参数方程消参方法

参数方程消参方法
参数方程消参方法

参数方程的消参方法

1、参数方程化为普通方程的过程就是消参过程常见方法有三种: (1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数。 (2)三角法:利用三角恒等式消去参数

(3)整体消元法:根据参数方程本身的结构特征,从整体上消去。

化参数方程为普通方程为0),(=y x F :在消参过程中注意变量x 、y 取值范围的一致性,必须根据参数的取值范围,确定)(t f 和)(t g 值域得x 、y 的取值范围。 2、常见曲线的参数方程

(1)过定点),(00y x P 倾斜角为

α的直线的参数方程 ?

??+=+=αα

sin cos 00t y y t x x (t 为参数) (2)圆2

2

2

r y x =+参数方程??

?==θ

θ

sin cos r y r x (θ为参数)

(3)圆2

2

2

00()()x x y y r -+-=参数方程为:?

??+=+=θθ

sin cos 00r y y r x x (θ为参数)

(4)椭圆122

22=+b

y a x 参数方程

??

?==θθ

s i n

c o s b y a x (θ为参数) (5)抛物线Px y 22

=参数方程?

??==Pt y Pt x 222

(t 为参数)

7.已知:直线l 过点)0,2(P ,斜率为

3

4,直线l 和抛物线x y 22

=相交于B A ,两点,设线段AB 的中点为M ,求(1)M P ,两点间的距离。(2)M 点的坐标。(3)线段AB 的长AB 。

解:由34tan =α得:53cos ,54sin ==αα,所以直线的参数方程为()为参数t t y t x ??

??

?

=+=54532,代入x y 22=化简得:045625162=--t t ,4

25

,8152121-==+t t t t

(1)4

15221

=+=t t PM (2)??

???

=?==?+=341554417415532y x 所以??? ??3,417M

(3)()8

65

542

1221=

-+=

t t t t AB

10 (1) 写出经过点)5,1(0M ,倾斜角是3/π的直线l 的参数方程;

(2) 利用这个参数方程,求这条直线l 与直线032=--y x 的交点到点M 0的距离。 (3) 求这条直线l 和圆162

2

=+y x 的两个交点到点M 0的距离的和与积。

解:(1)()为参数t t y t x ???

???

?

+=+=235211 (2)3610+

(3)把()为参数t t y t x ???

???

?+=+=235211代入1622=+y x 化简得:()

0103512=+++t t ()3103642

122121+=-+=

-t t t t t t ,1021=t t

1. 设是椭圆上的一个动点,则的最大值是

,最小值是。P x y x y 2312222+=+

分析一:注意到变量(x ,y )的几何意义,故研究二元函数x+2y 的最值时,可转化为几何问题。若

设x+2y=t ,则方程x+2y=t 表示一组直线(t 取不同的值,方程表示不同的直线),显然(x ,y )既满足2x 2+3y 2=12,又满足x+2y=t ,故点(x ,y )是方程组的公共解。依题意,可知直线与椭圆总有公共点。从而转化为

研究消元后的一元二次方程的判别式。

231222022x y x y t x y t +=+=???+=≥? 解法一:

令,,还满足,故x y t y +=+=23122x y 2x 2

方程组有公共解,消去x y t

x y x +=+=???

2231222

()

得的一元二次方程:y y t y t 118212022-?+-= ()

由解得:?=-??-≥-≤≤644112*********t t t ∴+-x y 22222的最大值为,最小值为

分析二:

由于研究二元函数x+2y 相对困难,因此有必要消元,但由x ,y 满足的方程2x 2+3y 2=12表出x 或y ,会出现无理式,这对进一步求函数最值依然不够简洁,能否有其他途径把二元函数x+2y 转化为一元函数呢?

方法是利用椭圆的参数方

程代入中,即可转化为以x y x y x y 2

2

641622+=?==???

+c o s

s i n θθ θ为变量的一元函数。

解法二:

由椭圆的方程,可设,2x +3y =12x =622cos sin θθy =2 ()代入,得:x y x y ++=+?=+2262222cos sin sin θθθ? ()其中,由于,所以的最小值为,最大值为tg x y x y ?θ?=

-≤+≤-≤+≤∴+-6

4

1122222

22222

sin [注]以上两种解法都是通过引入新的变量来转化问题,解法一是通过引入t ,而把x+2y 几何

化为直线的纵截距的最值问题;解法二则是利用椭圆的参数方程,设出点P 的坐()标(,),代入中,转化为一元函数求其最值,这两种解法不妨都622cos sin θθθx y f +

称为“参数法”。

2. 求椭圆

x y P 2

2

94

110+=上一点与定点(,)之间距离的最小值 2. 解:(先设出点P 的坐标,建立有关距离的函数关系)

()()()()

设,,则到定点(,)的距离为P P d 32103120565535165

22

2

2

cos sin cos sin cos cos cos θθθθθθθθ=

-+-=-+=-?

? ???+

当时,取最小值

cos )θθ=

(3545

5

d 5.设直线 022:=-+y x l ,交椭圆14

9:2

2=+y x C 于A 、B 两点,在椭圆C 上找一点P ,使ABP ?面积最大。

解:设椭圆的参数方程为()为参数θθ

θ

??

?==sin 2cos 3y x ,则()θθs i n 2,c o s 3P ,到直线022:=-+y x l 的

距离为:()5

2

sin 55

2

sin 4cos 3-+=

-+=?θθθd ,当()1sin -=+?θ,即2

?θ=

+时,此时

??

???

-

==-==58sin 259cos 3θθy x ,所以??? ??58,59P

3.已知实数y x ,满足()()25212

2

=-+-y x ,求y x y x ++2,2

2的最值。

解:设圆的参数方程为()为参数θθθ

?

?

?+=+=sin 52cos 51y x

⑴()()()φθθθ++=+++=+sin 51030sin 52cos 512

2

2

2y x ,最大值与最小值分别是

51030,51030-+

⑵()?θθθ++=+++=+sin 154sin 52)cos 51(22y x ,最大值与最小值分别是19与-11。

11 求经过点(1,1),倾斜角为135°的直线截椭圆14

22

=+y x 所得的弦长。

解:直线的参数方程为()为参数t t y t x ???

?

??

?

+=-=22

122

1代入1422

=+y x 化简得022652=++t t

()5

2

442

122121=-+=

-t t t t t t 8. 直线(为参数)被双曲线上截得的弦长为。x t

y t

t x y =+=??

?-=23122

分析与解:

方法之一可把直线的参数方程化为普通方程,与双曲线方程联立,消元,再结合韦达 ()()定理,利用弦长公式可求得弦长;若不把参数方程化为普通方

程,又怎样求弦长呢?注意到直线参数方程不是标准形式,故上述方程中的不具有显而易见的几何意义,因此有必要先将其化为标准形式:

AB k x x x x t y y t t =

+-=+=+???1212200cos sin α

α

为参数)

( 23 212t t y t x ???

????

=+= 1 23 21212

2

2

2=???? ??-??? ??+=-t t y x ,得:代入 06 4 2

=--t t 整理,得:

,则,设其二根为 21t t 6 4 2121-=?=+t t t t ,

()

()10240644 4 2

212

2121==--=-+=

-=t t t t t t AB 从而弦长为

17.已知点()1,2M 和双曲线12

22

=-y x ,求以()1,2M 为中点的双曲线右支的弦AB 所在的直线l 的方程。

解:设所求的直线l 的方程为:()为参数θθθ???+=+=s i n

1c o s 2t y t x 代入1222

=-y x 化简得:

()025sin cos 4sin 21cos 222=+-+???

??-θθθθt t ,0sin 2

1cos cos 4sin 2221=--=+∴θθθt t

4tan ==∴θk ,所求的直线l 的方程为:094=-+y x

12.已知双曲线G 的中心在原点,它的渐近线方程是x y 21±

=.过点()4,0P -作斜率为1

4

的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2

PA PB PC ?=.求双曲线G 的方程;

解:由双曲线G 渐近线方程是x y 2

1

±

=,可设双曲线G 的方程为:224x y m -=. 把直线l 的参数方程方程)(171

1744为参数t t y t x ??????

?

=+-=代入双曲线方程,整理得

01617

32

17122=-+-m t t ,设B A ,对应的参数为21,t t ,()0161712417322>-??-=?m 得3

46

<

m 由韦达定理:()m t t -=1612

17

21,()16121721-=?=?∴m t t PB PA

令017

44=+

-t ,得17=t ,17=∴PC ,由2

PA PB PC ?=得

()171612

17

=-m ,28=m

所以,双曲线的方程为

22

1287

x y -=.

19.从椭圆14

92

2=+y x 上任一点向短轴的两端点分别引直线,求这两条直线在x 轴上截距的乘积。 解 化方程为参数方程:??

?==θ

θ

sin 2cos 3y x (θ为参数)

设P 为椭圆上任一点,则P(3cosθ,2sinθ)。于是,直线BP 的方程为:θ

θ

θθcos 3cos 3sin 22sin 2--=

--x y 直线AP 的方程为:

θ

θ

θθcos 3cos 3sin 22sin 2--=

---x y 令y=0代入AP ,BP,的方程,分别得它们在x 轴上的截距为θθsin 1cos 3-,θ

θ

sin 1cos 3+

故截距之积为:

9sin 1cos 3sin 1cos 3=-?-θ

θ

θθ

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

极坐标与参数方程 题型总结归纳 附答案

《极坐标与参数方程》高考高频题型 除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及 (一)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式222d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”

(二)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ①套公式:利用点到线的距离公式 ①辅助角:利用三角函数辅助角公式进行化一 例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为, 以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为 (I )写出的普通方程和的直角坐标方程; (II )设点在上,点在上,求的最小值及此时的直角坐标 的直角坐标方程为. 这里没有加减移项省去,直接化同,那系数除到左边 (①)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值, xOy 1C ()sin x y α αα?=?? =?? 为参数x 2C sin()4 ρθπ +=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α

求曲线方程的常用方法

求曲线方程的常用方法 1. 直接法——若动点的运动规律就是一些几何量的等量关系,这些条件简单明确易于表 达,则可根据已知(或可求)的等量关系直接列出方程的方法。 2. 定义法——利用二次曲线的定义求轨迹方程。 (1) 若平面上的动点P(x,y)满足条件:11||||PF PF +=定长2a ,且122||a F F >(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的椭圆。故只须选择恰当的坐标系, 就可直接写出椭圆的方程。 (2) 若平面上的动点P(x,y)满足条件:11||||||PF PF -=定长2a ,且122||a F F <(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的双曲线。当122||a F F =时,P 点的轨迹为射线;如果不含绝对值,那么轨迹是一支双曲线或一条射线。故只 须选择恰当的坐标系,依双曲线的定义,就可直接写出椭圆的方程。 3. 代入法(或称相关点法)——有时动点P 所满足的几何条件不易求出,但它随另一动点 P ’的运动而运动,称之为相关点,若相关点P ’满足的条件简单、明确(或P ’的轨迹方程已知),就可以用动点P 的坐标表示出相关点P ’的坐标,再用条件把相关满足的轨迹方程表示出来(或将相关点坐标代入已知轨迹方程)就可得所求动点的轨迹方程的方法。 4. 几何法——利用平面几何的有关知识找出所求动点满足的几何条件,并写出其方程的方 法。 5. 参数法——有时很难直接找出动点的横纵坐标间的关系,可选择一个(有时已给出)与 所求动点的坐标x,y 都相关的参数,并用这个参数把x,y 表示出来,然后再消去参数的方法。 如:遇求两动直线的交点的轨迹方程问题,可适当引进参数(如斜率、截距等),写出两动直线的方程,然后消去参数就得到所求的两动直线的交点的轨迹方程,这种方法又称交轨法,其关键有二:一是选参,要容易写出动直线的方程;二是消参,消参的途径灵活多变,有时分别从两个方程中解出参数,再消参;有时分别解出x,y ,再消参;有时直接或适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参。 5.定义法—— 注意点:求动点轨迹方程在掌握一般步骤的基础上还要注意以下两点,一选建适当的坐标系,以简化运算;二是要注意曲线图形的范围,即根据条件限定方程中变量x,y 的取值范围,将方程中不适合题意的解去掉。 思路方法技巧: 1.“直接法”求动点的轨迹方程 例1. 在正三角形ABC 内有一动点P ,已知P 到三个顶点的距离分别为|PA|、|PB|、|PC| 且满足22||||||P A P B P C =+,求动点P 的轨迹方程。 222()4(0(2)x y a y +=<≤ 例2. 互相垂直的两条直线1l 、2l 的交点为P(a,b),长为2r 的线段MN 的两端点分别在1l 、 2l 上滑动,求线段MN 的中点Q 的轨迹。 (|PQ|=1/2|MN|222()()x a y b r -+-=) 例3. 已知一条曲线在x 轴的上方,它上面的每一个点到A(0,2) 的距离减去它到x 轴的

极坐标与参数方程题型及解题方法89378

精品文档 Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么? 参数方程极坐标

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222222t t t t t y -->+≥?=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

极坐标与全参数方程题型及解题方法47396

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

求曲线方程的几种常见方法

求曲线方程的几种常见方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

2.1.2求曲线的方程(2)(教学设计)

2.1.2求曲线的方程(2)(教学设计) 教学目标: 知识目标:1.根据条件,求较复杂的曲线方程. 2.求曲线的交点. 3.曲线的交点与方程组解的关系. 能力目标: 1.进一步提高应用“五步”法求曲线方程的能力. 2.会求曲线交点坐标,通过曲线方程讨论曲线性质. 情感目标: 1.渗透数形结合思想. 2.培养学生的辨证思维. 教学重点 1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0. 2.求曲线交点问题转化为方程组的解的问题. 教学难点 1. 寻找“几何关系”. 2. 转化为“动点坐标”关系. 教学方法 启发诱导式教学法. 启发诱导学生联想新旧知识点的联系,从而发现解决问题的途径. 教学过程 一、复习回顾: 求曲线的方程(轨迹方程),一般有下面几个步骤: 1.建立适当的坐标系,设曲线上任一点M 的坐标(,)x y ; 2.写出适合条件P 的几何点集:{} ()P M P M =; 3.用坐标表示条件()P M ,列出方程(,)0f x y =; 4.化简方程(,)0f x y =为最简形式; 5.证明(查漏除杂). 说明:回顾求简单曲线方程的一般步骤,阐明步骤(2)、(3)为关键步骤,说明(5)步不要求书面表达,但思维一定要到位,注意等价性即可. 二、师生互动,新课讲解: (一)、直接法: 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1:(1)求和定圆x 2+y 2=R 2的圆周的距离等于R 的动点P 的轨迹方程; (2)过点A(a ,o)作圆O ∶x 2+y 2=R 2(a >R >o)的割线,求割线被圆O 截得弦的中点的轨迹. 对(1)分析: 动点P 的轨迹是不知道的,不能考查其几何特征,但是给出了动点P 的运动规律:|OP|=2R 或|OP|=0.

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

第90讲 参数方程消参的方法-高中数学常见题型解法归纳反馈训练 含解析 精品

【知识要点】 一、参数方程消参常用的方法有三种. 1、加减消参:直接把两个方程相加减即可消去参数. 2、代入消参:通过其中的一个方程求出参数的值,再代入另外一个方程化简. 3、恒等式消参:通过方程计算出sin cos αα、 ,再利用三角恒等式22sin cos 1a a +=消去参数. 二、参数方程化为普通方程,一定要注意变量x y 、的前后范围的一致性. 有时两个的范围都要写,有时只要写一个,有时可以不写. 【方法讲评】 【例1】把参数方程1(1x t t t y t t ? =+????=-?? 为参数)化为普通方程,并说明它表示什么曲线. 【点评】本题中变量x y 、可以不写,因为参数方程1(1x t t t y t t ? =+????=- ?? 为参数)中x 的范围是 22x x ≥≤-或,双曲线224x y -=中x 的范围也是22x x ≥≤-或,它们是一致的,都隐含在方程里,所 以可以不写. 【反馈检测1】把参数方程2 2211(21t x t t t y t ?-=??+? ?=?+? 为参数)化为普通方程,并说明它表示什么曲线.

【例2】参数方程αααα(,sin 22cos 2sin ?? ? ??+=+=y x 为参数)的普通方程为( ) A. 122=-x y B. 122=-y x C. )2|(|122≤ =-x x y D. )2|(|122≤=-x y x 【点评】(1)本题使用的是代入消参. (2)把参数方程化成普通方程之后,一定要注意x y 、的取值范围,实际上这是两个函数(),()x f t y g t ==的值域问题. (3)参数方程化成普通方程之后,有时需要x y 、的范围都写,有时只需要写一个就可以了,有时不需要写. 这主要取决于化简之后的普通方程x y 、是否与原参数方程中x y 、的范围一致. 如果一致就不写.如果不一致,就要写.本题中只写了x 的范围,因为x 的范围确定之后,y 的范围也就对应确定了,所以可以不写y 的范围.一般情况下,写一个变量的范围即可. 【反馈检测2】参数方程11x y ?=??=-??t 为参数)表示什么曲线( ) A .一条直线 B .一个半圆 C .一条射线 D .一个圆 【例3】参数方程23sin 13cos x y θ θ=+?? =-+? (θ为参数)化为普通方程是 .

曲线方程的求法

曲线方程的求法 建立了平面直角坐标系后,坐标平面上的点就和有序数对建立了一一对应的关系。点动成线,当点运动的时候,其坐标就会发生变化,这种变化并不是毫无章法的,其横,纵坐标是相互依懒的,对这种关系的定量刻画就是曲线的方程。 (在前面的学习中我们已经做过了很多求曲线方程的题,下面我们归类,总结一下之前所用到的方法。) 一.待定系数法 这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。 例1 求与x 轴相切,圆心在直线x 30=-y 上,且截直线0=-y x 得弦长为72的圆的方程。 练习1求与双曲线1342 2 =-y x 有共同的渐近线,且过点(2,32)的双曲线标 准方程。 思考:若改为共焦点,又该如何设方程? 二.直译法 就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。 例2.若N M ,为两个定点且MN =6,动点P 满足PM ?PN =0 则P 点的轨迹是( ) A 圆 B 椭圆 C 双曲线 D 抛物线 思考:求轨迹与轨迹方程的区别? 练习2.设O 为坐标原点,P 为直线1=y 上动点,OP //OQ ,OP ?OQ =1,求Q 点的轨迹方程。

三.定义法 就是由曲线的定义直接得到曲线方程。 例3.已知动圆M 与圆1C :2)4(22=++y x 外切,与圆2C :2)4(22=+-y x 内 切,求动圆圆心M 的轨迹方程。 练习3 设双曲线)0,0(12222>>=-b a b y a x 的两焦点为1F ,2F 。点Q 为双曲线左支 上除顶点外的任一点,过1F 作21QF F ∠的平分线的垂线,垂足为P ,则P 点的轨 迹是( ) A 椭圆的一部分 B 双曲线的一部分 C 抛物线的一部分 D 圆的一部分 总结:用定义法来求解的题,其过程都很简便,快捷。 练习4 已知圆422=+y x ,过点)0,4(A 做圆的割线ABC ,求弦BC 的中点的轨迹方程。 法一: 思考:还有其他方法吗? 法二: 交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。 法三: 总结: 求解方程时要注意不要漏解或增解。主要注意两方面。一:题设中某些隐含条件。二:方程的变形是否为等价变换。

极坐标全参数方程高考练习含问题详解(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

高中数学常见题型解法归纳 参数方程消参的方法

高中数学常见题型解法归纳 参数方程消参的方法 【知识要点】 一、参数方程消参常用的方法有三种. 1、加减消参:直接把两个方程相加减即可消去参数. 2、代入消参:通过其中的一个方程求出参数的值,再代入另外一个方程化简. 3、恒等式消参:通过方程计算出sin cos αα、,再利用三角恒等式22 sin co s 1a a +=消去参数. 二、参数方程化为普通方程,一定要注意变量x y 、的前后范围的一致性. 有时两个的范围都要写,有时只要写一个,有时可以不写. 【方法讲评】 【例1】把参数方程1(1x t t t y t t ? =+??? ?=-?? 为参数)化为普通方程,并说明它表示什么曲线. 【点评】本题中变量x y 、可以不写,因为参数方程1(1x t t t y t t ? =+??? ?=-?? 为参数)中x 的范围是 22x x ≥≤-或,双曲线22 4x y -=中x 的范围也是22x x ≥≤-或,它们是一致的,都隐含在方程里,所 以可以不写. 【反馈检测1】把参数方程2 22 11(21t x t t t y t ?-=??+? ?=?+? 为参数)化为普通方程,并说明它表示什么曲线.

【例2】参数方程αααα(,sin 22cos 2sin ?? ? ? ? +=+=y x 为参数)的普通方程为( ) A. 12 2=-x y B. 12 2 =-y x C. ) 2|(|12 2≤=-x x y D. ) 2|(|12 2≤=-x y x 【点评】(1)本题使用的是代入消参. (2)把参数方程化成普通方程之后,一定要注意x y 、的取值范围,实际上这是两个函数(),()x f t y g t ==的值域问题. (3)参数方程化成普通方程之后,有时需要x y 、的范围都写,有时只需要写一个就可以了,有时不需要写. 这主要取决于化简之后的普通方程x y 、是否与原参数方程中x y 、的范围一致. 如果一致就不写.如果不一致,就要写.本题中只写了x 的范围,因为x 的范围确定之后,y 的范围也就对应确定了,所以可以不写y 的范围.一般情况下,写一个变量的范围即可. 【反馈检测2】参数方程11x y ?=+??=-??t 为参数)表示什么曲线( ) A .一条直线 B .一个半圆 C .一条射线 D .一个圆 【例3】参数方程23sin 13co s x y θθ =+?? =-+?(θ为参数)化为普通方程是 .

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

极坐标和参数方程题型及解题方法

一、复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为),(y x ,在极坐标系下的坐标为),(θρ,则有下列关系成立:ρ θx = cos ,ρ θy = sin , 3、 参数方程?? ?==θ θ sin cos r y r x 表示什么曲线? 4、 圆2 2 2 )()(r b y a x =-+- 的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设ρ=OP OP ,又θ=∠xOP . ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置. 6、参数方程的意义是什么? 二、题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化

(3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 22 2(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可 消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有42 2=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B. 练习1、与普通方程2 10x y +-=等价的参数方程是( )(t 为能数) 解析:所谓与方程2 10x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解. 对于A 化为普通方程为[][]2 101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为2 10(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为2 10[0)(1]x y x y +-=∈+∞∈-∞,, ,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,. 而已知方程为2 10(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B . 练习2、设P 是椭圆2 2 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析:注意到变量),(y x 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然),(y x 既满足2 2 2312x y +=,又满足2x y t +=,故点),(y x 是方程组 222312 2x y x y t ?+=? +=?的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一???==t y t x A 2cos sin ???-==t y t x B 2tan 1tan ???=-=t y t x C 1???==t y t x D 2sin cos

相关文档
最新文档