第六章 圆轴的扭转

合集下载

第6章 圆轴的扭转(5)

第6章  圆轴的扭转(5)

4、变形后,半径仍为直线且转过了角度 j ,说明半 径上各点的剪应变不同,圆心处剪应变为零,离圆心越 远,剪应变越大。
扭转剪应力公式推导
R
几何关系
dj 是前后两个端面的相对转角。
g 是外表面沿轴线方向上的剪应变。
在外表面处的剪应变 在离轴心ρ 处的剪应变
变形前位置 变形后位置 g( r) γ(ρ ) ρr dj g A A dx dx
WP
16M A ×103 16×150 = = = 81.26 MPa <[τ] 4 4 d 1 π ×243 - 18 3 1 πD 1 1 24 D1 16 M C 16× 100×10 3 = = 86.9 MPa 4 4 18 d2 3 3 π × 22 1 2 1 22 D2
正的扭矩
负的扭矩
通常,扭转圆轴各横截面上的扭矩是不同的,为 了形象地表达扭矩沿轴线的变化情况,我们仿照作轴 力图的方法,作出扭矩图。
例1: 如图(a)所示传动轴,已 知转速 n=250r/min,主动轮A的 输入功率PA=80kW,三个从动轮B、 C、D输出功率分别为25kW、 30kW和25kW,试画出传动轴 的扭矩图。
6.3 扭矩与扭矩图
下面用截面法研究圆轴横截面上的内力:
m
m
由平衡条件 ∑M=0,有 T-M=0,得T=M 若取右段研究,求得的扭矩与上面求得的扭矩大 小相同,转向相反。
为了使不论取左段或右段求得的扭矩大小、符号都一致, 对扭矩的正负号规定如下:按照右手的螺旋法则,用右手的 四个手指沿扭矩方向环绕,若大拇指的指向与外向法线一致, 则扭矩为正;反之为负。
的误差不超过4.52%,是足够精确的。

第六章圆轴扭转练习带答案

第六章圆轴扭转练习带答案

第六章圆轴扭转练习带答案第六章圆轴的扭转⼀、填空题1、圆轴扭转时的受⼒特点是:⼀对外⼒偶的作⽤⾯均_______于轴的轴线,其转向______。

2、圆轴扭转变形的特点是:轴的横截⾯积绕其轴线发⽣________。

3、在受扭转圆轴的横截⾯上,其扭矩的⼤⼩等于该截⾯⼀侧(左侧或右侧)轴段上所有外⼒偶矩的_______。

4、圆轴扭转时,横截⾯上任意点的切应⼒与该点到圆⼼的距离成___________。

5、试观察圆轴的扭转变形,位于同⼀截⾯上不同点的变形⼤⼩与到圆轴轴线的距离有关,显然截⾯边缘上各点的变形为最_______,⽽圆⼼的变形为__________。

6、圆轴扭转时,在横截⾯上距圆⼼等距离的各点其切应⼒必然_________。

7、从观察受扭转圆轴横截⾯的⼤⼩、形状及相互之间的轴向间距不改变这⼀现象,可以看出轴的横截⾯上⽆____________⼒。

8、圆轴扭转时,横截⾯上切应⼒的⼤⼩沿半径呈______规律分布。

10、圆轴扭转时,横截⾯上内⼒系合成的结果是⼒偶,⼒偶作⽤于⾯垂直于轴线,相应的横截⾯上各点的切应⼒应垂直于_________。

11、受扭圆轴横截⾯内同⼀圆周上各点的切应⼒⼤⼩是_______的。

12、产⽣扭转变形的⼀实⼼轴和空⼼轴的材料相同,当⼆者的扭转强度⼀样时,它们的_________截⾯系数应相等。

13、横截⾯⾯积相等的实⼼轴和空⼼轴相⽐,虽材料相同,但_________轴的抗扭承载能⼒要强些。

16、直径和长度均相等的两根轴,其横截⾯扭矩也相等,⽽材料不同,因此它们的最⼤剪应⼒是________同的,扭转⾓是_______同的。

17、产⽣扭转变形的实⼼圆轴,若使直径增⼤⼀倍,⽽其他条件不改变,则扭转⾓将变为原来的_________。

18、两材料、重量及长度均相同的实⼼轴和空⼼轴,从利于提⾼抗扭刚度的⾓度考虑,以采⽤_________轴更为合理些。

⼆、判断题1、只要在杆件的两端作⽤两个⼤⼩相等、⽅向相反的外⼒偶,杆件就会发⽣扭转变形。

6圆轴扭转的识别和应用

6圆轴扭转的识别和应用

《机械基础》教案(2009~ 2010学年第二学期)学院山西省工贸学校系(部)机电系教研室教师梁少宁山西省工贸学校③学生学案课题名称:圆轴扭转的识别和应用班级:姓名:(一)、工作任务:拿出一根塑料管在扭转的过程中,手上的力是怎样用的?然后拿出一根粉笔,它在扭转力的作用下断裂后,这个断裂面是什么样子的?(二)、学习目标:1、理解材料力学的任务和研究对象。

2、理解构件圆轴扭转时的受力特点、变形特点及应用实例。

3、能够在以后的工作当中根据构件的受力方式正确选择构件的形状和尺寸。

(三)、回答问题1、拿出一根塑料管在扭转的过程中,手上的力是怎样用的?2、然后拿出一根粉笔,它在扭转力的作用下断裂后,这个断裂面是什么样子的?(四)、分析该资料,完成项目任务:一、关于扭矩、剪应力与剪应变以及相对扭转角等概念扭转——直杆的两端,在垂直杆轴线的平面内作用一对大小相等,方向相反的外力偶,使杆件各横截面发生绕轴线相对转动。

这种变形形式称为扭转。

轴——以扭转变形为主要变形的杆件称为轴。

横截面为圆形的轴称为圆轴。

扭矩——在外力偶作用下,应用截面法,圆轴横截面上的分布内力组成一合力偶与外力偶平衡,这一内力合力偶的力偶矩称为扭矩,用T表示。

剪应力互等定理——由受扭圆轴上扭截取的微六面体(微元),在两个互相垂直的截面上的剪应力数值相等,其方向同时指向或背离该交线。

此关系称为剪应力互等定理。

纯剪状态——微元的四个侧面上只有剪应力而无正应力,则该微元的受力状态称为纯剪状态。

剪应变——剪应力作用下,微元的直角改变量称为剪应变(或切应变)。

剪切胡克定律——在弹性范围内,剪应力与剪应变成正比,即τ=Gγ,式中G是剪切弹性模量,与拉、压杆的弹性模量E相似,表示材料的弹性常数,随材料而异,由实验测定。

单位为MPa。

扭转角——轴在受扭时,两横截面间绕轴线相对转动的角度,称为相对扭转角,用φ表示,用来表示轴的扭转变形。

二、扭矩计算、扭转剪应力与变形分析1、外力偶矩的计算作用在轴上的外力是外力偶,其力偶矩用m表示。

机械基础-圆轴扭转

机械基础-圆轴扭转
圆轴扭转使圆轴发生旋转运动, 转动角度和扭矩大小相互关联。
应力分析
圆轴扭转中承受的应力分析是确 保圆轴在运动过程中不会发生破 坏。
圆轴扭转的应用领域
机械传动
圆轴扭转被广泛应用于机械传动系统中,实现能量的传输和转换。
汽车工程
在汽车发动机和变速器中,圆轴扭转起到承载和传输动力的关键作用。
航空航天
航空航天工程中的涡轮机械系统和航空发动机都离不开圆轴扭转。
与圆轴扭转相关的力学概念
弹性模量 剪切应力 扭转角度 Nhomakorabea圆轴材料的弹性变形能力 圆轴扭转引起的应力分布 圆轴扭转的角度变化
圆轴扭转的挑战与解决办法
1
疲劳寿命
圆轴扭转时容易引起疲劳破坏,需采取优化设计和材料选择来提高寿命。
2
动力平衡
圆轴扭转会引起不平衡力,需要进行动平衡设计和校正,减少振动。
3
扭转刚度
圆轴的刚度决定了扭转角度和应力的关系,设计时需考虑刚度的优化。
圆轴扭转的实例和案例分析
风力发电机
风力发电机的转子轴承受着强大 的风力扭转力,充分利用风能。
变速器
汽车变速器中的轴承承载着引擎 输出的扭转力,实现档位切换。
工业机械
各种工业机械设备中都存在圆轴 扭转的应用,如泵、缝纫机等。
结论和启示
结论
圆轴扭转是机械工程中一项重要的运动形式,应用 广泛且具有挑战性。
启示
通过深入了解圆轴扭转的原理和应用,可以优化设 计和解决实际问题。
机械基础-圆轴扭转
圆轴扭转的定义和背景
1 定义
圆轴扭转是指在机械系统中,圆轴受到一对 作用力使得其进行扭转运动。
2 背景
圆轴扭转是机械工程中一项重要的运动形式, 广泛应用于各种机械设备和结构中。

圆轴扭转的计算(工程力学课件)

圆轴扭转的计算(工程力学课件)

9 549 20 637 300
Nm
318 N.m 1 477 N.m 2 1432 N.m 3 637 N.m
B
1C
A 2
D 3
扭矩图(T图)
318 N.m
477 N.m
1432 N.m
637 N.m
B
C
A
D
练习1
画扭矩图!
5
3

A
B
C
练习2
3000N.m
3000

1200
T图(N.m)
G E
材料的三个弹性常数
2(1 ) 由三个中的任意两个,求出其第三个
扭转的概念 扭矩和扭矩图
扭转变形
角应变
扭转角
受力特点
大小相等、方向相反, 作用面垂直于杆件轴线的外力偶矩
变形特点 任意横截面绕杆轴线产生转动
典型构件
以扭转变形为主的杆件通常称为轴 最常用的是圆截面轴
扭转的工程实例
螺丝刀杆工作时受扭
输出功率: PB 10 kW PC 15 kW PD 20 kW
M eA
9
549
PA n
9 549 45 1 432 300
Nm
M eB
9
549 PB n
9
549 10 318 300
Nm
M eC
9 549 PC n
9 549 15 477 300
Nm
M eD
9 549 PD n
(1)条件 (2)求约束力
扭矩 T图
T
Ip
Tl l FN l
GI P
EA
扭转
拉压
max
Tmax Wp

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转
π× 80 3 17 ⎞ ⎛ × 10 −9 ⎜1 − ( ) 4 ⎟ = 2883 N·m 16 20 ⎠ ⎝
习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×

Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =

ρ ⋅ τdA =

r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转

第六章 圆轴扭转

第六章 圆轴扭转
第六章 圆周扭转
§6.1 扭转的概念和实例
第六章 圆周扭转
§6.1 扭转的概念和实例
第六章 圆周扭转
§6.1 扭转的概念和实例
请判断哪一杆件 将发生扭转?
当两只手用力相等时, 拧紧螺母的工具杆将产生扭 转。
第六章 圆周扭转
§6.1 扭转的概念和实例
第六章 圆周扭转
汽车传动轴
第六章 圆周扭转
扭矩和扭矩图62外力偶矩的计算扭矩和扭矩图用截面法研究横截面上的内力第六章圆周扭转扭矩正负规定右手螺旋法则右手拇指指向外法线方向为正反之为负62外力偶矩的计算扭矩和扭矩图第六章圆周扭转扭矩图62外力偶矩的计算扭矩和扭矩图第六章圆周扭转1计算外力偶矩例题6162外力偶矩的计算扭矩和扭矩图传动轴已知转速n300rmin主动轮a输入功率p45kw三个从动轮输出功率分别为20kw
在两轴长度相等,材料相同的情况下,两轴重量之比等于横截面面 积之比。
A2 A1
62.28.72110044
0.31
可见在载荷相同的条件下,空心轴的重量仅为实心轴的31% 。
第六章 圆周扭转
§6.4 圆轴扭转时的应力
例题6.3
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
强度条件的应用
(1)校核强度
max
Tmax Wt
maxTWmtax
(2)设计截面
Wt
Tmax
(3)确定载荷
TmaxW t
第六章 圆周扭转
§6.4 圆轴扭转时的应力
例3.2 由无缝钢管制成的汽车传动轴,外径 D=89mm、壁厚=2.5mm,材料为20号钢,使用 时的最大扭矩T=1930N·m,[]=70MPa.校核此 轴的强度。

圆轴的扭转

圆轴的扭转

第六章 圆轴的扭转
例6-1 求如图所示传动轴1-1截面和2-2截面的扭矩, 并画扭矩图。
解:用截面法求扭矩
1)取1-1截面左侧
T11 M 1.8kN m
2)取2-2截面右侧
=1.8kNm 1 1
=3kNm 2 2
=1.2kNm
1.2kNm
T2 2 M C 1.2kN m
38.4ΜΡa [ ] 40ΜΡa
轴满足 强度条件
4) 刚度校核
Tmax 180 700 32 180 0 max ( / m) 9 4 12 GIp 8010 45 10
1.23
m
[ ] 1.5
m
因轴同时满足刚度条件,所以传动轴是安全的。
扭转强度条件同样可以用来解决三类问题: 强度校核
设计截面尺寸
确定许用载荷
第六章 圆轴的扭转 例6-2 如图所示为阶梯形圆轴,其中实心AB段直 径d1=40mm;BD段为空心部分,外径D =55mm,内 径 d =45mm。轴上A、D、C处为皮带轮,已知主动 轮C输入的外力偶矩为MC=1.8kN· m,从动轮A、D 传递的外力偶矩分别为MA=0.8kN· m,MD=1kN· m, 材料的许用切应力[ ]=80MPa。试校核该轴的强度。 解:1)画扭矩图: 用截面法(或简捷方法) 可作出该阶梯形圆轴的 扭矩图如图所示。
解: 1) 计算外力偶矩
PA M A 9550 n 1168N m
同理
M B 468N m
M C M D 350N m
第六章 圆轴的扭转
2)绘制扭矩图 用截面法求 1-1截面的扭矩
1 2 3
T1 M B 468N m

圆轴的扭转变形与刚度条件

圆轴的扭转变形与刚度条件

第五节圆轴的扭转变形与刚度条件一、圆周的扭转变形圆轴受扭转时,除了考虑强度条件外,有时还要满足刚度条件。

例如机床的主轴,若扭转变形太大,就会引起剧烈的振动,影响加工工件的质量。

因此还需对轴的扭转变形有所限制。

轴受扭转作用时所产生的变形,是用两横截面之间的相对扭转角ϕ表示的,如下图所示。

由于γ角与ϕ角对应同一段弧长,故有ϕ·R = γ·l (a)式中的R是轴的半径,由剪切虎克定律,τ=G·γ,所以可得ϕ=τ·l/ (G·γ)(b)式中τ=M·R/ Jρ,代入(b)得:ϕ=M·l/ (G·Jρ)(1-46)公式(1-46)是截面A、B之间的相对扭转角计算公式,ϕ的单位是rad。

两截面间的相对扭转角与两截面间的距离l成正比,为了便于比较,工程上一般都用单位轴长上的扭转角θ表示扭转变形的大小:θ=ϕ/ l=M/ (G·Jρ)(1-47)θ的单位是rad/m。

如果扭矩的单位是N·m,G的单位MP a,Jρ的单位m4。

但是工程实际中规定的许用单位扭转角[θ]是以°/m 为单位的,则公式(1-47)可改写为:(1-48)式中G·Jρ称为轴的抗扭刚度,取决于轴的材料与截面的形状与尺寸。

轴的G·Jρ值越大,则扭转角θ越小,表明抗扭转变形的能力越强。

二、扭转的刚度条件圆轴受扭转时如果变形过大,就会影响轴的正常工作。

轴的扭转变形用许用扭转角[θ]来加以限制,其单位为°/m,其数值的大小根据载荷性质、工作条件等确定。

在一般传动和搅拌轴的计算中,可选取[θ]=0.5°/m~10°/m。

由此得出轴的扭转刚度条件:θ=M/ (G·Jρ)·(180/ π)≤[θ](1-49)圆轴设计时,一般要求既满足强度条件(1-45),又要满足刚度条件(1-49)。

建筑力学6-扭转

建筑力学6-扭转

(2) 计算各段的扭矩 AB段:考虑AB段内任一截面的左侧,由计算扭 矩的规律有 TAB=mA=1756N·m BC段:考虑右侧 TBC=mC=702.4N·m (3) 画扭矩图 根据以上的计算结果,按比例作扭矩图(图6.3(b))。 由扭矩图可见,轴AB段各截面的扭矩最大,其值 Tmax=TAB=1756N·m
6.3.3 横截面上的变形
圆轴扭转时的变形,用两个横截面间绕轴线的相 对扭转角φ来度量。由上节式(e)可得相距为l的两个截 面之间的扭转角为 l T ϕ = ∫ dϕ = ∫ dx l 0 GI P 当轴在l长度范围内T、G和Ip均为常量时,有
T ϕ= GI P T Tl ∫0 GI P dx = GI P
第六章 扭转
6-1,概述
1,扭转的概念: 杆件在一对大小相等、方向相反、作用平面垂直于杆件轴线的外力偶 矩T的作用下,杆件任意两截面挠杆轴线发生相对转动,这种基本变 形称为扭转。 共同特点:杆件受到外力偶的作用,且力偶的作用平面垂直于杆件的 轴线,使杆件的任意横截面都绕轴线发生相对转动。 杆件的这种由于转动而产生的变形称为扭转变形。工程中将扭转 变形为主的杆件称为轴。 :
l
GIp称为圆轴的抗扭刚度,它反映了圆轴抵抗扭转 变形的能力。
从上式可知,φ的大小与轴的长度有关, 为了消除长度的影响,用单位长度扭转角θ 来表示扭转变形的程度,即
T θ= = l GI P
ϕ
式中θ的单位是弧度每米(rad/m),由于 工程上θ的单位常用度每米(°/m),则
T 180 θ= GI P π
图6.2
∑mx(F)=0,T1-mA=0 T1=mA=1910N·m (3) 计算2-2截面的扭矩 假想将轴沿2-2截面截开,取左端为研究对象,截 面上的扭矩T2按正方向假设,受力图如图6.2(c)所示。 由平衡方程 ∑mx(F)=0,T2+mB-mA=0 T2=mA-mB=716N·m 若取2-2截面的右端为研究对象,受力图如图6.2(d) 所示。由平衡方程 ∑mx(F)=0,T2-mC=0 T2=mC=716N·m

圆轴扭转

圆轴扭转

空心圆截面:
Wt

D3
16
(1
d4 D4
)

D3
16
(1 4 )
四 等直圆杆扭转时的应力
例题1 已知空心圆截面的扭矩T=1kN·m,D=40mm,d=20mm,求 最大、最小切应力。
解:
max
T
Wt
T


16
D3
(1

d4 D4
)
max min


16 1000

4.按大小比例和正负号,将各段杆的扭矩画在基线两 侧,并在图上标出数值和正负号
例题1 画出图示杆的扭矩图 3kN·m Ⅰ 5kN·m Ⅱ 2kN·m
解: AC段
m 0
AⅠ 3kN·m
CⅡ
T1 T2
3kN·m
B 2kN·m
T1 3 0 T1 3kN m
BC段 m 0
T2 2 0 T2 2kN m
ρ
τdA b dA
O2 T
四 等直圆杆扭转时的应力
4 极惯性矩
【公式3-16;公式3-18】
IP
2dA
A
D
2 2 2 d 0
O
D4
32
D
环形截面:
IP


32
(D4

d4)
d D
极惯性矩单位: m4
四 等直圆杆扭转时的应力
同一截面,扭矩T,极惯性矩IP为常数,因此各点 切应力τ的大小与该点到圆心的距离ρ成正比,方向垂 直于圆的半径,且与扭矩的转向一致
例题3 画出图示杆的扭矩图
4kN·mⅠ 6kN·mⅡ 8kN·mⅢ 6kN·m

工程力学第6单元 圆轴扭转

工程力学第6单元  圆轴扭转
为螺旋线,称为切应变,用符号γ表示。
机械工业出版社
6.2 扭矩和扭矩图
6.2.1 外力偶矩的计算
作用在轴上的外力偶矩,一般在工作过程中并不是已 知的,常常是已知轴所传递的功率和轴的转速,再由下式 求出外力偶矩,即:
Me

9550 P n
式中:Me为轴上的外力偶矩,单位为N.m; P为轴传递的功率,单位为kW;
机械工业出版社
6.2 扭矩和扭矩图
案 例 6-1 传 动 轴 如 图 6-8a 所 示 , 主 动 轮 A 输 入 功 率 PA=120kW,从动轮B、C、D输出功率分别为PB=30kW, PC=40kW , PD=50kW , 轴 的 转 速 n=300r/min 。 试 作 出 该 轴的扭矩图。
改锥拧螺母-力偶实例
钻探机钻杆
机械工业出版社
6.1 圆轴扭转的概念
工程实例的受力及变形分析 工程上传递功率的轴,大多数为圆轴,这些传递功率的 圆轴承受绕轴线转动的外力偶矩作用时,其横截面将产生绕 轴线的相互转动,这种变形称为扭转变形。
方轴扭转的概念
机械工业出版社
6.3 圆轴扭转时横截面上的应力
3.圆轴扭转的切应力 (1)横截面上任一点的切应力


T
IP
式中:T—为横截面上的扭矩; ρ—为所求点到圆心的距离 ; τρ —为该截面对圆心的极惯性矩
机械工业出版社
6.3 圆轴扭转时横截面上的应力
当ρ=R时,圆截面上的切应力最大τmax (2)圆截面上的最大切应力
max

T Wp
式中:T —为横截面上的扭矩;
WP—为圆截面的抗扭截面模量,单位m3 或mm3
机械工业出版社
6.3 圆轴扭转时横截面上的应力

第六章圆轴扭转

第六章圆轴扭转

N m = 7.024 (kN ⋅ m) n
1PS=735.5N·m/s , 1kW=1.36PS
9
工程中的扭转问题 工程中的扭转问题
传动轴
掘土机械中的螺旋钻的空心圆轴
10
二 扭矩与扭矩图
扭矩: 是横截面上的内力偶矩。 扭矩:M0是横截面上的内力偶矩。 内力(扭矩) 由截面法求得。 内力(扭矩)—由截面法求得。
G是τ−γ曲线的斜率,如图, 曲线的斜率,如图, 称为剪切弹性模量。 称为剪切弹性模量。 半径为ρ处的剪应力则为: 半径为ρ处的剪应力则为:
γ
τ ρ = Gγ ρ
dϕ = Gρ dx
圆轴扭转时 无正应力
24
讨论:圆轴扭转时横截面上的剪应力分布
τ max
τρ
A B γ ρ γρ
T
τ ρ = Gγ ρ
γ是微元的直角改变量,即 是微元的直角改变量,
M
A C
R
dφ O C′ ′ D dφ ρ D′ ′
半径R各处的剪应变。 半径R各处的剪应变。因为 CC′= Rdx=rdφ , 故有: CC′ 故有:
γ γ
γ = Rdϕ / dx
dφ /dx ,称为单位扭转角。 称为单位扭转角。 对半径为ρ的其它各处,可 的其它各处, 作类似的分析。 作类似的分析。
25
最大剪应力在圆轴 dx 表面处。 表面处。
dϕ --(3) τ ρ = Gγ ρ = Gρ 3. 力的平衡关系 dx 应力是内力(扭矩)在微截面上的分布集度。 应力是内力(扭矩)在微截面上的分布集度。 各微截面上内力对轴心之矩的和应与截面扭 矩相等。 矩相等。
τ max
τρ
τρ
取微面积如图,有: 取微面积如图,

圆轴扭转

圆轴扭转

MT R MT max = Wp Ip
W p为抗扭截面系数( mm
3
M Pa
)
极惯性矩与抗扭截面系数表示了截面的几何性质,其大小 只与截面的形状和尺寸有关。工程上经常采用的轴有实心 圆轴和空心圆轴两种,它们的极惯性矩与抗扭截面系数按 下式计算:
实心轴:
Ip
Wp
D
Ip R
4
AB=200mm;BC=250mm,AB=80mm,BC=50mm,G=80GPa。求此 轴的最大切应力。
解: 求AB、BC段扭矩 MAB= -5kN.m MBC= -1.8kN.m
根据切应力计算公式:
MAB T 5 10 AB AB max 48.83MPa 3 WAB 0.2 80
32

0.1D
4
D
3
16
4
0.2 D
3
空心轴: d / D
Ip
D
32
4
32 32 I p D 3 Wp 1 4 0.2 D 3 1 4 16 R

d
4

D
1 0.1D 1
4 4 4
例1:如图所示,已知M1=5kNm;M2=3.2kNm;M3=1.8kNm;
这种形式的变形称为扭转变形。
3.研究对象:轴(以扭转变形为主的杆件)
工程中发生扭转变形的构件
工程中发生扭转变形的构件
扭转内力:扭矩和扭矩图
1.扭转时的内力称为扭矩。截面上的扭矩 与作用在轴上的外力偶矩组成平衡力系。 扭矩求解仍然使用截面法。
P(kW) (N.m) Me=9550 n(r/min)
M M

圆轴的扭转习题+答案

圆轴的扭转习题+答案
10、横截面为圆形的直杆在产生扭转变形时作出的平面假设仅在弹性范围内成立。 ( )
13、一空心圆轴在产生扭转变形时,其危险截面外缘处具有全轴的最大剪应力,而危险截面内缘处的剪应力为零。 ( )
14、粗细和长短相同的二圆轴,一为钢轴,另一为铝轴,当受到相同的外力偶作用产生弹性扭转变形时,其横截面上最大剪应力是相同的。 ( )
5、圆轴扭转时,横截面上任意点的剪应变与该点到圆心的距离成___________。
6、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。
7、圆轴扭转时,在横截面上距圆心等距离的各点其剪应变必然_________。
13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。
16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。
17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。
17、内外径比值d/D=的空心圆轴受扭转,若将内外径都减小到原尺寸的一半,同时将轴的长度增加一倍,则圆轴的抗扭刚度会变成原来的( )。
A、1/2 B、1/4 C、1/8 D、1/16
18、等截面圆轴扭转时的单位长度扭转角为θ,若圆轴的直径增大一倍,则单位长度扭转角将变为( )。
A、θ/16 B、θ/8 C、θ/4 D、θ/2
5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。 ( )
7、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。 ( )

圆轴扭转

圆轴扭转

d1
A
1.外力 解: 外力 1.
M e2 =
C
M e2
d2
B
M e3
M e1
M e1 = 9549
160 M e1 400
P 400 1 = 9549 × = 7640 N ⋅ m n 500 240 = 3060 N ⋅ m M e3 = M e1 = 4580 N ⋅ m 400
38
§6-5、圆轴扭转时的强度条件 刚度条件
7
§6-2、外力偶矩 扭矩和扭矩图
1.外力偶矩 1.外力偶矩 直接计算
8
二、外力偶矩 扭矩和扭矩图
§6-2、外力偶矩 扭矩和扭矩图
按输入功率和转速计算
已知 轴转速- 轴转速-n 转/分钟 输出功率- 输出功率-Pk 千瓦 求:力偶矩Me
P k
P k
在确定外力偶矩的方向时, 注意输入功率的齿轮、 在确定外力偶矩的方向时,应注意输入功率的齿轮、皮带轮作用的力偶矩为主 输入功率的齿轮 动力矩,方向与轴的转向一致;输出功率的齿轮、 动力矩,方向与轴的转向一致;输出功率的齿轮、皮带轮作用的力偶矩为阻力 矩,方向与轴的转向相反。 方向与轴的转向相反。
34
五、圆轴扭转时的强 刚度设计
§6-5、圆轴扭转时的强度条件 刚度条件
单位长度扭转角
扭转刚度条件
许用单位扭转角
35
§6-5、圆轴扭转时的强度条件 刚度条件 扭转强度条件
•已知T 、D 和[τ],校核强度 已知 τ], •已知T 和[τ], 已知 τ], 设计截面 •已知D 和[τ],确定许可载荷 已知 τ],
τ max
Mn = Wn
W — 抗扭截面系数(抗扭截面模量), 几何量,单位:mm3或m3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:①设计杆的外径
Tmax Wt [ ]
D3 Wt ( 1 4)
16
16Tmax D 4 1 ) [ ] (
MA
(a)
MB B
MC
MD
A
C MB
(b)
D MD
MC B A C
MA
D
解:1.求作用于传动轴上的外力偶矩。扭矩要由外力 偶矩M来计算,而实际问题中更常见的已知条件是功率P和 转速n,所以先要由功率、转速计算外力偶矩
PA 40 M A 9549 9549 1910N m n 200
A a) A M b)
B
M B
解 1. 校核强度 由受力图可知,传动轴内横截 面上的最大扭矩 MTmax 就等于它传递的最大转矩 M , 即:MTmax=M=1.5kN· m 该轴内、外径之比
d / D ( D 2t ) / D (90 2 2.5) / 90 0.944
扭转变形的受力特点是:在与杆件轴线垂 直的平面内,受到一对大小相等、方向相反的 力偶作用。 扭转变形的变形特点是:各横截面绕杆件 轴线发生相对转动。 实心圆轴和圆管受扭转作用时的力学分析较 为简单,而且又是最常见的受扭构件形状,本 节只研究等截面圆轴(含圆管)的扭转问题。
第一节
一、外力偶矩的计算
第六章 圆轴的扭转
• • • • • 第一节 第二节 第三节 第四节 第五节 扭矩和扭矩图 剪切—剪切胡克定律 圆轴扭转时横截面上的应力 圆轴扭转时强度计算 圆轴扭转时变形和刚度计算
扭转:直杆的两端,在垂直于杆轴线的平面内作 用一对大小相等,方向相反的外力偶,使杆件各 横截面发生绕轴线相对转动。这种变形形式称为 扭转。 轴:以扭转变形为主要变形的杆件称为轴。横截面 为圆形的轴称为圆轴。
圆轴扭转的强度计算可解决三类强度问题 1.强度校核
max
M T max W
2. 设计截面尺寸(圆轴直径):已知外载荷 条件和选定材料的许用剪切应力[τ],要求设计 圆轴的直径D,或空心圆轴的外径D和内径d。 3.确定许可载荷:已知圆轴的直径 D,或空心 圆轴的外径 D 和内径 d 以及选定材料的许用剪切应 力[τ],求圆轴上所能承受的最大外力偶矩或传 递的最大功率,即许可载荷。
空心传动轴的合理性 采用空心传动轴能有效节省材料,减轻自重,提高承 受能力。空心轴受扭在力学上的合理性,可以从扭转剪切 应力在横截面上的分布图得到说明。但空心圆轴的环形壁 厚尺寸也不能过小。另外,只有截面闭合的空心圆轴才有 较高的抗扭强度,开口圆管的抗扭能力是很低的。
T
τmax
T
τmax
O
O
D1
t
剪切胡克定律:当切应力不超过材料的剪切比例极 限时,剪应变与剪应力成正比:
G
G为材料的剪切弹性模量,单位 GPa, 是材料抵 抗剪切变形能力的指标。 常用钢材的G=80~84GPa。 线应变ε和剪应变γ是度量构件变形的两个基 本参量。
第三节 圆轴扭转时横截面上的应力
一、等直圆杆扭转实验观察及假设:
O
D
(a)
(b)
(c)
第五节 圆轴扭转时变形和刚度计算
圆轴扭转时的变形由两横截面间相对扭转角 来度量: 即
MTl GI p
GIp反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度。
二、圆轴扭转时的刚度条件:单位长度的扭转角不超过许用 单位扭转角[ ],即
max

MT GI p

max
M T max M T max W 0.2 D3 ( 1 4 )
1.5 1000 7 5 . 03 10 Pa [ ] 3 9 4 0.2 90 10 (1 0.944 )
所以,传动轴能满足抗扭强度要求。
2.计算等强度的实心圆轴直径DS 即要求实心圆轴横截面的抗扭截面模量和原 WS W 圆管截面的抗扭截面模量相等: 由抗扭截面模量公式有
MT
而在图b情况下, MT
max
1910N m
max
1051N m
可见,虽然传动轴输入、输出的功率相同,但将主 动轮布置在几个从动轮的中间位置,使主动轮两侧从动 轮上的转矩之和接近相等,可以降低传动轴承受的转矩, 从而有利于提高传动轴的抗扭强度,或缩小传动轴的直 径、减少用材,减轻重量。 所以,图b所示的布置形式将主动轮布置在几个从动 轮之间的情况较为合理。
MT
O
τmax
O
R
(a)
R
(b)
结论: 1.剪应力的方向与半径垂直,绕圆心转向与扭矩方 向相同; 2. 剪应力沿半径成线性规律分布。
τmax
τ ρ
ρ
MT
r
三.最大剪应力计算公式
MT 由 Ip

D , max 知:当 R 2
max
D MT MT MT 2 (令 WP I p D WP Ip Ip 2
扭矩和扭矩图
轴传递的功率P、转速n与外力偶矩M的关系:
P M 9549 (N m) n
其中:P — 轴传递的功率,千瓦(kW)
n — 转速,转/分(r/min)
外力偶矩转向的确定方法:输入功率的主动轮上作用的力偶 矩为主动力矩,其方向与轴的转动方向一致;输出功率的从 动轮上作用的力偶矩为阻力矩,其方向与轴的转动方向相反。
第二节 剪切——剪切胡克定律
一.剪切的概念
剪切变形的受力特点是:作用在构件两侧面上外力 的合力大小相等、方向相反、作用线平行且相距很近。
常见的剪切变形
键 轴

F
mn
F F
m
F
n
(a)
(b)
实用计算中,通常假设剪切应力τ在剪切面上 是均匀分布的,如图d。则:
Q A
不发生剪切破坏的条件,即抗剪强度条件为:
二、等直圆杆扭转时横截面上的应力:
①变形几何方面 等直圆杆横截面应力 ②物理关系方面 ③静力学方面
MT Ip
—横截面上距圆心为处任一点剪应力计算公式。
式中: MT—横截面上的扭矩,由截面法通过外力偶矩求得。 —该点到圆心的距离。 Ip—极惯性矩,纯几何量,无物理意义。
剪应力公式同样适用于空心圆截面杆,只是 Ip值不同。
T MT O (-) A
1910N m
x
(-)
1051N m
(-) C
525N m
D
B
图b中: MT1 =859 N· m MT2 =-1051 N· m MT3 =-525 N· m
T MT A 859N m (+) B O (-)
1051N m
x
(-) C
525N m
D
3. 对比两种布置形式下传动轴所受的转矩。 在图 a 情况下,
例6.2 传动轴上主动轮A的输入功率PA=40kw,三个从 动轮B、C、D的输出功率分别为PB=18kw,PC=PD=11kw,轴 的转速为n=200r/min。现在两种主、从动轮的布置形式, 分别如图a、b。试求两种布置情况下:1.传动轴各段中的 转矩值;2.绘制传动轴的扭矩图;3.对传动轴承受的转矩 大小进行对比,说明哪种布置形式较为合理。
1. 横截面变形后仍为平面,只是绕轴线相对转过了一 个角度; 2. 轴向无伸缩; 3. 纵向线变形后仍为平行,转过相同的角度γ 。
圆轴扭转的平面假设: 圆轴扭转变形前原为平面的横截面,变形后仍保持为平 面,形状和大小不变,半径仍保持为直线;且相邻两截面间 的距离不变。 结论: 1. 扭转变形的实质是剪切变形; 2. 横截面上只有垂直于半径方向的剪应力τ ,没有正应 力σ。
D ) 2
WP — 抗扭截面系数(抗扭截面模量),
几何量,单位:mm3或m3。
第四节 圆轴扭转时的强度计算
圆轴扭转的强度条件是:轴的危险截面(即 产生最大扭转剪切应力的截面)上的最大剪切应 力τmax不超过材料的许用剪切应力[τ]即
max
M T max W
许用剪切应力[τ]值由相应材料试验测定并 考虑安全系数后加以确定。
扭矩另一种计算方式:
1、假设某截面扭矩皆为正,则该截面上的扭 矩等于截面一侧轴上所有外力偶矩的代数和。 2、计算时外力偶矩的正负号规定:右手拇 指与截面外法线方向一致,四指与外力偶矩 转向相同时取负号;不同时取正号。
4
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
扭矩图的绘制:与轴力图绘制方法相似,绘制扭矩图时, 需先以轴线方向为横轴(x轴)、以扭矩(MT)为纵轴,建 立MT-x坐标系。然后将圆轴各段截面上的扭矩(MT)标在 MT-x坐标中,即可绘出扭矩图。 ①扭矩变化规律; 目 ②|MT|max值及其截面位置 强度计算(危险截面)。 的
MA
(a)
MB Ⅰ B A Ⅰ
Ⅱ MC

MD ω
χ
Ⅱ C
Ⅲ D
解:求扭矩MT2
图b 如图b
图c
M x 0 MT 2 M A M B 0
MT 2 M B M A 6 3 3kN m
或ቤተ መጻሕፍቲ ባይዱ图c
Mx 0
MT 2 M C M D 0
MT 2 MC M D 2 1 3kN m
Q [ ] A
二.剪应变和剪切胡克定律
剪切变形时,剪切面附近的截面互相间发生错动。 将剪切面附近变形前后的情况放大如图a、b:剪切面附 近的材料由变形前的矩形,变形后成为斜平行四边形, 变化的角度γ 称为剪应变,用弧度(rad)来度量。
a F c
b d
F
a' a
b'b d
F
γ
F c
(a)
相关文档
最新文档