徽理,4)假设f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,那么f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,应选A.3.(2021·河北唐山)f (x )与g (x )分别是定义在R 上奇函数与偶函数,假设f (x )+g (x )=log 2(x 2+x +2),那么f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2021·北京崇文区)f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,那么f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2021·山东日照)函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),假设f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2021·辽宁锦州)函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.假设g (x )=f (x )+2,那么g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,那么函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 那么f (x )=4-x 2-x ,f (x )+f (-x )=0,应选B.7.f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),那么a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .应选C.8.函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),那么f (2021)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2021)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,那么使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,应选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,那么f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,应选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是以下图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,应选C.二、填空题11.(文)f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),那么f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,那么f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2021·深圳中学)函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如下图,那么不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)假设f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.那么f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,那么f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2021·山东枣庄模拟)假设f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,那么a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,那么问题变得比拟简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2021·吉林长春质检)函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,那么使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2021·杭州外国语学校)f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)假设曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)假设当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2021·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)当x ∈[-2,0]时,-x ∈[0,2],由得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2021)+f (2021)+f (2021)+f (2021)=0.∴f (0)+f (1)+f (2)+…+f (2021)=0.17.(文)函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)假设f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 假设m >0,那么n <0.那么F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 假设m <0,那么n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。

高考数学总复习考点知识讲解与提升练习8 函数的奇偶性、周期性

高考数学总复习考点知识讲解与提升练习8 函数的奇偶性、周期性

高考数学总复习考点知识讲解与提升练习专题8 函数的奇偶性、周期性考点知识1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)为奇函数,则f(0)=0.(×)(2)不存在既是奇函数,又是偶函数的函数.(×)(3)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.(×)(4)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.(√)教材改编题1.若偶函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上() A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)答案A解析偶函数f(x)在区间[-2,-1]上单调递减,则由偶函数的图象关于y轴对称,则有f(x)在[1,2]上单调递增,即有最小值为f(1),最大值为f(2).对照选项,A正确.2.已知函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,则f(-2)=________. 答案-6解析因为函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,所以f(-2)=-f(2)=-(2+4)=-6.3.已知函数f(x)是定义在R上的周期为4的奇函数,若f(1)=1,则f(2023)=________. 答案-1解析因为函数f(x)是定义在R上的周期为4的奇函数,所以f(2023)=f(506×4-1)=f(-1)=-f(1)=-1.题型一函数奇偶性的判断例1(多选)下列命题中正确的是()A.奇函数的图象一定过坐标原点B.函数y=x sin x是偶函数C.函数y=|x+1|-|x-1|是奇函数D.函数y=x2-xx-1是奇函数答案BC解析对于A,只有奇函数在x=0处有定义时,函数的图象过原点,所以A不正确;对于B,因为函数y=x sin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),所以该函数为偶函数,所以B正确;对于C,函数y=|x+1|-|x-1|的定义域为R关于原点对称,且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),所以函数为奇函数,所以C正确;对于D,函数y=x2-xx-1满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,所以该函数为非奇非偶函数,所以D不正确.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.跟踪训练1已知函数f(x)=sin x,g(x)=e x+e-x,则下列结论正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C解析选项A,f(x)g(x)=(e x+e-x)sin x,f(-x)g(-x)=(e-x+e x)sin(-x)=-(e x+e-x)sin x=-f(x)g(x),是奇函数,判断错误;选项B ,|f (x )|g (x )=|sin x |(e x +e -x ),|f (-x )|g (-x )=|sin(-x )|(e -x +e x )=|sin x |(e x +e -x )=|f (x )|g (x ),是偶函数,判断错误;选项C ,f (x )|g (x )|=|e x +e -x |sin x ,f (-x )|g (-x )|=|e -x +e x |sin(-x )=-|e x +e -x |sin x =-f (x )|g (x )|,是奇函数,判断正确;选项D ,|f (x )g (x )|=|(e x +e -x )sin x |,|f (-x )g (-x )|=|(e -x +e x )sin(-x )| =|(e x +e -x )sin x |=|f (x )g (x )|,是偶函数,判断错误.题型二函数奇偶性的应用命题点1利用奇偶性求值(解析式)例2(1)(2023·福州模拟)已知函数f (x )=⎩⎨⎧ x 3+1,x >0,ax 3+b ,x <0为偶函数,则2a +b 等于()A .3B.32C .-12D .-32答案B解析由已知得,当x >0时,-x <0,f (-x )=-ax 3+b ,∵f (x )为偶函数,∴f (-x )=f (x ),即x 3+1=-ax 3+b ,∴a =-1,b =1,∴2a +b =2-1+1=32. (2)(2023·吕梁模拟)已知函数f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )=2x +x -1,则当x <0时,f (x )等于()A .2-x -x -1B .2-x +x +1C .-2-x -x -1D .-2-x +x +1答案D解析当x <0时,-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-2-x +x +1.命题点2利用奇偶性解不等式例3函数f (x )是定义域为R 的奇函数,f (x )在(0,+∞)上单调递增,且f (2)=0.则不等式f (x )-2f (-x )x>0的解集为() A .(-2,2)B .(-∞,0)∪(0,2)C .(2,+∞)D .(-∞,-2)∪(2,+∞)答案D解析由于f (x )是定义域为R 的奇函数,所以f (0)=0,又f (x )在(0,+∞)上单调递增,且f (2)=0,所以f (x )的大致图象如图所示.由f (-x )=-f (x )可得,f (x )-2f (-x )x =f (x )+2f (x )x =3f (x )x>0, 由于x 在分母位置,所以x ≠0,当x <0时,只需f (x )<0,由图象可知x <-2;当x >0时,只需f (x )>0,由图象可知x >2;综上,不等式的解集为(-∞,-2)∪(2,+∞).思维升华(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练2(1)已知函数f (x )=sin x +x 3+1x+3,若f (a )=1,则f (-a )等于() A .1B .3C .4D .5答案D解析根据题意f (a )=sin a +a 3+1a+3=1, 即sin a +a 3+1a=-2, 所以f (-a )=sin(-a )+(-a )3+1(-a )+3 =-⎝⎛⎭⎪⎫sin a +a 3+1a +3=2+3=5. (2)已知函数f (x )=log 2(|x |+1),若f (log 2x )<f (2),则实数x 的取值范围是()A .(1,4) B.⎝⎛⎭⎪⎫0,14∪(4,+∞) C.⎝ ⎛⎭⎪⎫14,1∪(1,4) D.⎝ ⎛⎭⎪⎫14,4 答案D解析依题意,函数f (x )是偶函数,且在[0,+∞)上单调递增,∴f (x )在(-∞,0)上单调递减,则f (log 2x )<f (2)等价于|log 2x |<2,∴-2<log 2x <2,解得14<x <4. (3)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案1解析方法一(定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二(取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12, 解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.题型三函数的周期性例4(1)若定义在R 上的偶函数f (x )满足f (2-x )=-f (x ),且当1≤x ≤2时,f (x )=x-1,则f ⎝ ⎛⎭⎪⎫72的值等于()A.52B.32C.12D .-12答案D解析∵函数f (x )是偶函数,∴f (-x )=f (x ),又∵f (2-x )=-f (x ),∴f (2-x )=-f (-x ),∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴函数f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫72-4=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=-f ⎝ ⎛⎭⎪⎫2-12=-f ⎝ ⎛⎭⎪⎫32=-12. (2)设f (x )是定义在R 上周期为4的偶函数,且当x ∈[0,2]时,f (x )=log 2(x +1),则函数f (x )在[2,4]上的解析式为____________________.答案f (x )=log 2(5-x ),x ∈[2,4]解析根据题意,设x ∈[2,4],则x -4∈[-2,0],则有4-x ∈[0,2],当x ∈[0,2]时,f (x )=log 2(x +1),则f (4-x )=log 2[(4-x )+1]=log 2(5-x ),又f (x )为周期为4的偶函数,所以f (x )=f (x -4)=f (4-x )=log 2(5-x ),x ∈[2,4],则有f (x )=log 2(5-x ),x ∈[2,4].思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练3(多选)已知定义在R上的偶函数f(x),其周期为4,当x∈[0,2]时,f(x)=2x-2,则()A.f(2023)=0B.f(x)的值域为[-1,2]C.f(x)在[4,6]上单调递减D.f(x)在[-6,6]上有8个零点答案AB解析f(2023)=f(506×4-1)=f(-1)=f(1)=0,所以A正确;当x∈[0,2]时,f(x)=2x-2单调递增,所以当x∈[0,2]时,函数的值域为[-1,2],由于函数是偶函数,所以函数的值域为[-1,2],所以B正确;当x∈[0,2]时,f(x)=2x-2单调递增,又函数的周期是4,所以f(x)在[4,6]上单调递增,所以C错误;令f(x)=2x-2=0,所以x=1,所以f(1)=f(-1)=0,由于函数的周期为4,所以f(5)=f(-5)=0,f(3)=f(-3)=0,所以f(x)在[-6,6]上有6个零点,所以D错误.课时精练1.(多选)下列函数中,既是奇函数又在区间(0,1)上单调递增的是()A.y=2x3+4x B.y=x+sin(-x)C.y=log2|x|D.y=2x-2-x答案ABD解析对于A,定义域为R,且f(-x)=-2x3-4x=-f(x),故为奇函数,又y′=6x2+4>0,所以y=2x3+4x在(0,1)上单调递增,故A满足题意;对于B,定义域为R,f(-x)=-x+sin x=-f(x),故为奇函数,又y′=1-cos x≥0,且y′不恒为0,所以y=x+sin(-x)在(0,1)上单调递增,故B满足题意;对于C,定义域为{x|x≠0},f(-x)=log2|x|=f(x),故为偶函数,故C不满足题意;对于D,定义域为R,f(-x)=2-x-2x=-f(x),为奇函数,又y′=2x ln2+2-x ln2>0,所以y=2x-2-x在(0,1)上单调递增,故D满足题意.2.(2023·聊城模拟)已知函数f(x)的定义域为R,则“f(x)是偶函数”是“|f(x)|是偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析偶函数的图象关于y轴对称,奇函数的图象关于原点对称,根据这一特征,若f(x)是偶函数,则|f(x)|是偶函数,若f(x)是奇函数,|f(x)|也是偶函数,所以“f(x)是偶函数”是“|f(x)|是偶函数”的充分不必要条件.3.(2022·河南名校联盟模拟)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)等于()A .0B .2C .4D .-2 答案D解析∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2,∴f (2)=f (0)=0,f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=124-=-2,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2.4.(2022·亳州模拟)已知函数f (x )=x 2+log 2|x |,a =f (2-0.2),b =f (lg π),c =f (log 0.26),则a ,b ,c 的大小关系正确的是() A .a <b <c B .b <c <a C .b <a <c D .c <b <a 答案C解析2-0.2<20=1,lg π>0,log 0.26<0, 因为f (-x )=(-x )2+log 2|-x |=f (x ), 所以f (x )为偶函数,所以只需判断2-0.2,lg π,-log 0.26的大小即可, -log 0.26=log 0.216>1,2-1<2-0.2<20=1,0<lg π<lg 10=12,所以-log 0.26>1>2-0.2>lg π>0,当x >0时,y =x 2,y =log 2x 都单调递增,所以f (x )=x 2+log 2|x |在(0,+∞)上单调递增,所以c =f (log 0.26)=f (-log 0.26)>a =f (2-0.2)>b =f (lg π).5.(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是()A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1 答案B 解析f (x )=1-x 1+x =2-(x +1)1+x =21+x-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.6.(多选)f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ),当x ∈[0,1]时,f (x )=log 2(2-x ),则下列结论正确的是() A .函数f (x )的一个周期为4 B .f (2022)=1C .当x ∈[2,3]时,f (x )=-log 2(4-x )D .函数f (x )在[0,2021]内有1010个零点 答案AC解析∵f (x )是定义在R 上的偶函数,对∀x ∈R ,均有f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴函数的周期为4,故A 正确;f (2022)=f (4×505+2)=f (2)=-f (0)=-1,故B 错误; 当x ∈[2,3]时,x -2∈[0,1],则f (x )=-f (x -2)=-log 2[2-(x -2)] =-log 2(4-x ),故C 正确;易知f (1)=f (3)=f (5)=…=f (2019)=f (2021)=0, 于是函数f (x )在[0,2021]内有1011个零点,故D 错误. 7.写出一个定义域为R ,周期为π的偶函数f (x )=________. 答案cos2x (答案不唯一)解析y =cos2x 满足定义域为R ,最小正周期T =2π2=π,且为偶函数,符合要求. 8.若函数f (x )=e x -e -x ,则不等式f (ln x )+f (ln x -1)>0的解集是________. 答案(e ,+∞)解析因为f (x )=e x -e -x ,定义域为R ,且f (-x )=-(e x -e -x )=-f (x ),故其为奇函数, 又y =e x ,y =-e -x 均为增函数,故f (x )为R 上的增函数,则原不等式等价于f (ln x )>f (1-ln x ),也即ln x >1-ln x ,整理得ln x >12,解得x >e ,故不等式的解集为(e ,+∞).9.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2023). (1)证明∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)解当x ∈[-2,0]时,-x ∈[0,2], 由已知得f (-x )=2(-x )-(-x )2=-2x -x 2. 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得x∈[2,4]时,f(x)=x2-6x+8.(3)解f(0)=0, f(1)=1,f(2)=0,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2020)+f(2021)+f(2022)+f(2023)=0.∴f(0)+f(1)+f(2)+…+f(2023)=0.11.(2023·廊坊模拟)已知定义域为R的函数f(x)满足:∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),且f(1)=1,则下列结论错误的是()A.f(0)=2B.f(x)为偶函数C.f(x)为奇函数D.f(2)=-1答案C解析因为∀x,y∈R,f(x+y)+f(x-y)=f(x)f(y),取x=1,y=0可得f(1)+f(1)=f(1)f(0),又f(1)=1,所以f(0)=2,A对;取x=0,y=x可得f(x)+f(-x)=f(0)f(x),因为f(0)=2,所以f(-x)=f(x),所以f(x)为偶函数,C错,B对;取x=1,y=1可得f(2)+f(0)=f(1)f(1),又f (1)=1,f (0)=2, 所以f (2)=-1,D 对.12.已知定义在R 上的函数y =f (x )满足:①对于任意的x ∈R ,都有f (x +1)=1f (x );②函数y =f (x )是偶函数;③当x ∈(0,1]时,f (x )=x +e x ,则f ⎝ ⎛⎭⎪⎫-32,f ⎝ ⎛⎭⎪⎫214,f ⎝ ⎛⎭⎪⎫223从小到大的排列是________. 答案f ⎝ ⎛⎭⎪⎫-32<f⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214 解析由题意知f (x +1)=1f (x ),则f (x +2)=1f (x +1)=f (x ),故函数y =f (x )的周期为2,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫223=f ⎝ ⎛⎭⎪⎫8-23=f ⎝ ⎛⎭⎪⎫-23=f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫214=f ⎝ ⎛⎭⎪⎫6-34=f ⎝ ⎛⎭⎪⎫34,∵当x ∈(0,1]时,f (x )=x +e x 单调递增, ∴f ⎝ ⎛⎭⎪⎫12<f⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫34, 故f ⎝ ⎛⎭⎪⎫-32<f ⎝ ⎛⎭⎪⎫223<f ⎝ ⎛⎭⎪⎫214.13.(2022·全国乙卷)若f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b 是奇函数,则a =______,b =______. 答案-12ln2解析f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b =ln ⎪⎪⎪⎪⎪⎪a +11-x +lne b=ln ⎪⎪⎪⎪⎪⎪(a +1)e b -a e bx 1-x . ∵f (x )为奇函数, ∴f (-x )+f (x )=ln ⎪⎪⎪⎪⎪⎪(a +1)2e 2b -a 2e 2b x 21-x 2=0, ∴||(a +1)2e 2b -a 2e 2b x 2=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,[(a +1)2e 2b -1]+(1-a 2e 2b )x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b-1=0,1-a 2e 2b=0,解得⎩⎨⎧a =-12,b =ln2.当(a +1)2e 2b -a 2e 2b x 2=x 2-1时,[(a +1)2e 2b +1]-(a 2e 2b +1)x 2=0对任意的x 恒成立,则⎩⎨⎧(a +1)2e 2b+1=0,a 2e 2b+1=0,无解.综上,a =-12,b =ln2.14.已知函数f (x )=x 3+(x +1)2x 2+1在区间[-3,3]上的最大值为M ,最小值为N ,则M +N的值为________. 答案2解析f(x)=x3+x2+2x+1x2+1=x(x2+2)+x2+1x2+1=x(x2+2)x2+1+1,令g(x)=f(x)-1=x(x2+2) x2+1,则g(-x)=-x(x2+2)x2+1=-g(x),∴函数g(x)在[-3,3]上为奇函数,则g(x)max+g(x)min=0,即M-1+N-1=0,∴M+N=2.。

年高考第一轮复习数学函数的奇偶性

年高考第一轮复习数学函数的奇偶性

2.4 函数的奇偶性●知识梳理1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.3.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.. y 轴对称 ≠β,则.由α、β答案:B4.已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________.解析:定义域应关于原点对称,故有a -1=-2a ,得a =31. 又对于所给解析式,要使f (-x )=f (x )恒成立,应b =0.答案:315.给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ). 在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________. 答案:①⑤ ② ③④ ●典例剖析【例1】 已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则 A.f (0)<f (-1)<f (2) B.f (-1)<f (0)<f (2) C.f (-1)<f (2)<f (0) D.f (2)<f (-1)<f (0) 剖析:由f (x -2)在[0,2]上单调递减, ∴f (x )在[-2,0]上单调递减. ∵y =f (x )是偶函数,x )既不⎩≠-+,02|2|x ⎩-≠≠.40x x 且故f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )= 2212-+-x x =xx 21-,这时有f (-x )=xx ---2)(1=-xx 21-=-f (x ),故f (x )为奇函数.(4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0, ∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0). 当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数. 评述:(1)分段函数的奇偶性应分段证明.(2)判断函数的奇偶性应先求定义域再化简函数解析式.【例3】 (2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.(1)解:令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)证明:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1).解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数. (3)解:f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3. ∴f (3x +1)+f (2x -6)≤3即f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )在(0,+∞)上是增函数, ∴(*)等价于不等式组或⎩⎨⎧≤-+-<-+,64)62)(13(,0)62)(13(x x x x 或⎪⎪⎩⎪⎪⎨⎧≤≤--<>537,313x x x 或或⎪⎩⎪⎨⎧∈<<-.,331R x x∴3<x ≤5或-37≤x <-31或-31<x <3. ∴x 的取值范围为{x |-37≤x <-31或-31<x <3或3<x ≤5}.评述:解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f ”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b>a 2,那么f (x )·g (x )>0的解集是A.(22a ,2b)B.(-b ,-a 2)C.(a 2,2b )∪(-2b,-a 2)D.(22a ,b )∪(-b 2,-a 2)提示:f (x )·g (x )>0⇔⎩⎨⎧>>0)(,0)(x g x f 或⎩⎨⎧<<.0)(,0)(x g x f∴x ∈(a 2,2b )∪(-2b,-a 2). 答案:C【例4】 (2004年天津模拟题)已知函数f (x )=x +xp+m (p ≠0)是奇函数. (1)求m 的值. (2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值. 解:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ). ∴-x -x p +m =-x -xp-m . ∴2m =0.∴m =0.(2)(理)(ⅰ)当p <0时,据定义可证明f (x )在[1,2]上为增函数.∴f (x )max =f (2. x )min =f(2深化拓展f (x )=x +xp的单调性也可根据导函数的符号来判断,本题如何用导数来解? ●闯关训练 夯实基础1.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a <b <0,给出下列不等式,其中成立的是①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①④ B.②③ C.①③ D.②④解析:不妨取符合题意的函数f (x )=x 及g (x )=|x |进行比较,或一般地g (x )=⎩⎨⎧≤-≥,0)(,0)(x x f x x f f(0)=0,f (a )<f (b )<0.答案:D2.(2003年北京海淀区二模题)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:∵偶函数f (x )在[-1,0]上是减函数,∴f (x )在[0,1]上是增函数.由周期为2知该函数在[2,3]上为增函数.答案:A3.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lg x+11,那么当x ∈(-1,0)时,f (x )的表达式是__________.解析:当x ∈(-1,0)时,-x ∈(0,1),∴f (x )=-f (-x )=-lg x-11=lg (1-x ). 答案:lg (1-x )4.(2003年北京)函数f (x )=lg (1+x 2),g (x )=⎪⎩⎪⎨⎧>+-≤-<+.12,1||0,12x x x x x h (x )=tan2x 中,______________是偶函数.解析:∵f (-x )=lg [1+(-x )2]=lg (1+x 2)=f (x ), ∴f (x )为偶函数.又∵1°当-1≤x ≤1时,-1≤-x ≤1, ∴g (-x )=0.又g (x )=0,∴g (-x )=g (x ). 2°当x <-1时,-x >1, ∴g (-x )=-(-x )+2=x +2.又∵g (x )=x +2,∴g (-x )=g (x ). 3°当x >1时, -x <-1, ∴g (-x )=(-x )+2=-x +2.又∵g (x )=-x +2,∴g (-x )=g (x ). 综上,对任意x ∈R 都有g (-x )=g (x ). ∴g (x )为偶函数.h (-x )=tan (-2x )=-tan2x =-h (x ), ∴h (x )为奇函数. 答案:f (x )、g (x )5.若f (x )=1222+-+⋅xx a a 为奇函数,求实数a 的值. 解:∵x ∈R ,∴要使f (x )为奇函数,必须且只需f (x )+f (-x )=0,即a -122+x + a g (m ),求0,+∞)f (-3·)21(221x x-+=x )12(2-x ∴f (x )为偶函数.(2)证明:由解析式易见,当x >0时,有f (x )>0. 又f (x )是偶函数,且当x <0时-x >0, ∴当x <0时f (x )=f (-x )>0,即对于x ≠0的任何实数x ,均有f (x )>0.探究创新8.设f (x )=log 21(11--x ax)为奇函数,a 为常数, (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(21)x+m 恒成立,求实数m 的取值范围.(1)解:f (x )是奇函数,∴f (-x )=-f (x ).,∴a =1111-+x x >g( 3.在教学过程中应强调函数的奇偶性是函数的整体性质,而单调性是其局部性质. 拓展题例 【例1】 已知函数f (x )=cbx ax ++12(a 、b 、c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a 、b 、c 的值.解:由f (-x )=-f (x ),得-bx +c =-(bx +c ). ∴c =0.由f (1)=2,得a +1=2b .由f (2)<3,得114++a a <3,解得-1<a <2.又a ∈Z ,∴a =0或a =1.若a =0,则b =21,与b ∈Z 矛盾.∴a =1,b =1,c =0. 【例2】 已知函数y =f (x )的定义域为R ,对任意x 、x ′∈R 均有f (x +x ′)=f (x )+f (x ′),且对任意x >0,都有f (x )<0,f (3)=-3.(1)试证明:函数y =f (x )是R 上的单调减函数; (2)试证明:函数y =f (x )是奇函数; (3)试求函数y =f (x )在[m ,n ](m 、n ∈Z ,且mn <0)上的值域. 分析:(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件.(2)可根据函数奇偶性的定义进行证明,应由条件先得到f (0)=0后,再利用条件f (x 1+x 2)=f (x 1)+f (x 2)中x 1、x 2的任意性,可使结论得证.上的单调(3)若题设条件中的m 、n ∈Z 去掉,则我们就无法求出f (m )与f (n )的值,故m 、n ∈Z 不可少.。

高考数学 专题04 函数的奇偶性黄金解题模板

高考数学 专题04 函数的奇偶性黄金解题模板

专题04 函数的奇偶性【高考地位】函数的奇偶性是函数的一个重要性质,几乎是每年必考的内容,例如判断和证明函数的奇偶性,利用函数的奇偶性解决实际问题. 【方法点评】一、函数奇偶性的判断使用情景:一般函数类型解题模板:第一步 确定函数的定义域;第二步 判断其定义域是否关于原点对称;第三步 若是,则确定()f x 与()f x -的关系;若不是,则既不是奇函数也不是偶函数; 第四步 得出结论. 例1 判断下列函数的奇偶性:(1)22()99f x x x =-+-;(2) 1()(1)1x f x x x -=++;(3)24()33x f x x -=+-.【点评】确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证()()f x f x -=±或其等价形式()()0f x f x -±=是否成立.【变式演练1】下列函数中,既是偶函数又在区间()0,+∞上单调递增的是( )A. 1y x=B. lg y x =C. cos y x =D. 22x y x =+ 【答案】B考点:函数的奇偶性.【变式演练2】函数的图象( )A. 关于轴对称B. 关于轴对称C. 关于原点对称D. 关于直线对称【答案】B【解析】由为偶函数可得. 函数的图象关于y 轴对称,选B.【变式演练3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且(2)1f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性,并给出证明; (3)如果()(2)2f x f x ++<,求x 的取值范围.【答案】(1)(0)0f =;(2)函数()y f x =为奇函数;(3){|1}x x <; 【解析】试题分析:(1)利用赋值法,求)0(f 的值,即令y x =,能求出)0(f ;(2)利用函数奇偶性的定义,判断函数)(x f 的奇偶性,即令0=x ,可得到)(y f 与)(y f -的关系; (3)由奇偶性及()()()f x y f x f y -=-,对()(2)2f x f x ++<进行转化,可得到(2)(4)()(4)f x f f x f x +<-=-,然后再利用定理证明)(x f 在R 上的单调性,即可求出x 的取值范围(3)任取12,x x R∈,不妨设12x x >,则120x x ->,1212()()()f x x f x f x -=-因为当0x >时,()0f x > 所以12()0f x x ->,即12()()0f x f x ->,所以12()()f x f x >所以函数()y f x =在定义域R 上单调递增. 因为()()()f x y f x f y -=- 所以()()()f x f x y f y =-+所以211(2)(2)(2)(42)(4)f f f f f =+=+=--= 因为()(2)2f x f x ++< 所以()(2)(4)f x f x f ++<所以(2)(4)()(4)f x f f x f x +<-=- 因为函数()y f x =在定义域R 上单调递增所以24x x +<-,从而1x <,所以x 的取值范围为{|1}x x < 考点:1.抽象函数及其应用;2.函数的奇偶性与单调性综合应用;二、利用函数的奇偶性求函数的解析式解题模板:第一步 首先设出所求区间的自变量x ;第二步 运用已知条件将其转化为已知区间满足的x 的取值范围; 第三步 利用已知解析式确定所求区间相应的函数的表达式.例2 .已知函数()f x 是定义在R 上的奇函数,当0x ≥时, ()()=1f x x x +,求出函数()f x 的解析式. 【答案】()()1,0{1,0x x x x x x +≥-<.考点:求函数的解析式.【点评】(1)已知函数的奇偶性求解析式的题目,一般是求哪个区间,则设未知数在哪个区间,然后化为已知区间求解;(2)本题是求函数()f x 在R 上的解析式,一定不要忘记0=x 时,函数()f x 的值. 例3 若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{,1}x x R x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式. 【答案】2()1xf x x =-,()211g x x =-.【点评】这里运用了构造法,把符合要求的奇函数与偶函数构造出来,问题也就解决了,构造的关键是运用奇、偶函数的概念,并联系方程组的知识.【变式演练4】已知定义在R 上的函数)(x f y =是偶函数,且0≥x 时,)22ln()(2+-=x x x f . 当0<x 时,求)(x f 解析式; 【答案】)22ln()(2++=x x x f .试题解析:0<x 时,0>-x ,∴)22ln()(2++=-x x x f ,∵)(x f y =是偶函数,∴)()(x f x f =-,0<x 时,)22ln()(2++=x x x f .【变式演练5】已知函数是奇函数.(1)求实数的值; (2)用定义证明函数在上的单调性; (3)若对任意的,不等式恒成立,求实数的取值范围.【答案】(1)(2)见解析(3)考点:函数的简单性质的综合运用. 【高考再现】1.【2017全国二文】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.2. 【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .( ) A.若()f a b ≤,则a b ≤ B.若()2bf a ≤,则a b ≤ C.若()f a b ≥,则a b ≥ D.若()2b f a ≥,则a b ≥ 【答案】B3. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2 (B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.4.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->-,则a 的取值范围是______.【答案】13(,)225.【2015高考广东,理3】下列函数中,既不是奇函数,也不是偶函数的是( ) A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 【答案】A .【考点定位】函数的奇偶性判断.【名师点睛】本题主要考查函数的奇偶性判断和常见函数性质问题,但既不是奇函数,也不是偶函数的判断可能较不熟悉,容易无从下手,因此可从熟悉的奇偶性函数进行判断排除,依题易知B 、C 、D 是奇偶函数,排除得出答案,属于容易题.6.【2015高考福建,文3】下列函数为奇函数的是( ) A .y x =.x y e = C .cos y x = D .x x y e e -=-【答案】D【解析】函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .【考点定位】函数的奇偶性.【名师点睛】本题考查函数的奇偶性,除了要掌握奇偶性定义外,还要深刻理解其定义域特征即定义域关于原点对称,否则即使满足定义,但是不具有奇偶性,属于基础题. 7.【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx 【答案】D8.【2015高考天津,文7】 已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a << 【答案】B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-= ,所以b c a <<,故选B.【考点定位】本题主要考查函数奇偶性及对数运算.【名师点睛】函数是高考中的重点与热点,客观题中也会出现较难的题,解决此类问题要充分利用相关结论.函数()0,1x my ab a a -=+>≠的图像关于直线x m = 对称,本题中求m 的值,用到了这一结论,本题中用到的另一个结论是对数恒等式:()log 0,1,0a NaN a a N =>≠>.9.【2015新课标2文12】设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭UC .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U 【答案】A10. 【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 【答案】A【解析】函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()11sin1f -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122xx f x =+的定义域为R ,关于原点对称,因为()()112222x xx x f x f x ---=+=+=,所以函数()122x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函数.故选A .【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.11.【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1() (D )1,+∞()【答案】C12.【2015高考北京,文3】下列函数中为偶函数的是( )A .2sin y x x = B .2cos y x x = C .ln y x = D .2xy -=【答案】B【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.13.【2014全国2,文15】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 【答案】3【解析】因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.【考点定位】函数的奇偶性及对称性.【名师点睛】本题考查了函数的奇偶性,函数图象的对称性,属于中档题目,根据函数图象的对称性及奇偶性,找到未知与已知之间的关系,从而由已知即可求得未知.14. 【2015高考新课标1,理13】若函数f (x )=2ln()x x a x ++为偶函数,则a = 【答案】115.【2014上海,理20】(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aa x f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.【答案】(1)121()2log 1x fx x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞U ;(2)1a =时()y f x =为奇函数,当0a =时()y f x =为偶函数,当0a ≠且1a ≠时()y f x =为非奇非偶函数. 【解析】试题分析:(1)求反函数,就是把函数式2424x x y +=-作为关于x 的方程,解出x ,得1()x f y -=,再把此式中的,x y 互换,即得反函数的解析式,还要注意的是一般要求出原函数的值域,即为反函数的定义域;(2)讨论函数的奇偶性,我们可以根据奇偶性的定义求解,在0a =,1a =这两种情况下,由奇偶性的定义可知函数()f x 具有奇偶性,在01a a ≠≠且时,函数的定义域是2log x a ≠,不关于原点对称,因此函数既不是奇函数也不是偶函数.【反馈练习】1. 【2018届河北省衡水市高三上学期第三次调研考试数学(理)试题】下列函数中,在[]1,1-上与函数2cos 2xy =的单调性和奇偶性都相同的是( ) A. 22xxy -=- B. 1y x =+ C. ()22y x x =+ D. 22y x =-+【答案】D【解析】函数2cos 2x y =在[]1,0-上递增,在[]0,1上递减,且函数2cos 2x y =为偶函数,而22y x =-+也在[]1,0-上递增,在[]0,1上递减,且函数22y x =-+为偶函数,即22y x =-+与函数2cos 2x y =的单调性和奇偶性都相同,故选D. 考点:函数的奇偶性.2. 【2017届广西省高三上学期教育质量诊断性联合考试数学(文)试卷】已知定义在R 上的奇函数()f x在[)0,+∞上递减,若()()321f x x a f x -+<+对[]1,2x ∈-恒成立,则a 的取值范围为( ) A. ()3,-+∞ B. (),3-∞- C. ()3,+∞ D. (),3-∞ 【答案】C3. 【2018届高河北省衡水中学三9月大联考数学(理)试题】已知函数()f x 为R 内的奇函数,且当0x ≥时, ()1cos xf x e m x =-+-,记()22a f =--, ()1b f =--, ()33c f =,则a , b , c 间的大小关系是( )A. b a c <<B. a c b <<C. c b a <<D. c a b << 【答案】D【解析】函数()f x 是奇函数,则()001cos00,0f e m m =-+-=∴=,即当0x ≥时, ()1xf x e =-+,构造函数()()g x xf x =,满足()()g x g x -=,则函数()g x 是偶函数, 则()()'11xg x ex =-+,当0x ≥时, 1,11xe x ≥+≥,据此可得: ()'0g x ≤,即偶函数()g x 在区间[)0,+∞上单调递减,且: ()()()()()22,11,3a g g b g g c g =-==-==,结合函数的单调性可得: ()()()123g g g >>,即: c a b <<. 本题选择D 选项.点睛:对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为考查函数的单调性的问题或解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |).4.【2018届山西省山大附中等晋豫名校高三年级第四次调研诊断考试数学理试题】若对,R x y ∀∈,有()()()3f x y f x f y +=+-,则函数()()221xg x f x x =++在[]2017,2017-上的最大值与最小值的和为( )A. 4B. 6C. 9D. 12 【答案】B【解析】对,R x y ∀∈,有()()()3f x y f x f y +=+-,令0x y ==, 有()()()()0003,03f f f f =+-=,令y x =-,有()()()03f f x f x =+--,则()()6f x f x +-=, 令()()3h x f x =-,则()()0h x h x +-=,则()h x 为奇函数, 又设函数()221xx x ϕ=+, ()x ϕ为奇函数,则()()()3g x x h x ϕ=++,而()()x h x ϕ+为奇函数,由于奇函数在关于原点对称的单调区间内的最大值与最小值互为相反数,则()g x 的最大值与最小值之和为6.选B.5.【山西省45校2018届高三第一次联考理数试卷】若函数是偶函数,则__________.【答案】12-6.【2018届江西省新余市第一中学毕业年级第二模拟考试理科数学试题】函数()y f x =与()y g x =有相同的定义域,且都不是常值函数,对于定义域内的任何x ,有()()0f x f x +-=, ()()1g x g x -=,且当0x ≠时, ()1g x ≠,则()()()()21f x F x f xg x =+-的奇偶性为__________. 【答案】偶函数【解析】由条件,得()()()()()()()22111f x f xF x f x f xg xg x---=+-=----()()()()()()()()()()2211f xg x f x g x f x f x g xf xg x g x-⋅-⋅-+⋅=-=--()()()()()()()()()()()()2=111f xg x f x f x g x f x f xf x F xg x g x g x-⋅-⋅+==+=---,故()()()()21f xF x f xg x=+-为偶函数,故答案为偶函数.7. 已知)(xf为奇函数,当0>x时,56)(2+-=xxxf,则当0<x时,=)(xf____.【答案】562---xx考点:1、函数的奇偶性;2、分段函数的解析式.8. 下列说法中:①若2()(2)2f x ax a b x=+++(其中[21,4]x a a∈-+)是偶函数,则实数2b=;②22()20082008f x x x--③已知()f x是定义在R上的奇函数,若当[0,)x∈+∞时,()(1)f x x x=+,则当x R∈时,()(1)f x x x=+;④已知()f x是定义在R上的不恒为零的函数,且对任意的,x y R∈都满足()()()f x y x f y y f x⋅=⋅+⋅,则()f x是奇函数;其中正确说法的序号是(注:把你认为是正确的序号都填上).【答案】①②③④【解析】试题分析:①若()()222f x ax a b x=+++是定义在[21,4]a a-+上的偶函数,则214020a aa b-++=⎧⎨+=⎩,所以12ab=-⎧⎨=⎩,①正确;②()2220082008f x x x =-+-的定义域为{}2008,2008-,则函数转化(){}0,2008,2008f x x =∈-,所以()f x 既是奇函数与又是偶函数;②正确;③当(),0x ∈-∞时,()0,x -∈+∞,则()()1f x x x -=--,根据奇函数()()f x f x -=-,所以()()()1,,0f x x x x =-∈-∞,所以当x R ∈时,()()1f x x x =+,③正确;④令1x y ==,得到:()10f =,令1x y ==-,得到:()()121f f =--,所以()10f -=,令1y =-,则有()()f x f x -=-,所以函数()f x 为奇函数,④正确。

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3

专题2.7 函数的奇偶性重难点题型精讲-高中数学一轮复习【新高考地区专用】

专题2.7 函数的奇偶性重难点题型精讲-高中数学一轮复习【新高考地区专用】

专题2.7 函数的奇偶性-重难点题型精讲1.函数的奇偶性【题型1 函数奇偶性的判断】 【例1】(2021•山东模拟)函数f (x )=√2sinx −1的奇偶性为( ) A .奇函数B .既是奇函数也是偶函数C.偶函数D.非奇非偶函数【解题思路】根据题意,求出函数的定义域,分析可得其定义域不关于原点对称,结合函数奇偶性的定义分析可得答案.【解答过程】解:根据题意,f(x)=√2sinx−1,必有2sin x≥1,即sin x≥1 2,则有2kπ+π6≤x≤2kπ+5π6,k∈Z,即函数f(x)的定义域为[2kπ+π6,2kπ+5π6],k∈Z,定义域不关于原点对称,则f(x)为非奇非偶函数,故选:D.【变式1-1】(2021•靖远县模拟)下列函数中,其图象关于原点对称的是()A.y=x(cos x+sin x)B.y=x5(4x﹣4﹣x)C.y=(3x+3﹣x)cos x D.y=tanx 3x+3−x【解题思路】根据题意,要求函数必为奇函数,据此分析选项中函数的奇偶性,即可得答案.【解答过程】解:根据题意,函数图象关于原点对称的是奇函数,依次分析选项,对于A,y=x(cos x+sin x),其定义域为R,有f(﹣x)=(﹣x)[cos(﹣x)+sin(﹣x)]=﹣x(cos x﹣sin x),f(x)为非奇非偶函数函数,不符合题意;对于B,y=x5(4x﹣4﹣x),其定义域为R,f(﹣x)=(﹣x)5(4﹣x﹣4x)=f(x),函数f(x)为偶函数,不符合题意;对于C,y=(3x+3﹣x)cos x,其定义域为R,f(﹣x)=(3﹣x+3x)cos(﹣x)=(3x+3﹣x)cos x=f(x),函数f(x)为偶函数,不符合题意;对于D,y=tanx3x+3−x,其定义域为{x|x=kπ+π2,k∈Z},f(﹣x)=tan(−x)3−x+3x=−f(x),f(x)为奇函数,符合题意.故选:D.【变式1-2】(2020•全国Ⅰ卷模拟)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x sin x B.y=xlnxC.y=x⋅e x−1e x+1D.y=xln(√x2+1−x)【解题思路】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答过程】解:根据题意,依次分析选项:对于A ,y =x sin x ,其定义域为R ,有f (﹣x )=x sin x =f (x ),即函数f (x )为偶函数; 对于B ,y =xlnx ,其定义域为(0,+∞),既不是奇函数,也不是偶函数; 对于C ,y =x •e x −1e x +1,其定义域为R ,有f (﹣x )=(﹣x )•e −x −1e −x +1=x •e x −1e x +1=f (x ),即函数f (x )为偶函数;对于D ,y =xln (√x 2+1−x ),其定义域为R ,有f (﹣x )=(﹣x )ln (√x 2+1+x )=xln (√x 2+1−x )=f (x ),即函数f (x )为偶函数; 故选:B .【变式1-3】(2021•乙卷)设函数f (x )=1−x1+x ,则下列函数中为奇函数的是( ) A .f (x ﹣1)﹣1B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+1【解题思路】先根据函数f (x )的解析式,得到f (x )的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案. 【解答过程】解:因为f (x )=1−x 1+x =−(x+1)+21+x =−1+2x+1, 所以函数f (x )的对称中心为(﹣1,﹣1),所以将函数f (x )向右平移一个单位,向上平移一个单位, 得到函数y =f (x ﹣1)+1,该函数的对称中心为(0,0), 故函数y =f (x ﹣1)+1为奇函数. 故选:B .【题型2 利用函数奇偶性求解析式】【例2】(2020•大荔县模拟)已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=1﹣2x ,则f (x )的解析式是 .【解题思路】根据奇函数的性质可得f (0)=0,然后可设x >0时,﹣x <0,根据已知x <0时函数解析式可求x >0时的解析式,可求.【解答过程】解:∵f (x )是定义在R 上的奇函数,当x <0时,f (x )=1﹣2x , 故f (0)=0,当x >0时,﹣x <0,则f (﹣x )=﹣f (x )=1﹣2﹣x ,所以f (x )=2﹣x ﹣1则f (x )={1−2x ,x >00,x =02−x −1,x <0.【变式2-1】(2021春•宁波期末)已知定义在R 上的奇函数,已知x >0,f(x)=x 2+1x +2,则f (﹣1)= ,该函数的解析式为 .【解题思路】对于第一空:由函数的解析式求出f (﹣1)的值,结合函数的奇偶性可得f (1)的值,即可得答案;对于第二空:由函数奇偶性的性质可得f (0)的值,结合解析式分析可得x <0时,f (x )的解析式,综合可得答案.【解答过程】解:根据题意,x >0,f(x)=x 2+1x +2,则f (1)=1+1+2=4,则f (﹣1)=﹣4, f (x )是定义在R 上的奇函数,则f (0)=0, 当x <0时,﹣x >0,则f (﹣x )=x 2−1x +2,又由f (x )为奇函数,则f (x )=﹣f (﹣x )=﹣x 2+1x −2, 综合可得:f(x)={x 2+1x +2,x >00,x =0−x 2+1x −2,x <0,故答案为:﹣4,f(x)={x 2+1x +2,x >00,x =0−x 2+1x−2,x <0.【变式2-2】(2021春•安徽月考)已知函数f (x )=a x +ka ﹣x (a >0且a ≠1)是定义在R 上的偶函数,且f (1)=174.求f (x )的解析式;【解题思路】由已知得f (﹣x )=f (x ),代入可求k ,然后由f (1)=174可求a ,进而可求f (x ); 【解答过程】解:因为f (x )=a x +ka ﹣x (a >0且a ≠1)是定义在R 上的偶函数,所以f (﹣x )=f (x ), 即a ﹣x +ka x =a x +ka ﹣x ,整理得(k ﹣1)(a x ﹣a ﹣x )=0,所以k =1,因为f (1)=a +1a =174, 所以a =4或a =14, 所以f (x )=4x +4﹣x ,【变式2-3】(2020秋•菏泽期末)已知函数f(x)=x 2+bx+1ax(a >0)为奇函数,且方程f (x )=2有且仅有一个实根.求函数f (x )的解析式;【解题思路】根据题意,由奇函数的定义可得f (﹣x )=﹣f (x ),即x 2+bx+1ax=−(−x)2−b(−x)+1a(−x),变形可得b 的值,结合方程f (x )=2有且仅有一个实根,可得x 2﹣2ax +1=0有且仅有一个实根,分析可得a 的值,即可得答案,【解答过程】解:根据题意,函数f(x)=x 2+bx+1ax 为奇函数, 所以f (﹣x )=﹣f (x ),即x 2+bx+1ax=−(−x)2−b(−x)+1a(−x),化简得2bx =0,得b =0,f(x)=x 2+1ax, 且方程f (x )=2有且仅有一个实根,则x 2+1ax=2,即x 2﹣2ax +1=0有且仅有一个实根,所以(﹣2a )2﹣4×1=0,得a 2=1, 解之得a =1,a =﹣1舍掉, 所以f(x)=x 2+1x. 【题型3 利用函数奇偶性求函数值】【例3】(2021•渭南模拟)已知函数f (x )=3﹣x +a •3x 是奇函数,则f (2)=( )A .829B .−829C .809D .−809【解题思路】根据题意,由奇函数的定义可得f (﹣x )=﹣f (x ),即3x +a ⋅3﹣x =﹣(3﹣x +a ⋅3x ),变形分析可得a 的值,即可得函数的解析式,将x =2代入计算可得答案.【解答过程】解:根据题意,函数f (x )=3﹣x +a •3x 是奇函数,则f (﹣x )=﹣f (x ),即3x+a⋅3﹣x=﹣(3﹣x+a⋅3x),变形可得(a+1)(3x+3﹣x)=0,解得a=﹣1,则f(2)=3−2−32=−80 9,故选:D.【变式3-1】(2021•厦门一模)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=log2(x+2)+t,则f(﹣6)=()A.﹣2B.2C.﹣4D.4【解题思路】根据题意,由奇函数的性质和函数的解析式可得f(0)=log22+t=t+1=0,解可得t的值,即可得函数的解析式,求出f(6)的值,由函数的奇偶性分析可得答案.【解答过程】解:根据题意,f(x)是定义在R上的奇函数,当x≥0时,f(x)=log2(x+2)+t,则f(0)=log22+t=t+1=0,则t=﹣1,则当x≥0时,f(x)=log2(x+2)﹣1,则f(6)=log28﹣1=3﹣1=2,又由f(x)为奇函数,则f(﹣6)=﹣f(6)=﹣2,故选:A.【变式3-2】(2021•湖南模拟)设函数f(x)=23(ex﹣e﹣x)+2,若f(m)=1,则f(﹣m)=()A.1B.﹣1C.﹣3D.3【解题思路】设g(x)=23(e x−e−x),则函数g(x)为奇函数,然后利用奇函数的性质转化为f(m)+f(﹣m)=4,求解即可.【解答过程】解:设g(x)=23(e x−e−x),则g(−x)=23(e−x−e x)=−g(x),故函数g(x)为奇函数,所以g(m)+g(﹣m)=0,即f(m)﹣2+f(﹣m)﹣2=0,所以f(m)+f(﹣m)=4,又f(m)=1,所以f(﹣m)=3.故选:D.【变式3-3】(2020•焦作四模)已知f(x)={−1+log 2(−2x),x <0g(x),x >0为奇函数,则f (g (2))+g (f (﹣8))=( ) A .2+log 23B .1C .0D .﹣log 23【解题思路】由已知奇函数的性质可求g (x ),然后根据函数解析式即可求解. 【解答过程】解:因为f(x)={−1+log 2(−2x),x <0g(x),x >0为奇函数,所以g (x )=1﹣log 2(2x )(x >0). 所以g (2)=1﹣log 24=﹣1,所以f (g (2))=﹣1+log 22=0.f (﹣8)=﹣1+log 216=3, 所以g (f (﹣8))=g (3)=1﹣log 26,所以f (g (2))+g (f (﹣8))=1﹣log 26=1﹣log 22﹣log 23=﹣log 23. 故选:D .【题型4 利用函数奇偶性解不等式】【例4】(2021•合肥模拟)已知f (x )=a −23x+1(a 为常数)为奇函数,则满足f (ax )>f (1)的实数x 的取值范围是( ) A .(1,+∞)B .(﹣∞,1)C .(﹣1,+∞)D .(﹣∞,﹣1)【解题思路】根据题意,由奇函数的定义可得f (﹣x )+f (x )=0,即(a −23−x+1)+(a −23x +1)=0,变形可得a 的值,即可得f (x )的解析式,分析f (x )的单调性,可得原不等式等价于x >1,即可得答案.【解答过程】解:根据题意,f (x )=a −23x +1(a 为常数)为奇函数, 则f (﹣x )+f (x )=0,即(a −23−x +1)+(a −23x+1)=2a ﹣(23−x +1+23x +1)=2a ﹣2=0, 解可得a =1, 则f (x )=1−23x+1,在R 上为增函数,若f (ax )>f (1),即f (x )>f (1),必有x >1,即x 的取值范围为(1,+∞); 故选:A .【变式4-1】(2021•南通模拟)若函数f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x ﹣2,则不等式f (x ﹣1)≥2f (x )的解集为( ) A .(﹣∞,0] B .(−∞,log 21+√52]C .[0,log 21+√52] D .[0,1)【解题思路】先根据偶函数的性质求出函数解析式,把已知不等式代入函数解析式进行求解即可. 【解答过程】解:因为函数f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x ﹣2单调递增, 所以f (x )=2|x |﹣2, 因为f (x ﹣1)≥2f (x ), 所以2|x ﹣1|﹣2≥2(2|x |﹣2),即2|x﹣1|﹣2|x |+1+2≥0,当x ≤0时,可化为2≥0,成立,当0<x <1时,21﹣x ﹣2x +1+2≥0,即2﹣x ﹣2x +1≥0,令t =2x ,则1<t <2,所以t ﹣1−1t ≤0,即t 2﹣t ﹣1≤0, 解得1<t ≤1+√52, 所以0<x ≤log 21+√52, 当x ≥1时,2x ﹣1﹣2x +1+2≥0, 即2x ≤43,显然成立,综上,f (x ﹣1)≥2f (x )的解集(﹣∞,log 21+√52].故选:B .【变式4-2】(2021•全国模拟)已知f (x )是R 上的偶函数,当x ∈[0,+∞)时,f (x )=﹣x 2+x +1,若实数t ,满足f (lgt )>1,则t 的取值范围是( ) A .(110,1)∪(1,10) B .(0,110)∪(1,10) C .(﹣1,0)∪(0,1)D .(0,110)∪(1,+∞)【解题思路】根据题意,先利用函数的奇偶性和解析式分析f(x)>1的解集,进而可得f(lgt)>1⇔﹣1<lgt<1且lgt≠0,解可得t的取值范围,即可得答案.【解答过程】解:根据题意,当x∈[0,+∞)时,f(x)=﹣x2+x+1,此时若f(x)>1,则有{−x2+x+1>1x>0,解可得0<x<1,又由f(x)是R上的偶函数,则f(x)>1的解集为{x|﹣1<x<1且x≠0},若实数t,满足f(lgt)>1,则有﹣1<lgt<1且lgt≠0,解可得110<t<10且t≠1,则t的取值范围是(110,1)∪(1,10).故选:A.【变式4-3】(2020•海南模拟)已知f(x)=e x−1e x+a是定义在R上的奇函数,则不等式f(x﹣3)<f(9﹣x2)的解集为()A.(﹣2,6)B.(﹣6,2)C.(﹣4,3)D.(﹣3,4)【解题思路】根据题意,由奇函数的性质可得f(1)+f(﹣1)=0,即e−1e+a +1e−11e+a=0,解可得a的值,即可得f(x)的解析式,分析可得f(x)在R上为增函数,据此可得原不等式等价于x﹣3<9﹣x2,解可得不等式的解集,即可得答案.【解答过程】解:根据题意,因为f(x)=e x−1e x+a是定义在R上的奇函数,所以f(1)+f(﹣1)=0,即e−1e+a+1 e −11 e +a=0,解得a=1,则f(x)=e x−1e x+1=1−2e x+1,易知f(x)在R上为增函数.又f(x﹣3)<f(9﹣x2),必有x﹣3<9﹣x2,解得﹣4<x<3,即不等式的解集为(﹣4,3);故选:C.【题型5 利用函数奇偶性比较大小】【例5】(2021•南充模拟)定义在R 上的函数f (x )=﹣3|x +m |+2为偶函数,a =f (log 212),b =f ((12)13),c =f (m ),则( ) A .c <a <bB .a <c <bC .a <b <cD .b <a <c【解题思路】根据题意,由偶函数的性质求出m 的值,即可得f (x )的解析式,分析可得f (x )在[0,+∞)上单调递减,据此分析可得答案.【解答过程】解:根据题意,函数f (x )=﹣3|x +m |+2为偶函数,则有f (﹣x )=f (x ),即﹣3|﹣x +m |+2=﹣3|x +m |+2,变形可得|﹣x +m |=|x +m |,必有m =0;则f (x )=﹣3|x |+2,f (x )在[0,+∞)上单调递减, a =f (log 212)=f (﹣1)=f (1),b =f ((12)13)=f (√123),c =f (m )=f (0),则有a <b <c , 故选:C .【变式5-1】(2021•河南模拟)设函数f (x )为定义在R 上的偶函数,当x <0时,f (x )=ln (﹣x ),若a =f (21.1),b =f (50.4),c =f (ln √5),则a ,b ,c 的大小关系是( ) A .a <b <cB .c <b <aC .b <c <aD .c <a <b【解题思路】由已知先求出x >0时函数解析式,然后结合函数的单调性即可比较大小. 【解答过程】解:因为x <0时,f (x )=ln (﹣x ), 所以x >0时,﹣x <0, 所以f (﹣x )=lnx =f (x ), 因为x >0时,f (x )=lnx 单调递增, 因为ln √5<lne =1,50.4>1, 则b >c ,因为21.1÷50.4=21110÷5410=√211÷5410=√3.276810>1,故21.1>50.4, 故a >b . 综上a >b >c . 故选:B .【变式5-2】(2021•南康区校级模拟)已知函数f(x)=ln(√x 2+1+x),设a =f (log 30.1),b =f (3﹣0.2),c =f (31.1),则( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a【解题思路】根据题意,分析可得f (x )为奇函数且在R 上为增函数,结合对数的性质分析可得答案. 【解答过程】解:根据题意,f(x)=ln(√x 2+1+x),其定义域为R , 又由f(−x)=ln(√x 2+1−x)=−f (x ),则函数f (x )是奇函数,当x >0时,易得f(x)=ln(√x 2+1+x)为增函数,故f (x )在R 上单调递增, 又由log 30.1<0,0<3﹣0.2<1,31.1>3,则有f (31.1)>f (3﹣0.2)>f (log 30.1),即c >b >a ,故选:D .【变式5-3】(2020•全国Ⅰ卷模拟)已知定义在R 上的奇函数f (x )=e x ﹣ke ﹣x +2sin x ,则a =f(log 234),b =f(log 445),c =f(log 889)的大小关系为( ) A .c <b <aB .a <b <cC .c <a <bD .a <c <b【解题思路】根据题意,由奇函数的性质可得f (0)=e 0﹣ke 0+2sin0=1﹣k =0,解可得k 的值,即可得函数的解析式,求出函数的导数,分析可得函数f (x )为R 上的增函数,由对数的运算性质可得log 234<log 445<log 889,结合函数的单调性分析可得答案.【解答过程】解:根据题意,f (x )为定义在R 上的奇函数,则f (0)=e 0﹣ke 0+2sin0=1﹣k =0,解可得k =1,即f (x )=e x ﹣e ﹣x +2sin x ,其导数f ′(x )=e x +e ﹣x +2cos x ≥2√e x ×e −x +2cos x =2+2cos x ≥0,则函数f (x )为R 上的增函数,又由log 445=log 2√45=log 2√5,log 889=log 2√893=log 2√93,则有log 234<log 445<log 889,又由函数f (x )为R 上的增函数, 则a <b <c ; 故选:B .【题型6 利用函数奇偶性求参数】【例6】(2020•榆林模拟)已知函数f(x)=x 3+sinx(1+x)(m−x)+e x +e −x为奇函数,则m =( )A .12B .1C .2D .3 【解题思路】根据题意,由奇函数的定义可得(−x)3+sin(−x)(1−x)(m+x)+e −x +e x=−x 3+sinx(1+x)(m−x)+e x +e −x,变形分析可得答案.【解答过程】解:根据题意,函数f(x)=x 3+sinx(1+x)(m−x)+e x +e −x 为奇函数,则有f (﹣x )=﹣f (x ), 即(−x)3+sin(−x)(1−x)(m+x)+e −x +e x=−x 3+sinx(1+x)(m−x)+e x +e −x,变形可得:(1﹣x )(m +x )=(1+x )(m ﹣x ), 整理变形可得:(m ﹣1)x =0,即m =1; 故选:B .【变式6-1】(2020•福建二模)若函数f (x )=(sin x )ln (√x 2+a +x )是偶函数,则实数a =( ) A .﹣1B .0C .1D .π2【解题思路】根据题意,由函数奇偶性的定义可得f (﹣x )=f (x ),即sin (﹣x )ln (√x 2+a −x )=sin x (√x 2+a +x ),变形分析可得答案.【解答过程】解:根据题意,函数f (x )=(sin x )ln (√x 2+a +x )且f (x )为偶函数, 则f (﹣x )=f (x ),即sin (﹣x )ln (√x 2+a −x )=sin x (√x 2+a +x ), 变形可得:lna =0,则a =1; 故选:C .【变式6-2】(2021•赣州一模)设函数f (x )=a x ﹣a ﹣x +b sin 3x +c (a >0且a ≠1).若f (﹣t )=1,f (t )=3,则c =( ) A .1B .2C .3D .4【解题思路】根据题意,由函数的解析式可得f (x )+f (﹣x )=2c ,则有f (﹣t )+f (t )=2c =4,解可得c 的值,即可得答案.【解答过程】解:根据题意,函数f (x )=a x ﹣a ﹣x +b sin 3x +c ,则f (﹣x )=a ﹣x ﹣a x +b sin 3(﹣x )+c =﹣(a x ﹣a ﹣x +b sin 3x )+c ,则有f (x )+f (﹣x )=2c ,则f (﹣t )+f (t )=2c ,若f (﹣t )=1,f (t )=3,则f (﹣t )+f (t )=2c =4,必有c =2, 故选:B .【变式6-3】(2020•杭州模拟)已知函数f(x)={sin(x+a)(x≤0)cos(x+b),(x>0)是偶函数,则a,b的值可能是()A.a=π3,b=π3B.a=2π3,b=π6C.a=π3,b=π6D.a=2π3,b=5π6【解题思路】根据题意,设x<0,则﹣x>0,由函数的解析式可得f(x)=sin(x+a),f(﹣x)=cos(﹣x+b),由函数奇偶性的定义可得sin(x+a)=cos(﹣x+b),变形分析可得a+b=2kπ+π2,分析选项即可得答案.【解答过程】解:根据题意,设x<0,则﹣x>0,则f(x)=sin(x+a),f(﹣x)=cos(﹣x+b),又由f(x)为偶函数,则f(x)=f(﹣x),即sin(x+a)=cos(﹣x+b),变形可得:sin(x+a)=sin(x+π2−b)对于任意x恒成立,则有a+b=2kπ+π2,分析选项:C满足a+b=π2,故选:C.。

高中数学必修一-函数的奇偶性

高中数学必修一-函数的奇偶性

函数的奇偶性知识集结知识元根据奇偶性求值知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据奇偶性求值例1.设y=f(x)是定义域为R的偶函数,若当x∈(0,2)时,f(x)=|x-1|,则f(-1)=()A.0B.1C.-1D.2例2.已知定义域为R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则=()A.B.C.D.例3.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例4.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2B.C.D.函数的奇偶性中的含参数问题知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲函数的奇偶性中的含参数问题例1.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=.例2.若f(x)=2x+a•2﹣x为奇函数,则a=.例3.设函数f(x)=为奇函数,则实数a=.根据函数的奇偶性求函数解析式知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据函数的奇偶性求函数解析式例1.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+)+1,则f(x)表达式为.例2.'已知函数y=f(x)为R上的奇函数,当x>0时,,求f(x)在R上的解析式.'例3.已知f(x)是R上的奇函数,且当x∈(0,+∞)时,,则f(x)的解析式为.备选题库知识讲解本题库作为知识点“函数奇偶性的定义”的题目补充.例题精讲备选题库例1.已知一个奇函数的定义域为{-1,2,a,b},则a+b=()A.-1B.1C.0D.2例2.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是()A.f(x)=-x(x+2)B.f(x)=x(x-2)C.f(x)=-x(x-2)D.f(x)=x(x+2)例3.若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)∙f(-x)>0B.f(x)∙f(-x)<0C.f(x)<f(-x)D.f(x)>f(-x)例4.y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x<0时,f(x)=______。

专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)

专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)

专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。

【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。

高考数学(文科)总复习:函数的奇偶性与周期性

高考数学(文科)总复习:函数的奇偶性与周期性

题型三 函数的周期性 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,恒有 f(x+2)=-f(x).当 x∈[0,2]时,f(x)=2x-x2. (1)求证:f(x)是周期函数; (2)当 x∈[2,4]时,求 f(x)的解析式; (3)计算 f(0)+f(1)+f(2)+…+f(2 019).
思考题 1 判断下列函数的奇偶性. (1)f(x)= x2-4; (2)f(x)=x-sinx; (3)f(x)=ln22-+xx; (4)f(x)=ax-1 1+12 (a>0,且 a≠1).
【解析】 (1)偶函数. (2)奇函数. (3)f(x)的定义域为(-2,2), f(-x)=ln22+-xx=-ln22-+xx=-f(x), ∴函数 f(x)为奇函数. (4)∵f(x)的定义域为{x|x∈R,且 x≠0}, 其定义域关于原点对称,并且有
均为非奇非偶函数,故选 B.
4.若函数 y=f(x)(x∈R)是奇函数,则下列坐标表示的点一 定在函数 y=f(x)图像上的是( )
A.(a,-f(a)) C.(-a,-f(-a))
B.(-a,-f(a)) D.(a,f(-a))
答案 B
解析 ∵函数 y=f(x)为奇函数,∴f(-a)=-f(a).
思考题 2 (1)将例 2(1)中“奇函数且定义域为 R”改为 “ 偶 函 数 且 定 义 域 为 {x∈R|x≠0}” , 则 f(x) 的 解 析 式 为 ________.
【答案】 f(x)=x1+-1x, ,( (xx><00) )
(2)将例 2(2)中“已知偶函数 f(x)在区间[0,+∞)上单调递 增”改为“函数 f(x)=x2+e|x|”,则 x 的取值范围是________.

高考数学复习第2章 函数的奇偶性与周期性

高考数学复习第2章 函数的奇偶性与周期性
填“相同”、“相
反”).
(2)在公共定义域内
(ⅰ)两个奇函数的和函数是⑨________,两个奇函数的积函数是⑩
奇函数
________.
偶函数
偶函数
(ⅱ)两个偶函数的和函数、积函数是⑪________.
奇函数
(ⅲ)一个奇函数与一个偶函数的积函数是⑫________.
(3)若f(x)是奇函数且在x=0处有意义,则f(0)=⑬________.
称.定义域关于原点对称是判断函数具有奇偶性的一个必要条件.
2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)
=-f(x)或f(-x)=f(x),而不能说存在x0 使f(-x0)=-f(x0)、f(-x0)=
f(x0).
【小题热身】
一、判断正误
1.判断下列说法是否正确(请在括号中打“√”或“×”).
2
∴a=-3.
考点一 函数的奇偶性[分层深化型]
考向一:判断函数的奇偶性
1.[2021·成都市高三阶段考试]已知y=f(x)是定义在R上的奇函数,
则下列函数中为奇函数的是(
)
①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.
A.①③
B.②③
C.①④
D.②④
解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x),由f(|
-x|)=f(|x|),知①是偶函数;由f[-(-x)]=f(x)=-f(-x),知②是奇函
数;由y=f(x)是定义在R上的奇函数,且y=x是定义在R上的奇函数,奇
×奇=偶,知③是偶函数;由f(-x)+(-x)=-[f(x)+x],知④是奇函
C.y=|ln x|

函数的奇偶性、指数函数、对数函数-高考数学专题复习

函数的奇偶性、指数函数、对数函数-高考数学专题复习

函数的奇偶性、指数函数、对数函数知识精要一、函数的奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)那么函数f(x)就叫做偶函数。

(2)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(3)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D 关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言。

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。

④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。

奇偶函数图像的特征定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y 轴的轴对称图形。

f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习之函数的奇偶性和周期性一、知识梳理1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.3.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)若奇函数的定义域包含数0,则f (0)=0. (4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f (x )都可以唯一表示成一个奇函数与一个偶函数之和.4.函数的周期性(1)周期函数的定义:对于函数)(x f 定义域内的每一个x ,若存在非零常数T ,使得)()(x f T x f =+恒成立,则称函数)(x f 具有周期性,T 叫做)(x f 的一个周期,则)0,(≠∈k Z k kT 也是)(x f 的周期,所有周期中的最小正数叫)(x f 得最小正周期。

(2)常用结论①若)(x f y =图象有两条对称轴a x =,b x =)(b a ≠,则)(x f y =是周期函数,且周期为||2b a T -=;②若)(x f y =图象有两个对称中心A )0,(a ,B )0,(b )(b a ≠,则)(x f y =是周期函数,且周期为||2b a T -=;③若)(x f y =图象有一个对称中心A )0,(a ,和一条对称轴b x =)(b a ≠,则)(x f y =是周期函数,且周期为||4b a T -=;④若函数)(x f y =满足)()(x f x a f -=+,则)(x f y =是周期函数,且a T 2=;⑤若函数)(x f y =满足)0()(1)(≠±=+a x f a x f ,则)(x f y =是周期函数,且a T 2=; ⑥若函数)(x f y =满足)()(a x f x a f -=+,则)(x f y =是周期函数,且a T 2=; ⑦若函数)(x f y =满足)(1)(1)(x f x f x a f -+-=+,则)(x f y =是周期函数,且a T 4=;二、点击双基1.下面四个结论中,正确命题的个数是( )①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A.1B.2C.3D.4解析:①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f (x )=0〔x ∈(-a ,a )〕.答案:A2.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A.奇函数 B.偶函数 C.既奇且偶函数 D.非奇非偶函数解析:由f (x )为偶函数,知b =0,有g (x )=ax 3+cx (a ≠0)为奇函数. 答案:A3.若偶函数f (x )在区间[-1,0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )A.f (cos α)>f (cos β)B.f (sin α)>f (cos β)C.f (sin α)>f (sin β)D.f (cos α)>f (sin β)解析:∵偶函数f (x )在区间[-1,0]上是减函数,∴f (x )在区间[0,1]上为增函数.由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sin α>cos β>0. ∴f (sin α)>f (cos β). 答案:B4.设定义在R 上的函数)(x f y =满足12)2()(=+⋅x f x f ,且2)2010(=f ,则)0(f 等于( )A.12B.6C.3D.2解析:12)4()2(=++x f x f ,∴)2()4(f x f =+,∴)(x f y =的周期为4,∴2)2()2010(==f f ∴6)2(12)0(==f f 答案:B 5.已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________.解析:定义域应关于原点对称,故有a -1=-2a ,得a =31. 又对于所给解析式,要使f (-x )=f (x )恒成立,应b =0.答案:316.给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ).在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.答案:①⑤ ② ③④7.已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,则=)(x f __________.答案:⎪⎩⎪⎨⎧<+-≥--0,130,13x x x x三、典例剖析例1 已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则 A.f (0)<f (-1)<f (2) B.f (-1)<f (0)<f (2) C.f (-1)<f (2)<f (0) D.f (2)<f (-1)<f (0)剖析:由f (x -2)在[0,2]上单调递减,∴f (x )在[-2,0]上单调递减. ∵y =f (x )是偶函数,∴f (x )在[0,2]上单调递增.又f (-1)=f (1),故应选A. 答案:A例2 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|; (2)f (x )=(x -1)·xx-+11;(3)f (x )=2|2|12-+-x x ; (4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x剖析:根据函数奇偶性的定义进行判断. 解:(1)函数的定义域x ∈(-∞,+∞),对称于原点.∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-(|x +1|-|x -1|)=-f (x ), ∴f (x )=|x +1|-|x -1|是奇函数.(2)先确定函数的定义域.由xx-+11≥0,得-1≤x <1,其定义域不对称于原点,所以f (x )既不是奇函数也不是偶函数.(3)去掉绝对值符号,根据定义判断.由⎩⎨⎧≠-+≥-,02|2|,012x x 得⎩⎨⎧-≠≠≤≤-.40,11x x x 且故f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )=2212-+-x x =x x 21-,这时有f (-x )=x x ---2)(1=-xx 21-=-f (x ),故f (x )为奇函数.(4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0). 当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0). 故函数f (x )为奇函数. 评述:(1)分段函数的奇偶性应分段证明.(2)判断函数的奇偶性应先求定义域再化简函数解析式.例3 (北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.(1)解:令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)证明:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1).解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数. (3)解:f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3. ∴f (3x +1)+f (2x -6)≤3即f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )在(0,+∞)上是增函数, ∴(*)等价于不等式组⎩⎨⎧≤-+>-+64)62)(13(,0)62)(13(x x x x 或⎩⎨⎧≤-+-<-+,64)62)(13(,0)62)(13(x x x x 或⎪⎪⎩⎪⎪⎨⎧≤≤--<>537,313x x x 或或⎪⎩⎪⎨⎧∈<<-.,331R x x∴3<x ≤5或-37≤x <-31或-31<x <3. ∴x 的取值范围为{x |-37≤x <-31或-31<x <3或3<x ≤5}.评述:解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f ”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.四、深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b >a 2,那么f (x )·g (x )>0的解集是 A.(22a ,2b) B.(-b ,-a 2)C.(a 2,2b )∪(-2b,-a 2)D.(22a ,b )∪(-b 2,-a 2)提示:f (x )·g (x )>0⇔⎩⎨⎧>>0)(,0)(x g x f 或⎩⎨⎧<<.0)(,0)(x g x f∴x ∈(a 2,2b )∪(-2b,-a 2). 答案:C例4 (天津模拟题)已知函数f (x )=x +xp+m (p ≠0)是奇函数. (1)求m 的值. (2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).∴-x -x p +m =-x -xp-m . ∴2m =0.∴m =0.(2)(理)(ⅰ)当p <0时,据定义可证明f (x )在[1,2]上为增函数.∴f (x )max = f (2)=2+2p,f (x )min =f (1)=1+p . (ⅱ)当p >0时,据定义可证明f (x )在(0,p ]上是减函数,在[p ,+∞)上是增函数.①当p <1,即0<p <1时,f (x )在[1,2]上为增函数, ∴f (x )max =f (2)=2+2p,f (x )min =f (1)=1+p . ②当p ∈[1,2]时,f (x )在[1,p ]上是减函数.在[p ,2]上是增函数.f (x )min =f (p )=2p .f (x )max =max{f (1),f (2)}=max{1+p ,2+2p}. 当1≤p ≤2时,1+p ≤2+2p ,f (x )max =f (2);当2<p ≤4时,1+p ≥2+2p ,f (x )max =f (1). ③当p >2,即p >4时,f (x )在[1,2]上为减函数,∴f (x )max =f (1)=1+p ,f (x )min =f (2)=2+2p . (文)解答略.评述:f (x )=x +xp(p >0)的单调性是一重要问题,利用单调性求最值是重要方法. f (x )=x +xp的单调性也可根据导函数的符号来判断,本题如何用导数来解? 五、闯关训练1.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a <b <0,给出下列不等式,其中成立的是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①④ B.②③ C.①③ D.②④解析:不妨取符合题意的函数f (x )=x 及g (x )=|x |进行比较,或一般地g (x )=⎩⎨⎧≤-≥,0)(,0)(x x f x x f f (0)=0,f (a )<f (b )<0. 答案:D2.(北京海淀区二模题)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:∵偶函数f (x )在[-1,0]上是减函数,∴f (x )在[0,1]上是增函数.由周期为2知该函数在[2,3]上为增函数.答案:A3. (全国Ⅰ文9)设偶函数)(x f )满足)0(42)(≥-=x x x f ,则}0)2(|{>-x f x = ( ) A .4}x ,2|{>-<或x x B .4}x ,0|{><或x x C .6}x ,0|{><或x x D .2}x ,2|{>-<或x x 答案B4.(辽宁文6)若函数))(12()(a x x xx f -+=为奇函数,则a = ( )A .21B .32C .43 D .1答案A5.(全国Ⅰ理2)下列函数中,既是偶函数又在),0(+∞单调递增的函数是( ) A .3x y = B . 1||+=x y C .12+-=x y D .||2x y -= 答案B6.(全国Ⅱ理9)设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f ( ) A .21- B .41- C .41 D .21 答案A命题意图:本小题主要考查了函数的奇偶性、周期性的概念。

相关文档
最新文档