二次根式全章教案解析

合集下载

初中数学:《二次根式》大单元教学设计全文

初中数学:《二次根式》大单元教学设计全文

4、单元整体规划
单元课时规划
课型课时 概念课(1)
课时目标
学习内容
1、了解二次根式 的概念。
2、理解二次根 式
二次根式的定 义;二次根式 有意义的条件
, a ≥0(a≥0)
有双重非负性,会
确定被开方数中字
母的取值范围,会
利用二次根式的性
质做相关计算。
任务活动
实际情景引入 二次根式的定 义,探讨二次 根式的双重非 负性及应用.
式 的
解:(1)2 7 6 7

2 6 7 4 7
减 法
(2) 80 20 5

4 52 5 5

(4 2 1) 5
3 5
新课讲解

例2计算 (1)2 12 6
1 3 3
48
(2) 12 20 3 5
识 点
解:(1)原式=
2
4 36
3
3
3
16 3
=4 3 2 3 12 3 (化简二次根式)
本章的具体要求:了解二次根式、最简二次根式 的概念,了解二次根式(根号下仅限于数)的加、 减、乘、除运算法则,会用它们进行有关的简单四 则运算.
2:教材分析
本单元属于“数与代数”中实数的内容,是鲁教 版八年级下册第七章,它研究了二次根式的定义和性 质,它是学习二次根式的化简和运算的基础. 学习本 章内容,应注意随时复习有理数及整式运算的有关内 容,是学好本章的关键之一。
=8 a
(合并)
新课讲解
二 练一练 计算
次 根
(1)2 7 6 7 (2) 80 20 5
式 的
解:(1)2 7 6 7

2 6 7 4 7

二次根式全章教案

二次根式全章教案

二次根式全章教案教学目标:1. 理解二次根式的概念,并能够正确进行二次根式的运算;2. 掌握二次根式的化简和展开方法;3. 通过各种实际问题的应用,培养学生运用二次根式解决问题的能力;4. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 理解二次根式的含义和性质;2. 掌握二次根式的化简和展开方法。

教学难点:1. 运用二次根式解决实际问题;2. 培养学生数学推理能力。

教学准备:1. 教材《高中数学课程标准实验教科书:二次根式》;2. 教学用黑板、彩色粉笔、纸张。

教学过程:一、导入(5分钟)为了引起学生兴趣,教师可开始一个小游戏。

首先,教师将在黑板上写下几个二次根式,然后让学生竞赛口算这些二次根式的值,计算正确最多的同学获胜。

二、二次根式的概念与性质(10分钟)1. 引导学生回忆一次根式的概念,并与二次根式进行对比,引出二次根式的概念;2. 解释二次根式的含义,即被开方数是一个含有平方数因子的有理数;3. 引导学生发现二次根式的性质,包括非负性、完全性和封闭性。

三、二次根式的运算(30分钟)1. 二次根式的化简a. 介绍化简二次根式的基本步骤,如将根号内的因数分解并利用非负性化简;b. 给学生提供几个例题,引导他们逐步掌握化简的方法;c. 练习化简不同类型的二次根式,巩固所学方法。

2. 二次根式的展开a. 介绍展开二次根式的基本方法,如利用公式进行展开;b. 给学生提供几个例题,引导他们逐步掌握展开的方法;c. 练习展开不同类型的二次根式,巩固所学方法。

四、实际问题的应用(30分钟)1. 老师出示几个实际问题,要求学生分析问题并利用二次根式解决;2. 学生自主解决实际问题,老师进行指导并及时给予反馈;3. 学生展示解题过程,进行互评讨论,加深对二次根式的理解。

五、课堂小结(5分钟)老师对本节课的内容进行总结,并强调重点和难点。

鼓励学生做好复习,巩固所学知识。

六、作业布置(5分钟)布置相应的练习题,要求学生自主完成,并提醒学生及时复习课堂内容。

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

《二次根式》教学教案

《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。

2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。

它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。

再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。

教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

湘教版八年级数学上册第五章《二次根式》教案

湘教版八年级数学上册第五章《二次根式》教案

第5章二次根式5.1 二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.掌握二次根式的基本性质.3.会判断二次根式,能求简单的二次根式中的字母的取值范围.4.经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力.5.经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性.体会发现的快乐,并提高应用的意识.【教学重点】二次根式的概念及意义.【教学难点】利用“a(a≥0)”解决具体问题.一、情景导入,初步认知1.什么叫做一个数的平方根?如何表示?2.什么是一个数的算术平方根?如何表示?3.16的平方根是什么? 算术平方根是什么?4.0的平方根是什么?算术平方根是什么?5.-7有没有平方根?有没有算术平方根?【教学说明】评价学生与本节课相关的旧知识的掌握情况.二、思考探究,获取新知1.说一说:(1)5的平方根是什么?正实数a的平方根是什么?(2)运用运载火箭发射航天飞船时,火箭必须达到一定的速度,才能克服地球引力,从而将飞船送入环地球运行的轨道,而第一宇宙速度u与地球半径R之间存在如下关系:u 2=gR ,其中重力加速度常数g ≈9.5m/s 2.如已知地球半径R ,则第一宇宙速度v 是多少?我们已经知道:每一个正实数a 有且只有两个平方根,一个记作a ,称为a 的算术平方根,另一个是-a . 【归纳结论】我们把形如a 的式子叫作二次根式,根号下的数叫作被开方数.2.思考二次根式“a ”中被开方数a 能取任意实数吗?【归纳结论】只有当被开方数是非负实数时,二次根式才在实数范围内有意义.对于非负实数a,由于a 是a 的一个平方根,因此(a )2=a(a ≥0)3.做一做:填空.22272 1.25,(),===⋯⋯根据上述结果猜想,当a ≥0时,2a = . 【归纳结论】2a =a(a ≥0) 4.议一议:当a<0时,2a =a 是否依然成立?为什么?【归纳结论】二次根式的性质:【教学说明】学生小组交流期间师巡回指导,引导学生小结形成新知,理解新知;引导学生对二次根式的性质做出合理的解释.三、运用新知,深化理解1.教材P155例1、P156例2、例3.2.已知一个正方形的面积是5,那么它的边长是(B )A .5B .5C .15D .以上皆不对 3.()25x --x 有(B )个.A .0B .1C .2D .无数4.下列式子,哪些是二次根式,哪些不是二次根式:5.当x 是多少时,31x - 在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,31x -才能有意义.6.当x 是多少时,223x x x++ 在实数范围内有意义?7.当x 1231x x ++在实数范围内有意义? 【分析】1231x x +++在实数范围内有意义,23x + 中的2x+3≥0和11x +中的x+1≠0.8.已知a 、b 为实数,且521024a a b -+-=+ ,求a 、b 的值.答案:a=5,b=-4【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材第159页“习题5.1”中第1 、2 题.学生已学过平方根、立方根、实数等概念及求法,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.通过复习引入新知,注重将新知识与旧知识进行联系与对比.随后从学生熟悉的四个实际问题出发,用已有的知识写出这四个问题的答案,并分析所得的结果在表达式上的特点,由此引入二次根式的概念,对于二次根式的一些结论,让学生参与思考、探索、学会分类讨论的方法,在教学过程中让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密,以此充分调动学生学习的兴趣.第2课时二次根式的化简1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.【教学重点】会把二次根式化简为最简二次根式.【教学难点】准确运用化二次根式为最简二次根式的方法.一、情景导入,初步认知1.什么叫二次根式?使二次根式有意义的条件是什么?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】复习上节课的内容,为本节课的教学作铺垫.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?2.化简下列二次根式(118(220(372【教学说明】化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外.(注意:从根号下直接移到根号外的数必须是非负数)3.化简下列二次根式4.观察上面几个二次根式化简的结果,它们有什么特点?【归纳结论】我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后的结果化为最简二次根式.【教学说明】引导学生计算,观察计算结果,总结规律.三、运用新知,深化理解1.下列二次根式中哪些是最简二次根式?哪些不是?为什么?【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.,不是最简二次根式.因为解:最简二次根式有1545=⨯=⨯=,45595935被开方数中含能开得尽方的因数9,所以它不是最简二次根式.2.化简216x(x>0)6.化简:7.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的铁桶中,当铁桶装满水时,玻璃容器中的水面下降了20cm,铁桶的底面边长是多少厘米?【分析】根据倒出的水的体积等于铁桶的体积,列出方程求解即可.解:设正方形铁桶的底面边长为x,则10x2=30×30×20,x2=1800,解得x=302(厘米).答:正方形铁桶的底面边长是302厘米.【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P160“习题5.1”中第4、5、8 题.学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动.正是在这一教育思想的指导下,促进学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动.互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振.5.2 二次根式的乘法和除法第1课时二次根式的乘法⨯=(a≥0,b≥0).1.使学生掌握二次根式乘法法则a b ab2.使学生掌握2a=a(a≥0),并能加以初步应用以化简二次根式.3.通过猜想,体验探究二次根式的乘法法则,实践应用,巩固法则.4.培养良好的学习习惯,体验成功的喜悦.【教学重点】会利用积的算术平方根的性质及简单的二次根式的乘法运算公式对一些式子进行化简.【教学难点】二次根式中乘法与积的算术平方根的性质的关系及应用.一、情景导入,初步认知一块正方形的木板面积为200cm22=1.414,你能不用计算器以最快的速度求出正方形木板的边长吗?【教学说明】通过实际问题引入新课.二、思考探究,获取新知1.积的算术平方根的性质是什么?a b a b=a≥0,b≥0)··2.试一试:并观察结果,你能发现什么规律?⋅⋅()与;()与14949216251625【教学说明】让学生计算,由学生总结,(1)(2)两式均相等.【教学说明】组织学生计算,验证猜想.让学生自主探究,通过类比得到规律,让学生体验到成功的喜悦,激发学生学习的兴趣.⨯=(a≥0,b≥0),老师【归纳结论】二次根式乘法的运算公式:a b ab应引导学生关注a≥0,b≥0这个条件,若没有这个条件,上述法则不能成立.因a b在实数范围内却没有意义,乘为当a<0,b<0时,虽然ab有意义,而,法法则显然不能成立.3.计算.三、运用新知,深化理解1.教材P161例1、例2.2.下列各式正确的是(D)8.已知正方形A,矩形B,圆C的面积均为628cm2,其中矩形B的长是宽的2倍,如果π取3.14,试比较它们的周长L A,L B,L C解完本题后,你能得到什么启示?解:略.【教学说明】训练学生对待计算题也要认真分析,找出合理快捷的方法解决问题.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第1、4 题.这一堂课的教学对我的启发很大,好像又回到了初一年级,学生对数的认识是一个很难的问题,很多同学在数的认识中有着很大的欠缺.对根式的认识,特别是对根式的性质的认识总是转换不过来,没有办法只有花上很大的一段时间进行巩固学习,少数同学对负数中的符号问题容易出现错误.今后,应充分给学生训练时间,合理利用学案,让学生把知识掌握好.第2课时二次根式的除法1.会利用二次根式的除法法则进行二次根式的除法运算.2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法.3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【教学重点】二次根式除法运算.【教学难点】探索二次根式除法法则.一、情景导入,初步认知1.积的算术平方根的性质是什么?2.二次根式乘法法则是什么?用语言怎样表达?用式子怎样表示?【教学说明】复习旧知,为学习新知做准备.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?【教学说明】发现规律,归纳出二次根式的除法公式.三、运用新知,深化理解1.教材P163例4、P164例5、例6.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第2、3、4 题.这节课原本希望学生能在一节课内就体会到先局部化简再计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就可以.5.3二次根式的加法和减法第1课时二次根式的加减运算1.知道二次根式加减运算的步骤,2.会用合并同类二次根式正确进行二次根式的计算.3.经历探究二次根式加减法法则的过程,体会类比的思想方法.4.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美.【教学重点】二次根式的加减法运算.【教学难点】被开方数是分数(式)或含字母的二次根式加减运算.一、情景导入,初步认知1.下列根式中,哪些是最简二次根式?2.计算下列各式:(1)2x+3x (2)3x-2y+y【教学说明】复习整式加减法的内容,为下面探究二次根式加减法的解法做铺垫.二、思考探究,获取新知1.二次根式的加减运算能否依据整式的加减法运算进行?【教学说明】在此过程中,使学生理解掌握二次根式加减法的解法,并体会类比的思想方法.2.如图,是由面积分别为8和18的正方形ABCD和正方形CEGH拼成,求BE的长.3.你能根据上面的计算过程总结二次根式加减法运算的步骤吗?【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】通过例题由浅入深,层层深入,激发学生求知的欲望.在二次根式加减法的整个教学环节中,要及时纠正学生的错误认识.三、运用新知,深化理解1.教材P168例1、例2.2.下列二次根式中,能与127合并的二次根式是(B)7.有一艘船在点O处测得一小岛上的电视塔A在北偏西60°的方向上,船向西航行20海里到达B处,测得电视塔在船的西北方向.问再向西航行多少海里,船离电视塔最近?(结果保留根号)答案:()1031+【教学说明】独立完成,之后相互交流,纠错.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第1、2 题.将法则的教学与整式的加减比较学习.在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.巩固本节内容,作业分层布置,使不同层次学生都有发展和提高.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美,通过题目练习,复习同类二次根式的概念,温故而知新.第2课时二次根式的混合运算1.使学生会熟练地进行二次根式的加、减、乘、除混合运算.2.讲练结合,通过例题由浅入深,层层深入,从例题的讲解中帮助学生寻找解题的方法、规律及注意点.3.培养学生进行类比的学习思想和理解运算律的广泛意义.【教学重点】二次根式的混合运算.【教学难点】由整式运算知识迁移到含二次根式的运算.一、情景导入,初步认知1.二次根式有哪些性质?2.已学过的整式的乘法公式和法则有哪些?3.怎样化简二次根式?【教学说明】进一步梳理和巩固已学过的知识,为本节课的教学作准备.二、思考探究,获取新知1.甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横截面设计为上底宽42m,下底宽62m,高6m的梯形,这段路基长500 m,那么这段路基的土石方大小为多少立方米呢?路基的土石方大小等于路基横截面面积乘以路基的长度,所以,这段路基的土石方为:【教学说明】从上面的解题过程可以看到,二次根式的混合运算是根据实数的运算律进行的.2.计算:【教学说明】引导学生类比实数的运算进行计算.从上面的运算可以看到,二次根式相乘,与多项式的乘法相类似,我们可以利用多项式的乘法公式,对某些二次根式的乘法教学简便运算.三、运用新知,深化理解1. 教材P170例4、P171例5.4.下面的三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按左、右每个大三角形内填数的规律,在中间的大三角形的中间,填上恰当的数.432【教学说明】学生先做,教师之后挑选部分进行点评.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第3、4、6题.本节课是二次根式加减的第二节课,它是在二次根式加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则.2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力.本节课秉着以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.章末复习1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则.2.用二次根式的意义和性质进行求取值范围、化简和运算.3.会初步运用二次根式的性质及运算解决简单的实际数学问题.4.经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力.5.通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又应用于实际的辩证唯物主义思想.【教学重点】运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系.【教学难点】运用分类讨论数学思想解决本节的有关问题,是本节复习课的难点,这就要求学生有严密的数学思维.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.二次根式的概念:我们把形如a的式子叫作二次根式,根号下的数叫作被开方数.2.二次根式的意义:只有当被开方数是非负实数时,二次根式才在实数范围内有意义.3.二次根式的性质:4.最简二次根式的概念:我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式.5.二次根式乘法的运算公式:6.二次根式的除法运算公式:7.二次根式的加减运算方法:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列式子一定是二次根式的是(C)m 有意义,则m能取的最小整数值是(B)2.31A.m=0 B.m=1 C.m=2 D.m=33.下列二次根式中属于最简二次根式的是(A)4.化简:【教学说明】使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.四、复习训练,巩固提高【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P174和P175“复习题5”中第4、5、6、8、12题.从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化.整堂课始终把学生摆在第一位,让他们主动去学习.真正把课堂交给学生,让他们变成学习的主体.层层问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程.在这种学习过程中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力.当然本节课也有不足之处,在处理某些题的时候没有能注意学生能力的差异,基础比较薄弱的学生可能没有真正的把握.因此通过这节课,我要在以后的教学过程中注意分层作业,让每一个同学都能体验成功的喜悦.31 / 31。

二次根式全章教案(8课时)

二次根式全章教案(8课时)

初二数学二次根式全章教案授课时间:年月日第周星期课时序号一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的,记为x =,(2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的,记为x =, (3)计算下列各式的值:=,=,=,=,=,2)9(=,2.一般地我们把形如()叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢? (3)当0≥a 时,a 是什么数?教 学 过 程 设 计2)3(________)(2=a【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1); (2)x 322- (3)2)2(-x (4)x--21 3.若,则= ,4.已知,求xy的值.【收获感悟】:, 三、巩固与应用1. 若x -在实数范围内有意义,则x 为(), A.正数 B.负数 C.非负数 D.非正数2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115a 的值为___________. 6.已知42-x +y x +2=0,则=-y x _____________. 7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值.四、小结:1.二次根式的概念:; 2.二次根式的性质:(1),(2); 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 43-x 20a -2a b -一、课前导学:学生自学课本第4页内容,并完成下列问题 1.计算:=24=23.0=2)52(=20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时2.计算:=-2)4(=-2)3.0(=-2)52(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a = 4.化简下列各式:(1)=22.0(2)=-2)3.0( (3)=-2)4( (4)()22a =(0<a )5.代数式:用基本运算符号把连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质: (1)双重非负性:a 0() (2)()=2a () (3) =2a2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?教 学 过 程 设 计3.化简下列各式(1))0(42≥x x (2) 4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________; 4.你能运用公式a a =2比较53与34的大小吗?5.当x = 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值.四、小结:1.二次根式的性质:,,;2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①×=______ ,=_______ ② × =_______ ,=_______ ③ × =_______ , =_______ ⑵ 仔细观察上题中的规律,猜想b a ∙=()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想:; 2、计算× =;×= ;274∙= ;123∙=3、乘法公式反过来得到:=ab ()0,0≥≥b a ,4、填空:⑴=∙=⨯=24248;=∙=⨯=292918;⑵请你用上述方法化简下列二次根式: 12=; 27=; 48=; 72=; 98=; 250x =;二、合作、交流、展示:1.二次根式的乘法法则:b a ∙=,注意:乘法法则成立的条件是: (为什么?)2、积的算术平方根的性质(乘法法则的逆向运用)=ab 注意:⑴性质成立的条件是:(为什么?) ⑵如何化简:()()94-⨯-?4994⨯16252516⨯1003636100⨯23563、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷【收获感悟】:如何进行二次根式的化简,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用 1、等式成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-12、下列各等式成立的是( ). A.4×2=8B .5×4=20 C.5×2=10 D .y x y x +=+224、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313=;⑶ -=62 5、比较下列两数的大小:⑴227 ⑵347 ⑶23-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)6×(-2); (28、(拓展)化简⑴a a 1 ⑵aa 1-四、小结:1.二次根式的乘法法则:; 2.积的算术平方根的性质:, 五、作业:《作业本》第3页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 2212b a 1112-=-∙+x x x 55532532686一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a ∙=,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1;(2; (3;(4.你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则商的算术平方根的性质 4、计算:(1)312(2)16141÷5、化简:(1)257(2)932(3))0,0(42522≥>b a a b 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目1、计算:(1(2(3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,教 学 过 程 设 计被开方数之商为被开方数。

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

二次根式的加减法教案

二次根式的加减法教案

二次根式的加减法优秀教案第一章:二次根式的概念回顾1.1 教学目标:让学生理解二次根式的概念。

让学生掌握二次根式的基本性质。

1.2 教学内容:二次根式的定义:形如√a的式子,其中a是一个非负实数。

二次根式的基本性质:√a ×√a = a,√a ÷√a = 1,√a ×√b = √(ab),其中a、b是非负实数。

1.3 教学活动:通过具体的例子,让学生理解二次根式的概念。

通过练习题,让学生掌握二次根式的基本性质。

第二章:二次根式的加法2.1 教学目标:让学生掌握二次根式的加法运算规则。

2.2 教学内容:二次根式的加法运算规则:√a + √b = √(a + b),其中a、b是非负实数。

2.3 教学活动:通过具体的例子,让学生理解二次根式的加法运算规则。

通过练习题,让学生熟练掌握二次根式的加法运算。

第三章:二次根式的减法3.1 教学目标:让学生掌握二次根式的减法运算规则。

3.2 教学内容:二次根式的减法运算规则:√a √b = √(a b),其中a、b是非负实数,且a ≥b。

3.3 教学活动:通过具体的例子,让学生理解二次根式的减法运算规则。

通过练习题,让学生熟练掌握二次根式的减法运算。

第四章:二次根式的混合运算4.1 教学目标:让学生掌握二次根式的混合运算规则。

4.2 教学内容:二次根式的混合运算规则:先进行二次根式的乘除运算,再进行加减运算。

4.3 教学活动:通过具体的例子,让学生理解二次根式的混合运算规则。

通过练习题,让学生熟练掌握二次根式的混合运算。

第五章:综合练习5.1 教学目标:让学生综合运用二次根式的加减法知识,解决实际问题。

5.2 教学内容:综合练习题,包括不同难度的题目。

5.3 教学活动:提供综合练习题给学生,让学生独立完成。

解答学生的疑问,并进行讲解和指导。

第六章:二次根式的加减法在实际问题中的应用6.1 教学目标:让学生能够将二次根式的加减法应用到实际问题中。

第21章 二次根式 湖城学校全章教案

第21章 二次根式 湖城学校全章教案

第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=a(a≥0).(3)掌握a·b=ab(a≥0,b≥0),ab=a·b;a b =ab(a≥0,b>0),ab=ab(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式a(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a(a≥0);2a=a(a ≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需6课时,具体分配如下:21.1 二次根式1课时21.2 二次根式的乘法2课时21.3 二次根式的加减2课时小结1课时课题:二次根式教学内容:21.1 二次根式教学目标 1.理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目 2.提出问题,根据问题给出概念,应用概念解决实际问题. 重点难点 重点:形如a (a ≥0)的式子叫做二次根式的概念; 难点:利用“a (a ≥0)”解决具体问题.教学准备教师准备 是否需要课件学生准备教学过程设计 一、复习引入导语设计:在勾股定理和四边形两章中,已经用到过简单的二次根式运算,在本章中将系统地学习二次根式的运算。

华师大九年级(上)教案-第22章-二次根式(全)

华师大九年级(上)教案-第22章-二次根式(全)

22.1. 二次根式(1)教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 回顾当a 是正数时,a 表示a 的算术平方根,即正数a 的正的平方根. 当a 是零时,a 等于0,它表示零的平方根,也叫做零的算术平方根. 当a 是负数时,a 没有意义.概括a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有:(1)a ≥0(a ≥0);(2)2)(a =a (a ≥0).形如a (a ≥0)的式子叫做二次根式.注意在二次根式a 中,字母a 必须满足a ≥0,即被开方数必须是非负数.例 x 是怎样的实数时,二次根式1-x 有意义?分析 要使二次根式有意义,必须且只须被开方数是非负数. 解被开方数x-1≥0,即x ≥1.所以,当x ≥1时,二次根式1-x 有意义.思考2a 等于什么?我们不妨取a 的一些值,如2,-2,3,-3,……分别计算对应的a2的值,看看有什么规律:概括:当a ≥0时,a a =2; 当a <0时,a a -=2.这是二次根式的又一重要性质.如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的.例如:22)2(4x x ==2x (x ≥0); 2224)(x x x ==.练习1.x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ;(3)2)3(-x ; (4)x x 3443-+-拓展例当x +11x +在实数范围内有意义?分析11x +0和11x +中的x+1≠0.解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25) 归纳小结(学生活动,老师点评) 本节课要掌握:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 布置作业1. 教材P422.1 二次根式(2)教学内容1a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标a ≥02=a (a ≥0),并利用它们进行计算和化简.a ≥0)是一个非负数,用具体数据2=a (a ≥0);最后运用结论严谨解题.教学重难点关键1a ≥0)是一个非负数;)2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•2=a (a ≥0).教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 [老师点评(略).] 二、探究新知 议一议:(学生分组讨论,提问解答)(a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;)2=_______;2=______;2=_______;(2=______;2=_______;)2=_______.4的算术平方根,根据算术平方根的意义,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,2=13,)2=72,)2=0,所以例1 计算1.2 2.(2 3.2 4.(2)2分析)2=a (a ≥0)的结论解题.解:2 =32,(2 =32·2=32·5=45,2=56,274=. 三、巩固练习计算下列各式的值:2 2 2 )2 (222- 四、应用拓展 例2 计算1.2(x ≥0) 2.2 3.2 4.2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4)2=a (a ≥0)的重要结论解题.解:(1)因为x ≥0,所以x+1>0,2=x+1(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2 , 又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 , 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P教学反思:22.1 二次根式(3)教学内容a(a≥0)教学目标(a≥0)并利用它进行计算和化简.(a≥0),并利用这个结论解决具体问题.教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______;=________.(老师点评):根据算术平方根的意义,我们可以得到:110=23=0=37.例1 化简(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1 (2=4(3 (4 三、巩固练习 教材P .四、应用拓展例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数? (2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0.解:(1,所以a ≥0; (2,所以a ≤0;(3)因为当a ≥0,即使a>a 所以a 不存在;当a<0,,即使-a>a ,a<0综上,a<0例3当x>2 五、归纳小结(a ≥0)及其运用,同时理解当a<0a 的应用拓展. 六、布置作业1.先化简再求值:当a=9时,求甲的解答为:原式(1-a)=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│教学反思:22.2 二次根式的乘除第一课时教学内容a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•利用逆(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).a⨯,如=或关键:要讲清(a<0,b<0)=b.教学方法:三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(3(4(5.(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:合探1. 计算(1(2(3(4分析:(a≥0,b≥0)计算即可.合探2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展判断下列各式是否正确,不正确的请予以改正:(1=(2=4四、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简: ; ;五、归纳小结(师生共同归纳)本节课应掌握:(1(a≥0,b≥0)(a≥0,b≥0)及其运用.六、作业设计一、选择题1,•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A B C.D.x-=)311A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.×D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题探究过程:观察下列各式及其验证过程.(1)验证:===(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.教后反思:22.2 二次根式的乘除第二课时教学内容a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题:1.填空(1;(2=_____;(3;(4=________.2.利用计算器计算填空:(1=_____,(2=_____,(3=____,(4=_____.每组推荐一名学生上台阐述运算结果.(老师点评)刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们进行合探:二次根式的除法规定:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.合探1.计算:(1 (2 (3 (4分析:上面4a ≥0,b>0)便可直接得出答案.合探2.化简:(1 (2 (3 (4(a ≥0,b>0)就可以达到化简之目的. 三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展=,且x 为偶数,求(1+x 的值.分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.五、归纳小结(师生共同归纳)a ≥0,b>0a ≥0,b>0)及其运用.六、作业设计 一、选择题1÷的结果是( ).A .27B .27C D2====数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是( ). A .2 B .6 C .13D二、填空题 1.分母有理化:(1)=_________;(2)=________;(3)2.已知x=3,y=4,z=5_______.三、综合提高题计算(1·(m>0,n>0)(2)(a>0)教后反思:22.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题(请三位同学上台板书)B A C计算(1(2,(3自探2.观察上面计算题的最后结果,可以发现这些式子中的二次根式有什么特点?(有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.)我们把满足上述两个条件的二次根式,叫做最简二次根式.合探1.把下面的二次根式化为最简二次根式:(1)合探2.如图,在Rt△ABC中,∠C=90°,AC=,BC=6cm,求AB的长.132====6.5(cm)因此AB的长为.三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121=-,=,从计算结果中找出规律,并利用这一规律计算+))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.五、归纳小结(师生共同归纳)本节课应掌握:最简二次根式的概念及其运用.六、作业设计一、选择题1y>0)是二次根式,那么,化为最简二次根式是().A(y>0)By>0)C(y>0)D.以上都不对2.把(a-1a-1)移入根号内得( ).A B C . D . 3.在下列各式中,化简正确的是( )A B =±12C 2D .4的结果是( )A .B .C .D .二、填空题1.(x ≥0)2._________.三、综合提高题1.已知a 确,•请写出正确的解答过程:·1a(a-12.若x 、y 为实数,且y x y -的值.教后反思:22.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探(学生活动):计算下列各式.(1)(2)(3(4)因此,二次根式的被开方数相同是可以合并的,如可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.合探1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.合探2.计算(1)(2))+三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展已知4x 2+y 2-4x-6y+10=0,求(23+y 2-(x )的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.五、归纳小结(师生共同归纳) 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、作业设计 一、选择题1.以下二次根式:;;是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①;②17=1,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1、是同类二次根式的有________.2.计算二次根式-3的最后结果是________. 三、综合提高题1≈2.236)-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 教后反思:22.3 二次根式的加减(2)第二课时教学内容 利用二次根式化简的数学思想解应用题. 教学目标 运用二次根式、化简解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 教学方法 三疑三探 教学过程一、设疑自探——解疑合探上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们研究三道题以做巩固.自探1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP(分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x 依题意,得:12x ·2x=35 x 2=35PBQ 的面积为35平方厘米.===PBQ 的面积为35平方厘米,PQ 的距离为厘米.)自探2.要焊接如图所示的钢架,大约需要多少米钢材(精确到)?(分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得=所需钢材长度为+7≈3×2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要的钢材.)三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 四、应用拓展若最简根式3a a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式|b|类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩ ∴24632a b a b +=⎧⎨-=⎩ ∴a=1,b=1五、归纳小结(师生共同归纳)本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、作业设计 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)A .BC .D . 二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式) 三、综合提高题1与n 是同类二次根式,求m 、n 的值.2.同学们,我们以前学过完全平方公式a 2±2ab+b 2=(a ±b )2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=()2,你知道是谁的二次根式呢?下面我们观察: (-1)2=()2-2·12 反之,-1)2 ∴=-1)2-1求:(1; (2(3(4,则m、n与a、b的关系是什么?并说明理由.教后反思:22.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动):请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.自探2.计算:(1)(2)()÷分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.自探3.计算:(1))( (2)))分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展 已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0,分析)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式=(x+1) =4x+2∵x b a -=2-x a b- ∴b (x-b )=2ab-a (x-a ) ∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2 ∴(a+b )x=(a+b )2 ∵a+b ≠0 ∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结(师生共同归纳)本节课应掌握二次根式的乘、除、乘方等运算.六、作业设计一、选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1二、填空题1.(-12)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a2b-ab2=_________.三、综合提高题1时,(结果用最简二次根式表示)2.当教后反思:。

二次根式的化简及计算(学生基础版)教案

二次根式的化简及计算(学生基础版)教案

二次根式的化简及计算(学生基础版)教案第一章:二次根式的概念与性质1.1 引入二次根式的概念,让学生了解二次根式是由二次方程的根演变而来的数学表达式。

1.2 解释二次根式的性质,包括:a) 二次根式中的被开方数必须是非负数;b) 二次根式具有非负性、非负数的乘除法性质;c) 二次根式可以进行乘除运算,乘除运算规则与整数相同。

第二章:二次根式的化简2.1 介绍二次根式化简的方法和步骤:a) 提取二次根式中的最大公因数;b) 将二次根式中的括号展开;c) 合并同类项。

2.2 进行几个简单的例子,让学生熟悉化简方法。

第三章:二次根式的加减法运算3.1 讲解二次根式加减法的运算规则:a) 确保二次根式中的被开方数相同;b) 将同类二次根式相加减;c) 化简结果,确保最简二次根式形式。

3.2 进行几个具体的例子,让学生掌握二次根式的加减法运算。

第四章:二次根式的乘除法运算4.1 讲解二次根式乘除法的运算规则:a) 将二次根式相乘除,确保被开方数相乘除;b) 化简结果,确保最简二次根式形式。

4.2 进行几个具体的例子,让学生掌握二次根式的乘除法运算。

第五章:二次根式的实际应用5.1 引入二次根式在实际问题中的应用,例如:计算物体的体积、面积等。

5.2 进行几个具体的实际应用例子,让学生了解二次根式在实际问题中的应用方法和步骤。

第六章:含绝对值的二次根式6.1 引入绝对值的概念,并解释绝对值与二次根式的关系。

6.2 讲解如何处理含绝对值的二次根式,包括:a) 分析绝对值内的表达式正负,确定二次根式的性质;b) 利用绝对值的性质进行化简和运算。

6.3 进行几个例子,让学生掌握处理含绝对值的二次根式的方法。

第七章:含指数的二次根式7.1 引入指数的概念,并解释指数与二次根式的关系。

7.2 讲解如何处理含指数的二次根式,包括:a) 将指数形式转换为根式形式;b) 利用指数的性质进行化简和运算。

7.3 进行几个例子,让学生掌握处理含指数的二次根式的方法。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

第22章二次根式全章教案

第22章二次根式全章教案

二次根式教学内容:本节课时从解决实际问题出发,通过人造地球卫星围绕地球运行的事例引入课题,概括出二次根式定义,并明确a的意义,认识二次根式的性质教学目标1、知识与技能:理解二次根式的定义,以及二次根式a中字母a的实际内涵2、过程与方法.经历“抽象出二次根式概念的过程.理解学习二次根式的意义,培养思维能力以及二次根式的概念的应用方法.3、情感、态度与价值观.让学生经历探究的过程、交流的过程,激发学生的学习兴趣,培养学生分析问题的能力和提高数学的应用意识.重难点、关键1.重点:理解二次根式的概念和性质2.难点:对二次根式a中字母a的认识·3.关键:通过算术平方根的意义来认识二次根式中a,感受到当a是负数时,a没有意义.教学准备1.教师准备:实物投影仪,补充到一些现实生活中与二次根式有关的图片,事例2.学生准备:复习平方根和算术平方根的意义.教学过程一、创设情境,合作交流1.回顾交流.(1)教师活动:提出以下问题供学生复习.(使用投影仪或小黑板)①什么叫做有理数?什么叫做无理数?什么叫做实数?请同学们举例说明.②什么叫做算术平方根?在正数、零、负数中哪些数有算术平方根?哪些数没有算术平方根,为什么?学生活动:先与同桌相互讨论,再举手发言.学生交流.回答后由教师进行完善和归纳.(2)教师归纳:”,其中正数a的①我们知道,正数a有两个平方根,即“a正的平方根叫做a 的算术平方根,记作a ,0的平方根也叫做0的算术平方根..②注意:当a 是正数或0(又叫做非负数)时,a 表示a 的算术平方根.③负数没有平方根,因此负数算术平方根也不存在.也就是说:在a 中,a 必须大于或等于0,a 没有意义。

2.导入新知(1)教师活动:充分应用投影仪,将图片展示给学生,同时引入新知(2)投影展示课题:二次根式图片:如课本第1页中实际的问题以及所收集的有关事例学生活动:在教师的引导下,观察所展示的图片,思考问题,感受到抽象出无理数二次根式的概念的过程,认识到二次根式的应用价值在师生完成上述探索之后,教师引导学生形成二次根式的概念(2)教师归纳:我们已经遇到过如16、0、a 这样的式子,知道符号“”叫做二次根号,二次根号下的数叫做被开方数,因为在实数范围内,负数没有平方根,所以被开方数只能是正数或0,也就是说:被开方数只能是非负数,一般地式a (a ≤0)叫作二次根式,即有a ≥0(a ≥0); ()2a =a (a ≥0) 二.范例学习,加深理解 例:x 是怎样的实数时,式子7-x 有意义? 教师分析:若要使得7-x 有意义,被开方数7-x 必须大于0或等于0,即7-x ≥0由此得x ≥7教师板书:略教师提问:请同学们再阅读课本第2页例题材,加深理解,然后做以下练习。

二次根式全章教案解析

二次根式全章教案解析

二次根式全章教案解析二次根式是指含有一个或多个未知数的平方根的式子。

在初中数学中,学生会学习到关于二次根式的性质、化简、运算以及解方程等知识。

下面将从教学目标、教学重点、教学难点、教学方法、教学过程等方面对二次根式全章教案进行解析。

一、教学目标1.理解二次根式的定义,能够准确地区分二次根式和非二次根式。

2.掌握二次根式的性质,如乘法、除法、化简等。

3.能够运用二次根式进行解方程,理解二次根式在实际问题中的应用。

二、教学重点1.二次根式的定义和性质。

2.二次根式的化简和运算。

3.二次根式在解方程中的应用。

三、教学难点1.二次根式的化简和运算。

2.二次根式在解方程中的应用。

四、教学方法1.引导式教学:通过引导学生思考,主动探讨问题,激发学生对数学的兴趣,培养学生的数学思维能力。

2.归纳法教学:通过具体例子引导学生总结出二次根式的性质、化简和运算的规律,培养学生的归纳思维能力。

3.实例操作法教学:通过具体实例引导学生进行二次根式的化简和运算,培养学生的计算能力。

4.案例分析法教学:通过实际问题的分析,引导学生运用二次根式进行解方程,并让学生理解二次根式在实际问题中的应用。

五、教学过程1.导入(通过引入一道实际问题,激发学生对二次根式的兴趣)教师可以举例:小明在家附近的田地里发现了一块树叶,树叶的面积是多少?引导学生思考如何求解树叶的面积,引入二次根式的概念。

2.学习及讨论(通过具体例子引导学生总结二次根式的性质和化简方法)(1)引导学生研究和分析二次根式的性质,如乘法、除法、化简等。

(2)举例:化简根号18引导学生先分解18,写成2的乘积,再应用根号的乘法性质,化简根号18(3)总结一下化简的方法:将根号里的数分解成若干个互质因子乘积的形式。

3.练习巩固(通过实例操作法和案例分析法进行练习)(1)教师出示练习题,让学生进行二次根式的化简和运算操作练习。

(2)教师提供实际问题,引导学生运用二次根式进行方程的解法,并让学生进行讨论和解答。

二次根式及其运算全章同步讲义教学案

二次根式及其运算全章同步讲义教学案

第1讲 二次根式复习引入:(1)已知x 2= a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

知识点梳理:二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式,“”称为二次根号二次根式的性质:(1))0(0≥≥a a (2))0()(2≥=a a a (3)a a =2经典例题:例1:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,3412+x例2.x 取何值时,下列各二次根式有意义?①43-x ③x--21例3、(1a 的值为___________.(2)若x -在实数范围内有意义,则x 为( )。

A.正数 B.负数 C.非负数D.非正数例4.在实数范围内因式分解72-x 4a 2-11例5(1)、计算:=24 22.0= =220观察其结果与根号内幂底数的关系,归纳得到: 当=>2,0a a 时(2)、计算:=-2)4(-2)2.0(= =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时(3)、计算:=20 ,当==2,0a a 时归纳总结:=2a例6.化简下列各式(1))0(42≥x x (2)4x(3))3()3(2≥-a a (4)()232+x (x <-2)例7. 已知:b a b a ⨯=⨯,把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x经典练习:1、计算的值为2)13(-( )A. 169B.-13 C±13 D.132、已知 ,03=+x 则x 为( )A. x>-3B. x<-3C.x=-3 D x 的值不能确定3、下列计算中,不正确的是 ( )。

二次根式全章的教案

二次根式全章的教案

二次根式全章的教案教案标题:二次根式全章的教案教案目标:1. 理解二次根式的概念及其性质。

2. 掌握二次根式的运算法则。

3. 能够应用二次根式解决实际问题。

教学重点:1. 二次根式的概念和性质。

2. 二次根式的运算法则。

3. 实际问题中的二次根式应用。

教学难点:1. 掌握二次根式的运算法则。

2. 能够独立解决实际问题中的二次根式应用。

教学准备:1. 教材:包含二次根式相关知识的教材。

2. 教具:黑板、白板、彩色粉笔、计算器等。

3. 学具:学生练习册、习题集等。

教学步骤:引入活动:1. 创设情境,引发学生对二次根式的兴趣。

例如,通过展示一幅画作或一段视频,让学生猜测其中的长度或面积,并引导他们思考如何用数学表达这些值。

概念讲解:2. 介绍二次根式的概念,解释根号的含义,并通过具体的例子说明二次根式的特点和性质。

3. 引导学生发现二次根式的简化规律,例如,当根号内的数是一个完全平方数时,可以直接提取出整数。

运算法则讲解:4. 介绍二次根式的运算法则,包括加减乘除的规则。

通过具体的例子演示运算法则的应用,并解释其中的原理和步骤。

5. 强调运算中的注意事项,如合并同类项、化简结果等。

练习与巩固:6. 分发练习册或习题集,让学生进行练习。

根据学生的掌握情况,提供不同难度的练习题,逐步提高学生的运算能力。

7. 在黑板或白板上解答一些典型的练习题,让学生参与讨论和解答,加深对二次根式运算法则的理解。

应用拓展:8. 设计一些实际问题,让学生应用二次根式解决。

例如,计算某个广场的面积或周长,或者计算某个物品的尺寸等。

鼓励学生积极思考并运用所学的知识解决问题。

总结与反思:9. 对本节课的内容进行总结,强调二次根式的重要性和应用价值。

10. 鼓励学生提出问题和反思,解答他们的疑惑,并鼓励他们继续学习和探索二次根式的更多应用。

教学延伸:11. 鼓励学生进行二次根式的拓展学习,包括更复杂的运算、二次根式的图形表示等。

12. 推荐相关的学习资源,如教学视频、在线教程等,以帮助学生深入了解和掌握二次根式的知识。

关于二次根式教案9篇

关于二次根式教案9篇

•••••••••••••••••关于二次根式教案9篇关于二次根式教案9篇作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。

那么问题来了,教案应该怎么写?下面是小编为大家整理的二次根式教案9篇,欢迎阅读与收藏。

二次根式教案篇1一、内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1)(2)师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4 你能解释下列式子的含义吗?师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的依据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1)(2)师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如 ___________ (≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.综合运用(1)算一算:【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇21.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1 二次根式(第1课时)教学任务分析板书设计课后反思教学过程设计16.1 二次根式(第2课时)教学任务分析板书设计课后反思16.1 二次根式(第3课时)教学任务分析板书设计课后反思教学过程设计教学过程设计教学过程设计16.2 二次根式的乘除第一课时教学内容a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0),(a≥0,b≥0)及它们的运用.a≥0,b≥0).关键:要讲清(a<0,b<0)=a b,如)=或.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(3(4(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.反过来:例1.计算(1(2(3(4分析:(a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简:; ;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6(2)不正确.改正:五、归纳小结本节课应掌握:(1(a≥0,b≥0)(a≥0,b ≥0)及其运用.六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1,•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A. D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==16.2 二次根式的乘除第二课时教学内容a≥0,b>0)(a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(1(2=________;;(3=________.(43.利用计算器计算填空:=_________,(2=_________,(3=______,(4=________.(1每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:例1.计算:(1(2(3(4分析:上面4a≥0,b>0)便可直接得出答案.解:(1=2(2==(3==2(4例2.化简:(1(2(3(4a≥0,b>0)就可以达到化简之目的.解:(1=(28 3ba =(3=(4=三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值=6. 五、归纳小结a ≥0,b>0(a ≥0,b>0)及其运用.六、布置作业1.教材P 15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 一、选择题1 ).A .27 B .27C D .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”是( ).A .2B .6C .13D二、填空题1.分母有理化:(1)=_________;(2)=________;(3) =______.2.已知x=3,y=4,z=5_______. 三、综合提高题11,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算(1(m>0,n>0)(2)(a>0)答案:一、1.A 2.C二、1.(1) 6;(2) 6;(3) ==2.3三、1.设:矩形房梁的宽为x (cm ),依题意,得:)2+x 2=(2,4x 2=9×15,x=32cm ),·2=135cm 2).2.(1)原式==-22n n m m =-(2)原式 a16.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1(2,(35=3=a2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.2==.例1.(1); (3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.BAC解:因为AB2=AC2+BC2所以132====6.5(cm )因此AB 的长为6.5cm . 三、巩固练习教材P 14 练习2、3 四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=121=--1,32=-,从计算结果中找出规律,并利用这一规律计算++))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=……)=)) =2002-1=2001 五、归纳小结本节课应掌握:最简二次根式的概念及其运用. 六、布置作业1.教材P 15 习题21.2 3、7、10.2.选用课时作业设计.第三课时作业设计 一、选择题1(y>0)是二次根式,那么,化为最简二次根式是( ).A(y>0) B y>0) C (y>0) D .以上都不对2.把(a-1a-1)移入根号内得( ).A .. 3.在下列各式中,化简正确的是( )A B ±12C 2D .4的结果是()A.-3B.-C.D.二、填空题1.(x≥0)2._________.三、综合提高题1.已知a为实数,阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:·1a(a-12.若x、y为实数,且y x y-的值.答案:一、1.C 2.D 3.C 4.C二、1.2.三、1.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,-a2.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴4===.16.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)(2)(3(4)老师点评:(1x,不就转化为上面的问题吗?=(2+3(2y;(2-3+5(3z;=(1+2+3(4x看为y.=(3-2因此,二次根式的被开方数相同是可以合并的,如但它们可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1(2+3(2(4+8 例2.计算(1)(2))+解:(1)(12-3+6(2))+三、巩固练习教材P 19 练习1、2. 四、应用拓展例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:∵4x 2+y 2-4x-6y+10=0 ∵4x 2-4x+1+y 2-6y+9=0 ∴(2x-1)2+(y-3)2=0∴x=12,y=3原式=23+y -x当x=12,y=3时,原式=12五、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 六、布置作业1.教材P 21 习题21.3 1、2、3、5.2.选作课时作业设计.第一课时作业设计 一、选择题1是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①17,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1-2是同类二次根式的有________.2.计算二次根式的最后结果是________. 三、综合提高题1 2.236)-(结果精确到0.01) 2.先化简,再求值.(-(,其中x=32,y=27.答案:一、1.C 2.A二、1.三、1.原式3-4-121515×2.236≈0.452.原式(=(6+3-4-6当x=32,y=27时,原式9216.3 二次根式的加减(2)第二课时教学内容利用二次根式化简的数学思想解应用题. 教学目标运用二次根式、化简解应用题.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题. 重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 教学过程一、复习引入 上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x依题意,得:12x ·2x=35x 2=35PBQ 的面积为35平方厘米.===PBQ 的面积为35平方厘米,PQ 的距离为厘米. 例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得===所需钢材长度为 AB+BC+AC+BD≈3×2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材. 三、巩固练习 教材P19 练习3 四、应用拓展例3.若最简根式3a求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩∴24632a b a b +=⎧⎨-=⎩∴a=1,b=1 五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、布置作业1.教材P 21 习题21.3 7.2.选用课时作业设计.作业设计 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)A ...以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)A ...二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .(结果用最简二次根式)2,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1与2n m 、n 的值.2.同学们,我们以前学过完全平方公式a 2±2ab +b 2=(a ±b )2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:)2=)2-2·1+12反之,+1=-1)2 ∴-1)2-1求:(1(2(3(4,则m 、n 与a 、b 的关系是什么?并说明理由.答案:一、1.A 2.C二、1..三、1.依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩ ,2283m n ⎧=⎪⎨=⎪⎩,m n ⎧=±⎪⎨=⎪⎩所以m n ⎧=⎪⎨=⎪⎩m n ⎧=-⎪⎨=⎪⎩或m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩2.(1+1(2(3=(4)m n a mn b+=⎧⎨=⎩ 理由:两边平方得a ±=m+n ±所以a m n b mn =+⎧⎨=⎩16.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(2)()÷分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)解:()÷÷÷32例2.计算(1))((2)))分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1))(2+(2)))=2- 2=10-7=3三、巩固练习课本P 20练习1、2.四、应用拓展例3.已知x b a-=2-x a b -,其中a 、b 是实数,且a+b ≠0,分析))=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式22=(x+1) =4x+2∵x b a-=2-x a b - ∴b (x-b )=2ab-a (x-a )∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2∴(a+b )x=(a+b )2∵a+b ≠0∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P 21 习题21.3 1、8、9.2.选用课时作业设计.作业设计一、选择题1.的值是( ).A .203.23C .2.202 ).A .2B .3C .4D .1二、填空题1.(-12的计算结果(用最简根式表示)是________.2.()(-(-1)2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.三、综合提高题12.当时,求的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是( ).A .C 2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b )(a-b )=a 2-b 2,同时它们的积是有理数,不含有二次根式:如练习的有理化因式是________;_________._______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1; (2; (3 (4.4.其它材料:如果n==________=_______.答案:一、1.A 2.D二、1...2 4.三、1=-2=222(1)()21x x xx+++⨯+=2(1)(1)1x x xx++++= 2(2x+1)∵+1 原式=2()+6.。

相关文档
最新文档