利用待定系数法求函数解析式练习题汇编
初二函数专题5--用待定系数法求解析式+答案
初二函数专题6--用待定系数法求解析式一、用待定系数法求解析式 1、已知函数图象如图所示,则此函数的解析式为( ) A.2y x =- B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<2、已知一次函数的图象经过(3,2)和(1,-2)两点. 求这个一次函数的解析式.3、已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.4、一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C (a b -,b a -),那么直线l 经过 象限.二、根据位置关系求解析式5、已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.6、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .三、根据函数定义求解析式7、已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.8、已知函数y (32)(4)a x b =+--为正比例函数。
(1)求a b 、的取值范围;(2)a b 、为何值时,此函数的图象过一、三象限。
9、已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.y xO3214321A四、根据增减性求解析式10、已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式。
11、已知函数(2)31y a x a =---,当自变量x 的取值范围为35x ≤≤时,y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围为 .12、已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.13、一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.14、⑴已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.⑴已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.参考答案用待定系数法求解析式1、用待定系数法求解析式【例1】 已知函数图象如图所示,则此函数的解析式为( )A.2y x =-B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<【解析】 由题意,正比例函数经过点(-1,2),求出函数解析式为2y x =-,同时根据图象看出自变量的取值范围为10x -<<答案:B【例2】 已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.【解析】 设这个一次函数的解析式为:y kx b =+,由题意可知322k b k b +=⎧⎨+=-⎩,解得24k b =⎧⎨=-⎩故这个一次函数的解析式为:24y x =-.【点评】这种首先设出函数解析式,然后再根据已知条件求出函数解析式的系数的方法,称为“待定系数法”.【例3】 (09四川泸州)已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.【解析】 ⑴根据已知()023A -,,()143B -,,求出一次函数解析式为223y x =+-,再把C 点坐标代入得23c =+.⑴()()()222222192a b c ab ac bc a b b c a c ⎡⎤++---=-+-+-=⎣⎦∵【点评】第二小问老师应该详细分析【例4】 (江苏省初中数学竞赛试题)一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C(a b -,b a -),那么直线l 经过 象限.【解析】 设直线l 的解析式为y kx t =+,因点A 、B 在直线l 上.⑴b ka ta kb t =+⎧⎨=+⎩,⑴a b =/,解得:1k =-,故直线l 的解析式为y x =-+t . 又点C 在直线l 上.⑴()b a a b t -=--+,得0t =.即直线l 的解析式为y x =-,可知l 经过二、四象限.2、根据位置关系求解析式【例5】 已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数 的解析式.【解析】 根据题意可设此函数解析式为2y x b =+,过点P (-1,2),解得4b =,解析式为24y x =+.【例6】 (08年上海市中考题)如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .【解析】 根据题意可得OA 的解析式为2y x =,向上平移一个单位以后,可得:12y x -=,即21y x =+3、根据函数定义求解析式【例7】 已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.【解析】 根据已知条件,设11y k x =,22k y x = (1k ,2k 均不为零),于是,得:2221212k y y y k x x=+=+将2x =,3x =代入212y y y =+得:22122121943199k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解之:122536k k =⎧⎪⎨=⎪⎩,⑴2365y x x =+【补充】已知函数y (32)(4)a x b =+--为正比例函数。
(完整版)函数解析式的练习题兼答案
函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。
22.1.5用待定系数法求二次函数解析式同步测试含答案.doc
《22.1.5 用待定系数法求二次函数解析式》一、选择题:1.二次函数的图象经过(0,3),(﹣2,﹣5),(1,4)三点,则它的解析式为()A.y=x2+6x+3 B.y=﹣3x2﹣2x+3 C.y=2x2+8x+3 D.y=﹣x2+2x+32.已知抛物线经过点(0,4),(1,﹣1),(2,4),那么它的对称轴是直线()A.x=﹣1 B.x=1 C.x=3 D.x=﹣33.抛物线y=ax2+bx+c经过点(3,0)和(2,﹣3),且以直线x=1为对称轴,则它的解析式为()A.y=﹣x2﹣2x﹣3 B.y=x2﹣2x﹣3 C.y=x2﹣2x+3 D.y=﹣x2+2x﹣34.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣35.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为()x …﹣1 0 1 2 …y …﹣1 ﹣﹣2 ﹣…A.y=x2﹣x﹣B.y=x2+x﹣C.y=﹣x2﹣x+D.y=﹣x2+x+6.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x27.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A .y=x 2﹣x ﹣2B .y=﹣x 2﹣x+2C .y=﹣x 2﹣x+1D .y=﹣x 2+x+28.已知二次函数y=ax 2+bx+c 的图象如图所示,则点M (,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:9.若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为______.10.与抛物线y=x 2的形状和开口方向相同,顶点为(3,1)的二次函数解析式为______.11.若抛物线y=x 2﹣4x+c 的顶点在x 轴上,则c 的值是______.12.已知二次函数y=a (x+1)2﹣b (a ≠0)有最小值1,则a______b .13.抛物线y=﹣x 2+bx+c 的图象如图所示,则此抛物线的解析式为______.14.二次函数y=x 2﹣2x ﹣3的图象关于原点O (0,0)对称的图象的解析式是______.15.请写出一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式______.16.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是______.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.17.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,顶点C到x轴的距离为2,则此抛物线的解析式为______.18.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为______.三、解答题:19.求出符合条件的二次函数解析式:(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.20.已知二次函数的图象如图所示,求此抛物线的解析式.21.已知二次函数的对称轴为x=2,且在x轴上截得的线段长为6,与y轴的交点为(0,﹣2),求此二次函数的解析式.22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.(1)求二次函数的解析式;(2)若点P在x轴正半轴上,且PA=PC,求OP的长.23.已知抛物线与x轴交于A、B两点.(1)求证:抛物线的对称轴在y轴的左侧;(2)若(O为坐标原点),求抛物线的解析式;(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.《22.1.5 用待定系数法求二次函数解析式》参考答案与试题解析一、选择题:1.二次函数的图象经过(0,3),(﹣2,﹣5),(1,4)三点,则它的解析式为()A.y=x2+6x+3 B.y=﹣3x2﹣2x+3 C.y=2x2+8x+3 D.y=﹣x2+2x+3【解答】解:设二次函数的解析式为:y=ax2+bx+c,把(0,3),(﹣2,﹣5),(1,4)代入得解得,所以二次函数的解析式为:y=﹣x2+2x+3,故选:D.2.已知抛物线经过点(0,4),(1,﹣1),(2,4),那么它的对称轴是直线()A.x=﹣1 B.x=1 C.x=3 D.x=﹣3【解答】解:设二次函数解析式为y=ax2+bx+c,把点(0,4),(1,﹣1),(2,4)代入可得,解得,则二次函数解析式为y=5x2﹣10x+4=5(x﹣1)2﹣1,对称轴x=1.故选:B.3.抛物线y=ax2+bx+c经过点(3,0)和(2,﹣3),且以直线x=1为对称轴,则它的解析式为()A.y=﹣x2﹣2x﹣3 B.y=x2﹣2x﹣3 C.y=x2﹣2x+3 D.y=﹣x2+2x﹣3【解答】解:把(3,0)与(2,﹣3)代入抛物线解析式得:,由直线x=1为对称轴,得到﹣=1,即b=﹣2a,代入方程组得:,解得:a=1,b=﹣2,c=﹣3,则抛物线解析式为y=x2﹣2x﹣3,故选B4.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.5.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为()x …﹣1 0 1 2 …y …﹣1 ﹣﹣2 ﹣…A.y=x2﹣x﹣B.y=x2+x﹣C.y=﹣x2﹣x+D.y=﹣x2+x+【解答】解:∵抛物线过点(0,﹣)和(2,﹣),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,﹣2)设抛物线解析式为y=a(x﹣1)2﹣2,把(﹣1,﹣1)代入得4a﹣2=﹣1,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣.故选A.6.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.7.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x+2C.y=﹣x2﹣x+1 D.y=﹣x2+x+2【解答】解:A、由图象可知开口向下,故a<0,此选项错误;B、抛物线过点(﹣1,0),(2,0),根据抛物线的对称性,顶点的横坐标是,而y=﹣x2﹣x+2的顶点横坐标是﹣=﹣,故此选项错误;C、y=﹣x2﹣x+1的顶点横坐标是﹣,故此选项错误;D、y=﹣x2+x+2的顶点横坐标是,并且抛物线过点(﹣1,0),(2,0),故此选项正确.故选D.8.已知二次函数y=ax2+bx+c的图象如图所示,则点M(,a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:从图象得出,二次函数的对称轴在一,四象限,且开口向上,∴a>0,﹣>0,因此b<0,∵二次函数的图象与y轴交于y轴的负半轴,∴c<0,∴a>0,>0,则点M(,a)在第一象限.故选:A.二、填空题:9.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=﹣x2+4x﹣3 .【解答】解:设抛物线的解析式为y=a(x﹣2)2+1,将B(1,0)代入y=a(x﹣2)2+1得,a=﹣1,函数解析式为y=﹣(x﹣2)2+1,展开得y=﹣x2+4x﹣3.故答案为y=﹣x2+4x﹣3.10.与抛物线y=x2的形状和开口方向相同,顶点为(3,1)的二次函数解析式为y=(x﹣3)2+1 .【解答】解:设抛物线解析式为y=a(x﹣3)2+1,因为抛物线y=a(x﹣3)2+1与抛物线y=x2的形状和开口方向相同,所以a=,所以所求抛物线解析式为y=(x﹣3)2+1.故答案为y=(x﹣3)2+1.11.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是 4 .【解答】解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.12.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a >b.【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故答案是:>.13.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3 .【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.14.二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3 .【解答】解:可先从抛物线y=x2﹣2x﹣3上找三个点(0,﹣3),(1,﹣4),(﹣1,0).它们关于原点对称的点是(0,3),(﹣1,4),(1,0).可设新函数的解析式为y=ax2+bx+c,则c=3,a﹣b+c=4,a+b+c=0.解得a=﹣1,b=﹣2,c=3.故所求解析式为:y=﹣x2﹣2x+3.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1 .【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.16.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是①③④.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.17.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,顶点C到x轴的距离为2,则此抛物线的解析式为y=﹣x2+x+或y=x2﹣x﹣.【解答】解:∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴抛物线的对称轴为直线x=1,∵顶点C到x轴的距离为2,∴C点坐标为(1,2)或(1,﹣2),设抛物线解析式为y=a(x+2)(x﹣4),把C(1,2)代入得a×3×(﹣3)=2,解得a=﹣,所以此时抛物线解析式为y=﹣(x+2)(x ﹣4)=﹣x2+x+;把C(1,﹣2)代入得a×3×(﹣3)=﹣2,解得a=,所以此时抛物线解析式为y=(x+2)(x﹣4)=x2﹣x﹣,∴抛物线解析式为y=﹣x2+x+或y=x2﹣x﹣.故答案为y=﹣x2+x+或y=x2﹣x﹣.18.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为y=﹣x2+x或y=x2+x..【解答】解:设二次函数的解析式为y=ax2+bx+c(a≠0),当图象与x轴的另一交点坐标为(1,0)时,把(0,0)、(1,0)、(﹣,﹣)代入得,解方程组得,则二次函数的解析式为y=﹣x2+x;当图象与x轴的另一交点坐标为(﹣1,0)时,把得,解方程组得,则二次函数的解析式为y=x2+x.所以该二次函数解析式为y=﹣x2+x或y=x2+x.三、解答题:19.求出符合条件的二次函数解析式:(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.【解答】解:(1)设二次函数解析式为y=ax2+bx+c,根据题意得,解得,所以二次函数解析式为y=﹣2x2+x+3;(2)二次函数解析式为y=a(x+3)2+6,把(﹣2,10)代入得a×(﹣2+3)2+6=10,解得a=4,所以二次函数解析式为y=4(x+3)2+6;(3)设二次函数解析式为y=a(x+1)(x﹣3),把(0,9)代入得a×1×(﹣3)=9,解得a=﹣3,所以二次函数解析式为y=﹣3(x+1)(x﹣3)=﹣3x2+6x+9.20.已知二次函数的图象如图所示,求此抛物线的解析式.【解答】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣3,0)设抛物线解析式为y=a(x+3)(x﹣5),把(0,3)代入得a×3×(﹣5)=3,解得a=﹣,∴抛物线解析式为y=﹣(x+3)(x﹣5)=﹣x2+x+3.21.已知二次函数的对称轴为x=2,且在x轴上截得的线段长为6,与y轴的交点为(0,﹣2),求此二次函数的解析式.【解答】解:∵二次函数的对称轴为x=2,且在x轴上截得的线段长为6,∴抛物线与x轴的交点坐标为(﹣1,0),(5,0),设抛物线解析式为y=a(x+1)(x﹣5),把(0,﹣2)代入得a•1•(﹣5)=﹣2,解得a=,∴抛物线解析式为y=(x+1)(x﹣5)=x2﹣x﹣2.22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.(1)求二次函数的解析式;(2)若点P在x轴正半轴上,且PA=PC,求OP的长.【解答】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0),∴设该二次函数的解析式为:y=a(x﹣2)(x+1)(a≠0).将x=0,y=﹣2代入,得﹣2=a(0﹣2)(0+1),解得a=1,∴抛物线的解析式为y=(x﹣2)(x+1),即y=x2﹣x﹣2;(2)如图.由(1)知,抛物线的解析式为y=x2﹣x﹣2,则C(0,﹣2).设OP=x,则PA=PC=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=.23.已知抛物线与x轴交于A、B两点.(1)求证:抛物线的对称轴在y轴的左侧;(2)若(O为坐标原点),求抛物线的解析式;(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.【解答】(1)证明:∵m>0,∴x=﹣=﹣<0,∴抛物线的对称轴在y轴的左侧;(2)解:设抛物线与x 轴交点为A (x 1,0),B (x 2,0),则x 1+x 2=﹣m <0,x 1•x 2=﹣m 2<0,∴x 1与x 2异号,又∵=>0,∴OA >OB ,由(1)知:抛物线的对称轴在y 轴的左侧, ∴x 1<0,x 2>0,∴OA=|x 1|=﹣x 1 ,OB=x 2,代入得: =, =,从而,解得m=2, 经检验m=2是原方程的根,∴抛物线的解析式为y=x 2+2x ﹣3;(3)解:当x=0时,y=﹣m 2∴点C (0,﹣ m 2),∵△ABC 是直角三角形,∴AB 2=AC 2+BC 2,∴(x 1﹣x 2)2=x 12+(﹣m 2)2+x 22+(﹣m 2)2 ∴﹣2x 1•x 2=m 4∴﹣2(﹣m 2)=m 4,解得m=,∴S △ABC =×AB •OC=|x 1﹣x 2|•=×2m ×m 2=.。
《待定系数法求二次函数解析式》专题
《待定系数法求二次函数解析式》专题班级姓名【一般式】例1 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6);求它的解析式。
变式:已知一个二次函数,当x=-1时,y=3;当x=1时,y=3;当x=2时,y=6。
求这个二次函数的解析式。
【顶点式】例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。
变式1:已知二次函数的图象经过A(-1,0)、B(3,0),函数有最小值-8,求它的解析式。
变式2:已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。
变式3:已知抛物线的顶点是(2,-4),它与y 轴的一个交点的纵坐标为4,求函数的关系式。
变式4:一条抛物线y x mx n =++142经过点()032,与()432,。
求这条抛物线的解析式。
【交点式】例3 .已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式想一想:还有其它方法吗?变式1:已知二次函数的图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.求它的解析式。
1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。
2.二次函数y= ax 2+bx+c ,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。
3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。
4.二次函数y= ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。
5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。
7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。
待定系数法求函数解析式10题
待定系数法求函数解析式10题1. 题目:已知一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),求这个一次函数的解析式。
- 解答:- 因为一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),所以把这两个点分别代入函数解析式中。
- 当x = 1,y = 3时,得到3=k×1 + b,也就是k + b=3;当x=-1,y = - 1时,得到-1=k×(-1)+b,也就是-k + b=-1。
- 现在有了一个方程组k + b = 3 -k + b=-1。
- 把这两个方程相加,(k + b)+(-k + b)=3+(-1),得到2b = 2,解得b = 1。
- 把b = 1代入k + b = 3,得到k+1 = 3,解得k = 2。
- 所以这个一次函数的解析式是y = 2x+1。
2. 题目:二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4),求这个二次函数的解析式。
- 解答:- 因为二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4)。
- 当x = 0,y = 1时,代入解析式得1=a×0^2+b×0 + c,也就是c = 1。
- 当x = 1,y = 2时,得到2=a×1^2+b×1 + c,也就是a + b + c=2;当x=-1,y = 4时,得到4=a×(-1)^2+b×(-1)+c,也就是a - b + c = 4。
- 因为c = 1,所以把c = 1代入a + b + c = 2和a - b + c = 4中,得到a + b+1 = 2 a - b+1 = 4。
- 化简这两个方程得a + b = 1 a - b = 3。
- 把这两个方程相加,(a + b)+(a - b)=1 + 3,得到2a = 4,解得a = 2。
利用待定系数法求解析式
1、利用待定系数法求解析式:(1)过(-1,11),(2,8),(0,6)三点;(2)顶点(3,-1),过(2,3);(3)对称轴为直线x=2,且过(1,4),(5,0)。
2、用函数观点看一元二次方程一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线y=ax2+bx+c与x轴的交点坐标是5, 那么二次函数y= 3 (1).一元二次方程3 x2+x-10=0的两个根是x1= -2 ,x2=3x2+x-10与x轴的交点坐标是_____(2). 若抛物线y= x2+ax+b与x轴的交点坐标是(5,0)和(-2,0),则一元二次方程x2+bx+c=0的两个根是_____.3、二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点b2–4ac > 0(2)有一个交点b2–4ac= 0(3)没有交点b2–4ac< 0若抛物线y=ax2+bx+c与x轴有交点,则b2 – 4ac≥04.利用抛物线图象填空:(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为__________(6)y=ax2+bx+c与y=ax+c的图象交于A(-0.8,0.6)、B(3.2,1)两点则方程ax2+bx+c=ax+c的图象根为-----------------5、函数观点看一元二次方程(字母符号)(1)a看开口方向(2)c看与y轴交点(3)b的符号:左同右异(4)b2-4ac的符号:由抛物线与x轴的交点个数确定:(5)a+b+c的符号:由x=1时抛物线上的点的位置确定(6)a-b+c的符号:由x=-1时抛物线上的点的位置确定(7)根据二次函数图象,如何确定2a-b,2a+b符号2a-b 的符号,看抛物线对称轴在x=-1的左侧还是右侧2a+b 的符号,看抛物线对称轴在x=1的左侧还是右侧。
用待定系数法求一次函数解析式
y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4
《用待定系数法求二次函数的解析式》同步练习(含精品解析)
用待定系数法求二次函数的解析式 同步练习题基础题知识点1 利用“三点式”求二次函数解析式1.已知二次函数y =-x 2+bx +c 的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为12______________________.2.若二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x -7-6-5-4-3-2y-27-13-3353则此二次函数的解析式为____________________.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.4.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =(x -1)2+829D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式7.如图所示,抛物线的函数表达式是( )A .y =x 2-x +412B .y =-x 2-x +412C .y =x 2+x +412D .y =-x 2+x +4128.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-x 2-x +21212C .y =-x 2-x +11212D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3的图象,求函数y 3的最小值.参考答案基础题1.y =-x 2+4x -62.y =-2x 2-12x -13123.由题意,得解得∴二次函数的解析式为y =2x 2-3x +1. {a +b +c =0,a -b +c =6,c =1,){a =2,b =-3,c =1.)4.(1)∵抛物线y =x 2+bx +c 与x 轴交于A(-1,0),B(3,0)两点,∴解得∴二次函{1-b +c =0,9+3b +c =0.){b =-2,c =-3.)数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D 6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =.∴这14条抛物线的解析式为y =(x -4)2-1. 147.D 8.y =x 2-x -2 9.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =.所以y =(x +1)4343(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =(x +1)(x +3).∴函数的解析式为415y =(x +1)(x -1)或y =(x +1)(x +3).43415中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =x 2-x +2或y =-x 2+x +2 1814183415.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x轴于点P.设AE 解析式为y =kx +b ,则解得∴y AE =7x -3.∵当y =0时,x =,∴点P 的{k +b =4,b =-3,){k =7,b =-3.)37坐标为(,0). 3716.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上.综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x 轴于点(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称;④函数y =(x -1)[(k -1)x +(x -3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行) (3)将函数y 2=(x -1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3=(x +3)2-2,∴当x =-3时,函数y 3取最小值,等于-2.。
待定系数法求双曲余弦函数的解析式练习题
待定系数法求双曲余弦函数的解析式练习
题
题目描述
给定方程:$y''-2y'+y=\frac{5e^x}{2}$
其中 $y(x)$ 是关于自变量 $x$ 的函数。
请使用待定系数法求解该方程的特解,并写出方程的通解。
解答步骤
1. 求齐次方程的通解
首先,求解该方程的齐次形式:$y''-2y'+y=0$,通过特征方程求解,得到齐次方程的通解为:$y_c=C_1e^x+C_2xe^x$。
2. 求特解
根据待定系数法,设非齐次方程的一个特解为 $y_p=Ae^x$,
则带入原方程中,得到:
$$(A-2A+A)e^x=\frac{5e^x}{2}$$
解得:$A=\frac{5}{4}$。
因此,非齐次方程 $y''-2y'+y=\frac{5e^x}{2}$ 的一个特解为
$y_p=\frac{5}{4}e^x$。
3. 求解通解
由于 $y''-2y'+y=0$ 的齐次方程的通解为
$y_c=C_1e^x+C_2xe^x$,非齐次方程的一个特解为
$y_p=\frac{5}{4}e^x$,因此该方程的通解为:
$$y=y_c+y_p=C_1e^x+C_2xe^x+\frac{5}{4}e^x$$
总结
本文中,我们介绍了待定系数法的求解步骤,并通过一个例子,讲解了该方法的具体求解过程。
待定系数法虽然简单易懂,但对于
一些复杂的非齐次方程,可能需要多次尝试取不同的特解形式,才能求得正确解析式。
专题1:用待定系数法求二次函数解析式
专题1:用待定系数法求二次函数解析式一、【经典例题】1.(1)如果一个二次函数的图象经过(-1,-11)(2,8)(0,-8)三点,求出这个二次函数的解析式.(2)如果一个二次函数的顶点为(2,1)且经过点(0,3),求出这个二次函数的解析式.(3)已知二次函数的图象与x 轴交于A (—2,0),B (6,0)两点,与y 轴交于点C (0,- 4)求二次函数解析式.2.如图,已知抛物线的对称轴为直线x=-1,且经过A (1,0),B (0,-3)两点.(1)求抛物线的解析式;(2)在抛物线的对称轴x=-1上,是否存在点M,使它到点A 的距离与到点B 的距离之和最小,如果存在求出点M 的坐标,如果不存在请说明理由.()20y ax bx c a =++≠3.如图,抛物线的开口向下,与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C .已知C (0,4),顶点D 的横坐标为﹣,B (1,0).求抛物线的解析式;二、【练习】1.已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x+2B .y =x 2+3x+2C .y =x 2﹣2x+3D .y =x 2﹣3x+2 2.二次函数y=x 2+bx+c 的图象经过点(4,-3),(3,0).(1)求b 、c 的值; (2)求该二次函数图象的顶点及坐标和对称轴.3.如图,平面直角坐标系中,四边形OABC 为菱形,点A 在x 轴的正半轴上,BC 与y 轴交于点D ,点C 的坐标为(﹣3,4).(1)点A 的坐标为 ;(2)求过点A 、O 、C 的抛物线解析式,并求它的顶点坐标;4.(如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B 、C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =.求A 点的坐标及该抛物线的函数表达式.5.如图,ABCD中,A(﹣1,0),B(0,2),BC=3,求经过B、C、D的抛物线的解析式.6.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2过点C.求抛物线的解析式.。
中考数学高频考点专题练习-待定系数法求二次函数解析式
中考数学高频考点专题练习-待定系数法求二次函数解析式一、解答题1.如图,在平面直角坐标系xoy中,已知抛物线2y x bx c=++与x轴交于A、B两点,与y轴交于点C,直线AC的函数解析式为y=(1)求该抛物线的函数关系式与B点坐标;(2)已知点D (m,0)是线段OA上的一个动点,过点作x轴的垂线l分别与直线AC和抛物线交于E、F两点,当m为何值时,△CEF恰好是以EF为底边的等腰三角形?(3)在(2)问条件下,当△CEF恰好是以EF为底边的等腰三角形时,若P是直线AC上的一个动点,设P的横坐标为x,①连接FP,求12PF PA+最小值;①若①APF不小于45°,请直接写出x的取值范围.2.在平面直角坐标系中,抛物线y=-x2+2mx的顶点为A,直线l:y=x-1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析及点C的坐标;①点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;①S 关于m 的函数关系式;①S 的最小值及S 取最小值时m 的值.3.如图,对称轴为x =﹣1的抛物线y=ax 2+bx +c (a ≠0)与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0).(1)求点B 的坐标.(2)已知a =1,C 为抛物线与y 轴的交点.①求抛物线的解析式.①若点P 在抛物线上,且S△POC =4S△BOC ,求点P 的坐标.①设点Q 是线段AC 上的动点,作QD ①x 轴交抛物线于点D ,请直接写出线段QD 长度的最大值和对应的点Q 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点()4,0B ,点()3,A m 在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan OAB ∠的值.5.如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值; (3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 6.如图,已知直线334y x =+交x 轴负半轴于点A ,交y 轴于点C ,抛物线238y x bx c =-++经过点A 、C ,与x 轴的另一交点为B .()1求抛物线的解析式;()2设抛物线上任一动点P 的横坐标为m .①若点P 在第二象限抛物线上运动,过P 作PN x ⊥轴于点N 交直线AC 于点M ,当直线AC 把线段PN 分成2:3两部分时,求m 的值;①连接CP ,以点P 为直角顶点作等腰直角三角形CPQ ,当点Q 落在抛物线的对称轴上时,请直接写出点P 的坐标.7.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .①求S 与m 之间的函数关系式,并写出自变量m 的取值范围;①当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的8.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax 2+bx 过A ,C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动,速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE①AB 交AC 于点E ,过点E 作EF 上AD 交AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长?9.在平面直角坐标系内,反比例函数和二次函数y =a (x 2+x ﹣1)的图象交于点A (1,a )和点B (﹣1,﹣a ). (1)求直线AB 与y 轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y 随着x 的增大而增大,求a 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当Q 在以AB 为直径的圆上时,求a 的值.10.如图,抛物线23y ax bx =++与x 轴交于点(3,0)A -和点(1,0)B -.(1)求抛物线的解析式;(2)将抛物线沿x 轴向右平移t 个单位长度,使它经过点(0,1),求出t 的值.11.在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0)、B (3,0)两点,与y 轴交于C 点,D 为抛物线顶点.(2)如图1,连接AD ,交y 轴于点E ,点P 是第一象限的抛物线上的一个动点,连接PD 交x 轴于F ,连接EF 、AP ,若S △ADP =3S △DEF ,求点P 的坐标.(3)点Q 是抛物线对称轴上一动点,连接OQ 、AQ ,设①AOQ 外接圆圆心为H ,当sin①OQA 的值最大时,请求出点H 的坐标.12.已知一个抛物线经过点()3,0,()1,0-和()2,6-.(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴;13.如图,抛物线y =ax 2+bx +2与直线AB 相交于A (﹣1,0),B (3,2),与x 轴交于另一点C .(1)求抛物线的解析式;(2)在y 上是否存在一点E ,使四边形ABCE 为矩形,若存在,请求出点E 的坐标;若不存在,请说明理由;(3)以C 为圆心,1为半径作①C ,D 为①O 上一动点,求DA 的最小值. 14.若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式; (2)求出这条抛物线上纵坐标为12的点的坐标.15.如图,已知抛物线与x 轴交于A (﹣1,0)、B (5,0)两点,与y 轴交于点C (0,5).(1)求该抛物线所对应的函数关系式;(2)D 是第一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF ①x 轴于点F ,交直线BC 于点E ,连接BD 、CD .设点D 的横坐标为m ,①BCD 的面积为S .①求S 关于m 的函数关系式及自变量m 的取值范围;①当m 为何值时,S 有最大值,并求这个最大值;①直线BC 能否把①BDF 分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.16.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点()1,0A -,与直线y x c =-+交于B C 、两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)P Q 、关于抛物线对称轴对称,若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标. 17.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时①CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.参考答案:1.(1)232333y x =B (1, 0).(2)当m= -1时,△CEF 恰好是以EF 为底边的等腰三角形.(3)①12PF PA +433313x --<≤ 2.(1)①24y x x =-+;C 313+113+;①1<t <13(2)①S =2111222m m -+;①当m =12时,取最小值,最小值为383.(1)点B 的坐标为(1,0)(2)①223y x x =+-;①(4,21)或()4,5-;①QD 有最大值94,点Q 的坐标为3(2-,9)2-.4.(1)24y x x =-+,它的对称轴为:2x =;(2)25.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 6.(1)233 384y x x =--+;(1)①43m =-或3m =-;①P 点坐标为()4,0-或210,33⎛⎫- ⎪⎝⎭或()2,0或410,33⎛⎫- ⎪⎝⎭7.(1)223y x x =-++ (2)①213(04)42S m m m =-+<≤;①S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(637,1867)-+-或(47,227)-+8.(1)点A 的坐标为(4,8).抛物线的解析式为:y=一12x 2+4x .(2)线段EG 最长为2.9.(1)求直线AB 与y 轴的交点坐标(0,0);(2)a <0且x ≤﹣12;(3)a =23 10.(1)243y x x =++(2)t 的值为222211.(1)y =x 2﹣2x ﹣3(2)P (6,2)(3)H (﹣122H (﹣12212.(1)2246y x x =--(2)顶点坐标为()1,8-;对称轴为直线1x =13.(1)y =12-x 2+32x +2 (2)存在,E (0,﹣2)(3)DA14.1)或(2)(-1,12)(3,12)15.(1)245y x x =-++ (2)①()25250522s m m m =-+<<;①当52m =时,S 有最大值,最大值为1258; ①能,点D 的坐标为26539⎛⎫ ⎪⎝⎭,或33524⎛⎫ ⎪⎝⎭,16.(1)223y x x =-++;(2)四边形DEPQ 为正方形时点P 的坐标为)2和()22-;(3)点P 的横坐标为2或1- 17.(1)2--23y x x =+;顶点D 的坐标为(-1,4)(2)M 点坐标为(-1,4)(3)当点P 的坐标为315(,)24-时,①CPB 的面积有最大值,且最大值为27.8。
《用待定系数法求一次函数解析式》练习题
=-200x+11 000,当 y=0 时,x=55,∴返回到家的时间为 8:55.
易错点:对图表中的一次函数关系不能作出明确判断
10 .目前,我国大约有 1.3 亿高血压病患者,预防高血压不容忽
视.“千帕(kpa)”和“毫米汞柱(mmHg)”都是表示血压的单位.请
你根据表格提供的信息,判断下列各组换算正确的是( C )
14.(导学号69654150)(2017·苏州)某长途汽车客运公司规定旅客可免费 携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是 行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行 李质量为50 kg时需付行李费8元.
(1)当行李的质量x超过规定时,求y与x之间的函数解析式;
1
1 (2)当 y=0 时, x-2=0,得 x=10. 5 答:旅客最多可免费携带行李 10 kg.
15.(导学号69654151)(2016·河北)某商店能通过调低价格的方式促销n
4.已知一次函数 y=kx+b 的图象经过点 A(0,-2),B(1,0),则 b=
2 . -2 ,k=____ ____
5.已知一次函数图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断P(-1,1)是否在这个函数图象上?
解:(1)设一次函数的解析式为 y=kx+b,∵A(-2,-3),B(1,3)
端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点
A运动.已知线段AB长为90 cm,甲的速度为2.5 cm/s.设运动时间为
x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则
图中线段DE所表示的函数解析式为_________________________ .(并 y=4.5k-90(20≤x≤36) 写出自变量的取值范围)
用待定系数法求二次函数解析式专题练习
用待定系数法求二次函数解析式专项练习类型一:已知顶点和另外一点用顶点式1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二 次函数的关系式。
2. 已知二次函数的图象经过A(-1,0)、B(3,0),函数有最小值-8,求它的解析式3. 已知抛物线对称轴是直线x =2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。
4. 已知抛物线的顶点是(2,-4),它与y 轴的一个交点的纵坐标为4,求函数的关系式。
5. 一条抛物线y x mx n =++142经过点()032,与()432,。
求这条抛物线的解析式。
6.已知抛物线经过点(-1,1)和点(2,1)且顶点在x 轴上.(1)求二次函数的解析式。
7.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.8.已知一个二次函数对称轴x=8,函数最大值9,且图象过点(0,1),求这个二次函数的关系式9.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式. 类型二:已知图像上任意三点用一般式1. 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2. 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6); 求它的解析式。
3. 已知一个二次函数,当x=-1时,y=3;当x=1时,y=3;当x=2时,y=6。
求这个二次函数的解析式。
4. 已知抛物线过三点:(-1,2),(0,1),(2,-7).求解析式5.已知抛物线过三点:(0,-2)、(1,0)、(2,3)求二次函数的关系式 类型三:已知图像与x 轴两个交点坐标和另外一点坐标,用两根式1. 已知二次函数的图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.求它的 解析式。
2. 抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.3. 已知二次函数的图象与x 轴交点的横坐标分别是x 1=-3,x 2=1,且与y 轴交点为(0,-3),求这个二次函数解析式。
《用待定系数法求二次函数的解析式》同步练习(含答案)
用待定系数法求二次函数的解析式同步练习题基础题知识点1利用“三点式”求二次函数解析式1.已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为______________________.2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3则此二次函数的解析式为____________________.3.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式 7.如图所示,抛物线的函数表达式是( )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +48.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.参考答案基础题1.y =-12x 2+4x -6 2.y =-2x 2-12x -133.由题意,得⎩⎪⎨⎪⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴二次函数的解析式为y =2x 2-3x +1.4.(1)∵抛物线y =x 2+bx +c与x 轴交于A(-1,0),B(3,0)两点,∴⎩⎪⎨⎪⎧1-b +c =0,9+3b +c =0.解得⎩⎪⎨⎪⎧b =-2,c =-3.∴二次函数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =14.∴这条抛物线的解析式为y =14(x -4)2-1.7.D 8.y =x 2-x -29.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =43.所以y =43(x+1)(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =415(x +1)(x +3).∴函数的解析式为y =43(x +1)(x -1)或y =415(x +1)(x +3).中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =18x 2-14x +2或y =-18x 2+34x +215.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P.设AE 解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3.∴y AE =7x -3.∵当y =0时,x=37,∴点P 的坐标为(37,0). 16.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上. 综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x轴于点(1,0);③k取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(x-3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行)(3)将函数y2=(x-1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y3=(x+3)2-2,∴当x =-3时,函数y3取最小值,等于-2.。
待定系数法求一次函数的解析式练习题精选全文
可编辑修改精选全文完整版
待定系数法求一次函数的解析式练习题
一、旧知识回顾
1,填空题:
(1)若点A(-1,1)在函数y=kx的图象上则k= .
(2)在一次函数y=kx-3中,当x=3时y=6则k= .
(3)一次函数y=3x-b过A(-2,1)则b= ,。
(4)一次函数y=3x-b过A(-2,1)则b= ,该图象经过点B(,-1)和点C(0,). 2.练习:
(1)已知一次函数的图象经过点(1,-1)和点(-1,2)。
求这个函数的解析式。
(2)已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。
求这个函数的解析式。
且求当x=3时,y的值。
(3)师:已知直线上两点坐标,能求出这条直线的解析式,若不直
接告诉两点的坐标,已知这条直线的图象,能否求出它的解析式?
如右图求函数的解析式。
:
二.练习:
1.尝试练习:
(1)已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。
(3)一次函数y=kx+5与直线y=2x-1交于点P(2,m),求k、m的值.
3已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数图象与y轴交于点Q(0,3)。
求出这两个函数的解析式。
4:正比例函数y=kx与一次函数y=kx+b的图象如图所示,它们的交点
A的坐标为(3,4),且OB=10.
(1)求这两个函数的解析式;
(2)求△OAB的面积.
5.一次函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,-3a)与点
(a,6),求这个函数的解析式
x
y
A
O
B。
用待定系数法求函数解析式
y ax2 bx c ,则
y
a b c 0 9a 3b c 0 a b c 4
-1
O
3
x
解得
a 1 b 2 c 3
(1,-4)
所以,抛物线的解析式为 y x2 2x 3
4.[2007.昆明]如图,在平面直角坐标系中,点A的坐 标为(-2,0),连接OA,将线段OA绕原点顺 时针旋转120。,得到线段OB. (1)求点B的坐标; (2)求经过A, O,B三点的抛物线的解析式.
y(毫升)
2000 1500
果 汁
1000 500
O
5
10
15
20
x(厘米)
y
如图,抛物线经过点(1, 2),则此抛物线的解析 2 式为 . y 2x
2 O 1 x
抛物线顶点是原点时,可设所 求抛物线解析式为
y ax
2
y
y
O
x
O
x
抛物线顶点在y轴上时,可设所求 抛物线解析式为
y ax +c
(注意:本题中的结果均保留根号) y
B 1
A
-1
O
1
x
用待定系数法求函数解析式的主要思路:
1.准确设出函数解析式;【设】
2.找点代入解析式,列方程(组);【代】
3.解方程(组),得出待定系数的值;【解】
4. 确定函数解析式.【定】
思想方法:转化 数形结合
[2008.兰州]一座拱桥的轮廓是抛物线型, 如图所示,拱高6m,跨度20m,相邻两支柱间的 距离均为5m,建立如图所示的平面直角坐标系, 求抛物线解析式.
已知一次函数的图象经过(2,5) 和(-1,-1)两点,求这个一次函数 的解析式.
八年级待定系数法求一次函数的解析式练习题
待定系数法求一次函数的解析式练习题1,填空题:(1)若点A (-1,1)在函数y=kx 的图象上则k= .(2)在一次函数y=kx-3中,当x=3时y=6则k= .(3)一次函数y=3x-b 过A (-2,1)则b= ,。
3.解方程组:3.练习:(1)已知一次函数的图象经过点(1,-1)和点(-1,2)。
求这个函数的解析式。
(2)已知一次函数y=kx+b 中,当x=1时,y=3,当x=-1时,y=7(1)求这个函数的解析式。
(2)求当x=3时,y 的值。
(3)师:已知直线上两点坐标,能求出这条直线的解析式,若不直接告诉两点的坐标,已知这条直线的图象,能否求出它的解析式?若可以请求出函数的解析式。
如:5.练习:1.选择题:1)一次函数的图象经过点(2,1)和(1,5),则这个一次函数( )=4x+9 B. y=4x-9 C. y=-4x+9 D. y=-4x-9(2)已知点P 的横坐标与纵坐标之和为1,且这点在直线y=x+3上,则该点是( )A.(-7,8)B. (-5,6)C. (-4,5)D. (-1,2)3)若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m 的值是( )2.尝试练习:(1)已知一次函数 y=kx+2,当x=5时,y 的值为4,求k 的值。
(2)已知直线y=kx+b 经过(9,0)和点(24,20),求这个函数的解析式。
(3)一次函数y=kx+5与直线y=2x-1交于点P(2,m),求k 、m 的值.(4)一次函数y=3x-b 过A (-2,1)则b= ,该图象经过点B ( ,-1)和点C (0, ).(5)已知函数y=kx+b 的图象与另一个一次函数y=-2x-1的图象相交于y 轴上的点A ,且x轴下方的一点B(3,n)在一次函数y=kx+b 的图象上,n 满足关系n 2=9.求这个函数的解析式.(提示:先利用题中条件确定A 和B 的坐标,再用待定系数法求函数解析式) 7(4)317;x y x y +=⎧⎨+=⎩。
用待定系数法求二次函数解析式练习题
用待定系数法求二次函数解析式练习
题
Safety first, quality second. November 21, 2021
用待定系数法求二次函数解析式练习题
姓名:1.抛物线过点 0,0 1,2 2,3三点
2.抛物线顶点是2,-1且过点-1,2
3.图象与X轴交于2,0 -1,0且过点0,-2
4.图象与X轴交于2,03,0且函数最小值是-3
5.抛物线 y=x2-5m+1x+2m的对称轴是y轴
6. y=m-3x2+mx+m+3的最大值是0
解答题
1.若抛物线y=x2-4x+c
1过点A1,3,求c 2顶点在X轴上,求c
2,若抛物线 y=ax2+2x+c,的对称轴是直线 x=2,且函数的最大值
是 -3,求 a,c
3.抛物线y=ax2+bx+c的顶点是-1,2,且a+b+c+2=0
思考题
已知抛物线 y=ax2+bx+c 与直线y=kx+4 相交于点A1,m,B4,8,与x轴交于坐标原点O和点C.
1求直线和抛物线解析式.
2在x轴上方的抛物线是否存在D点,使得S△OCD =S△OCB,若存在,求出所有符合条件的点;若不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.已知点A (
1, )、B 、O (0,0),试说明A 、O 、B 三点在同一条直线上。
21.下表中y 是x 的一次函数,求该函数的表达式,并补全表格。
22.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (度)与应付电费y (元)的关系如图所示.分别求出当0≤x ≤50和x >50时,y 与x 的函数关系式;
23.已知一个正比例函数和一个一次函数,它们的图象都经过点P (-2,1),且一次函数图象与y 轴交于点Q (0,3)。
(1)求出这两个函数的解析式;
(2)在同一个坐标系内,分别画出这两个函数的图象。
3)3,1(--
24..若一次函数的图象与直线y=-3x+2交y轴于同一点,且过点(2,-6),求此函数解析式
25、某一次函数的图像与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,求此函数的解析式.
26、已知直线y=kx+b在y轴上的截距为-2,且过点(-2,3).
(1)求函数y的解析式;(2)求直线与x轴交点坐标;(3)x取何值时,y>0;
27、直线x-2y+1=0 在y轴上的截距为______.
28.一次函数y=kx+b(k≠0)的自变量的取值范围是-3≤x≤6相应函数值的范围是-5≤y≤-2,求这个函数的解析式.
29. 一次函数y=kx+b的图象过点(-2,5),并且与y轴相交于点P,直线y=-1/2x+3与y轴相交于点Q,点Q与点P关于x轴对称,求这个一次函数解析式
30、正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5 (1)求△OAB的面积
(2)求这两个函数的解析式
6.一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图象大致为()
8.下面是y=k1x+k2与y=k2x在同一直角坐标系中的大致图象,其中正确的是( )。