第5章 振动和波动课后答案

第5章 振动和波动课后答案
第5章 振动和波动课后答案

第5章 振动和波动

5-1 一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1) 振动的角频率、最大速度和最大加速度;

(2) 振子对平衡位置的位移为x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。 解:(1))s rad (105

.050

===

m k

ω

max 222max 100.040.4(m/s)100.044(m/s )

v A a A ωω==?===?=

(2) 设cos()x A t ω?=+,则

d sin()d x

v A t t

ωω?==-+ 2222d cos()d x a A t x t ωω?ω==-+=-

当x=0.02m

时,cos()1/2,

sin()2t t ω?ω?+=+=,所以

20.20.346(m/s)2(m/s )1(N)

v a F ma ===-==-m m

(3) 作旋转矢量图,可知:π

2

?=- π0.04cos(10)2

x t =-

5-2 弹簧振子的运动方程为0.04cos(0.70.3)(SI)x t =-,写出此简谐振动的振幅、角频率、频率、周期和初相。

解:

A=0.04(m) 0.7(rad/s)0.3(rad)

1

0.11(Hz)8.98(s)

T ω?ωνν

==-=

==

=

5-3 证明:如图所示的振动系统的振动频率为

υ=

式中12,k k 分别为两个弹簧的劲度系数,m

为物体的质量。

解: 以平衡位置为坐标原点,水平向右为x 轴正方向。设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有

0202101=-+-x k x k

当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为

11022012()()()F k x x k x x k k x =-++-=-+

由牛顿第二定律得 2122d ()d

x

m k k x t

=-+

即有 2122()

d 0d k k x x t m

++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为

12

k k x m

ω+=

振动的频率为 12

12π

2πk k m

ω

ν+=

=

5-4 如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。

习题5-4 图

解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。右液面偏离原点为至x 时,振动系统所受回复力为:

22ππ2

42

d d g F x g x ρρ=-??=-

振动角频率 2π2d g

m

ρω=

振动周期 2

22π

πm

T d g

ρ= 5-5 如图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手,不计一切摩擦和空气阻力。试证明该系统作简谐振动,并求其作微小振动的周期。

解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。设平衡时弹簧伸长0l ,有:0kl mg = (1)

物体位于x 位置时(以原点为重力势能零点):

2

220111

()222

v k x l J mv mgx C R ??+++-= ??? 对上式两边求导:

0()0v a

k x l v J

mva mgv R R

++?+-= 从上式消去v ,且将(1)式代入,得到

22

k a x x J

m R ω=-

=-+

22

R k

J mR ω=

+

说明系统作简谐振动。振动周期为:

2

2

2πJ mR T R k

+= 5-6 如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R

、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。

解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能

2

22111

222

v E kx C J mv R ??=+++= ???恒量

式中C 为滑轮的重力势能,为一常量,上式两边对t 求导得

0v a

kxv J

mva R R +?+= 22

k

a x x J

m R ω=-=-+

于是

22

R k

J mR

ω=

+ 2

22π

J mR T R k

+= 5-7 如图所示,质量为10g 的子弹,以01000m s v =速度射入木块并嵌在木块中,使弹簧压缩从而作简谐运动,若木块质量为4.99kg ,弹簧的劲度系数为3810N m ?,求振动的振

幅。(设子弹射入木块这一过程极短)

解:先讨论子弹与木块的碰撞过程,在碰撞过程中,子弹与木块组成的系统的动量守恒,

习题5-6 图

设碰撞后子弹与木块共同以速度v 运动,则有

00

()2(m/s)

mv

m m v

mv v m m '=+=='

+ 然后系统做简谐振动,因为简谐振动过程中机械能守恒,所以振幅A 可由初始时刻系统的机械能确定,已知初始时刻系统的势能为零,所以有

2211()22

m m v kA '+= 30.01 4.9920.05m 810

m m A v k '++=

=?=? 5-8 如图所示,在一个倾角为θ的光滑斜面上,固定一个原长为0l 、劲度系数为k 、质量可以忽略不计的弹簧,在弹簧下端挂一个质量为m 的重物,求重物作简谐运动的平衡位置和周期。

解: 设物体处在平衡位置时弹簧伸长量为0x ,则

0sin sin mg mg kx x k

θ

θ==

平衡位置距O '点为:000sin mg l x l k

θ

+=+

以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为

0sin ()F mg k x x F kx θ=-+=-即

物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为

2m T k

= 5-9 两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。求它们相差,并用旋转矢量图表示

出来。

解:根据题意,两质点分别在2A x =

和2

A

x -=处相向通过,由此可以画出相应的旋转矢量图,从旋转矢量图可得两个简谐振动的相位差为π3

4

π或32==????。

A 1

A 2

2π3x

O

A 2

A 1

O

x 4π

3

5-10 一简谐振动的振幅A = 24c m、周期T = 3s ,以振子位移x = 12cm 、并向负方向运动时为计时起点,作出振动位移与时间的关系曲线,并求出振子运动到x = -12c m处所需的最短时间。

5-11 如图所示,一轻弹簧下端挂着两个质量均为m = 1.0kg 的物体B 和C ,此时弹簧伸长2.0c m并保持静止。用剪刀断连接B 和C 的细线,使C 自由下落,于是B 就振动起来。选B 开始运动时为计时起点,B 的平衡位置为坐标原点,在下列情况下,求B 的振动方程

(1)x 轴正向向上;

(2)x 轴正向向下。

解:已知m=1kg,m l BC 02.0=,可得)/(1000/2m N l mg k BC ==

)rad/s (1010==

m

k

ω 当以B 的平衡位置为坐标原点,振动振幅为

)(01.001.002.002.0m k mg A =-=-=

习题5-11 图

习题5-9图

由题意知,振动初速度00=v (1)x 轴正向向上时:π?=-=)

(01.00m x

振动方程为))(1010cos(01.0m t x π+=

(2)x 轴正向向下 时:0)(01.00==?m x

振动方程为))(1010cos(01.0m t x =

5-12 劲度系数为k 的轻弹簧,上端与质量为m 的平板相联,下端与地面相联。如图所示,今有一质量也为m 的物体由平板上方h 高处自由落下,并与平板发生完全非弹性碰撞。以平板开始运动时刻为计时起点,向下为正,求振动周期、振幅和初相。

解:物体下落与平板碰撞前速度:gh v 2=

0()mv m m v =+Q

所以物体与平板碰撞后共同运动的速度:gh v 22

1

0=

以平衡位置为坐标原点,向下为x 轴正方向,建立坐标系。依题意:k

mg

x -=0 在x 处,物体和平板受力:

22()mg

F mg k x kx k

=-+

=- 则:22π2π

2m k T k

T m

ω==

= 222222

22

2/41/2v m g gh A x m g mgkh k k m k

ω=+=+=+ 习题5-12 图

见旋转矢量图,有:

0arccos(

)x A

?ππ=+=+

5-13 在一平板上放一重的物体,平板在竖直方向作简谐振动,周期T =,振幅A =0.020m ,试求

(1)重物对平板的压力F ;

(2)平板以多大振幅运动时,重物将脱离平板?

解:以平衡位置为坐标原点,向下为x 轴正方向,物体在x 处时,

2

2

2

9.816mg N ma m x N mg m x x

ωωπ-==-=+=+

(1)重物对平板的压力2

9.816F x π=+

(2)当N=0时重物将脱离平板,由2

9.816N x π=+max 0.062()x m =-,max 0.062()A x m ==

5-14 一木块在水平面上作简谐运动,振幅为5.0c m,频率为ν,一块质量为m 的较小木块叠在其上,两木块间最大静摩擦力为mg ,求振动频率至少为多大时,上面的木块将相对于下面木滑动?

解:以平衡位置为坐标原点,向右为x 轴正方向,建立坐标系,小木块在x 处:

22π

2F m x T

ωωπν=-=

= 在最大位移处,F 最大,2

max F m x ω=

当mg A m f F s s μω>>2

max ,即时小木块开始相对于大木块滑动,由此得:

8.85(rad/s)ω>

= 8.85

1.4(Hz)2π

ν>

= 振动频率至少应略大于时,上面小木块相对于下面木块滑动。

5-15 一台摆钟的等效摆长L = m,摆锤可上下移动以调节其周期。该钟每天快1分27秒。假如将此摆当作一个质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少

距离,才能使钟走得准确?

解:设原摆钟周期为T ,钟走时准确时,其钟摆长为L ',周期为T ',则

2460608786487

24606086400

T T '??+==

?? 而2

286487()0.9950.997(m)86400L T L L T ''??==?= ???

0.002(m)2(mm)L L '-==

应将摆锤下移2mm 。

5-16 一弹簧振子,弹簧的劲度系数 = 25N m k ,当物体以初动能和初势能振动时,求

(1) 振幅;

(2) 位移是多大时,势能和动能相等? (3) 位移是振幅的一半时,势能多大? 解:(1)000.20.60.8()k p E E E J =+=+=

2

10.253()2

E kA A m =

∴=

=Q (2) k p E E =时,12p E E =

,即22111

222

kx kA =?,得

0.179()2

x A m =

= (3)当A x 21

=

时,221111()0.2()22424

p A E k kA E J ==?== 5-17 一质点同时参与两个在同一直线上的简谐振动,两个振动的振动方程为

0.04cos(2)(SI)6x t =+

0.03cos(2)(SI)6

x t =-

求合振动的振幅和初相。

解: 6.08(cm)A =

==

011221122

4sin

3sin()

sin sin 66arctan arctan

4.7cos cos 4cos 3cos()

66

A A A A ππ

???ππ???+?-+===+?+?- 5-18 有两个同方向、同频率的简谐振动,它们合振动的振幅为10cm ,合振动与第一个振动的相差为π/6,若第一个振动的振幅A 1=8.0cm ,求

(1)第二个振动的振幅A 2;

(2)第一个振动和第二个振动的相位差。 解:依题意,作旋转矢量图(缺图,P30),可知

25(cm)A ==≈ 222

12

120

cos 0.131

282A A A A A ??--?=≈?≈

5-19 已知两个分振动的振动方程分别为

2cos πx t = π

2cos(π)2

y t =-

求合振动轨道曲线。

解:两个振动方程消去t 得:42

2

=+y x ,所以合振动轨迹是圆。

5-20 质量为4536kg 的火箭发射架在发射火箭时,因向后反冲而具有反冲能量,这能量由发射架压缩一个弹簧而被弹簧吸收。为了不让发射架在反冲终了后作往复运动,人们使用一个阻尼减震器使发射架能以临界阻尼状态回复到点火位置去。已知发射架以10m s 的初速向后反冲并移动了3m 。试求反冲弹簧的劲度系数和阻尼减震器提供临界阻尼时的阻力系数。

解:已知 m=4536kg ,v 0=10m/s ,A=3m 反冲时,反射架动能转换成弹簧弹性势能

22

01122

mv kA =

00103v A ω=== 2

2022

45361050400(N/m)3

mv k A ?=== 临界阻尼时0βω=,由m

β=

有,阻力系数:

)kg/s (302403

10

4536220=?

?==ωλm 5-21 已知地壳平均密度约3

3

2.810kg m ?,地震波的纵波波速约×103m ,地震波的

横波波速约×103m s ,计算地壳的杨氏模量与切变模量。

解:由ρ

Y

U =

纵得,)J (kg/m 1047.82

102纵??==ρU Y

由ρ

G

U =

横得,)J kg/m (1043.32

102横??==ρU G

5-22 已知空气中的声速为344m s ,一声波在空气中波长是0.671m ,当它传入水中时,波长变为2.83m ,求声波在水中的传播速度。

解:

5-23 有一沿x 轴正方向传播的平面简谐横波,波速u =m s ,波长λ = m,振幅A = m,若从坐标原点O 处的质元恰在平衡位置并向y 轴负方向运动时开始计时,试求

(1) 此平面波的波函数;

(2) x 1=m处质元的振动方程及该质元的初相位。

5-24 有一沿x 轴正向传播的平面简谐波,波速为2m ,原点处质元的振动方程为0.6cos π(SI)y t

=,试求

(1) 此波的波长; (2) 波函数;

(3) 同一质元在1秒末和2秒末这两个时刻的相位差; (4) x A =1.0m 和x B =1.5m 处两质元在同一时刻的相位差。

5-25 振动频率为500Hz ν=的波源发出一列平面简谐波,波速350m u =,试求 (1) 相位差为π3的两点相距多远;

(2) 在某点,时间间隔为310s t -?=的两个状态的相位差是多少?

5-26 有一波长为λ的平面简谐波,它在a 点引起的振动的振动方程为

cos()y A t ω?=+,试分别在如图所示四种坐标选择情况下,写出此简谐波的波函数。

5-27 图示为t = 0时刻的平面简谐波的波形,求 (1) 原点的振动方程; (2) 波函数; (3) P 点的振动方程; (4) a 、b 两点的运动方向。

5-28 一列平面简谐波沿x 轴正方向传播,波速为u ,波源的振动曲线如图所示。 (1) 画出t = T 时刻的波形曲线,写出波函数; (2) 画出4

x λ=处质元的振动曲线。

5-29 已知一平面简谐波的波函数cos

π(4+2)

(SI)y A t x =,

(1)写出t = 时各波峰位置的坐标表示式,计算此时离原点最近的一个波峰的位置,该波峰何时通过坐标原点?

(2)画出t = 时的波形图。

5-30 图示为0=t 时刻沿x 轴正方向传播的平面简谐波的波形图,其中振幅A 、波长?、波速u 均为

已知。

(1) 求原点处质元的初相位0?; (2) 写出P 处质元的振动方程; (3) 求P 、Q 两点相位差。

5-31 一线状波源发射柱面波,设介质是不吸收能量的各向同性均匀介质。求波的强度和振幅与离波源距离的关系。

习题5-28 图

习题5-27 图

习题5-26 图

习题5-30 图

5-32 设简谐波在直径 d = m的圆柱形管内的空气介质中传播,波的强度I = ×10-22

W m ,波速为u = 250m s ,频率ν = 300Hz ,试计算

(1) 波的平均能量密度和最大能量密度各是多少? (2) 相距一个波长的两个波面之间平均含有多少能量?

5-33 一个声源向各个方向均匀地发射总功率为10W 的声波,求距声源多远处,声强级为100 dB 。

5-34 设正常谈话的声强621.010W m I -=?,响雷的声强20.1W m I '=,它们的声强级各是多少?

5-35 纸盆半径R =0.1m 的扬声器,辐射出频率ν= 103Hz 、功率P = 40W 的声波。设空气密度ρ = 3

kg m ,声速u =344m s ,不计空气对声波的吸收,求纸盆的振幅。

5-36 P 、Q 为两个以同相位、同频率、同振幅振动的相干波源,它们在同一介质中传播,设波的频率为ν、波长为λ,P 、Q 间距离为3λ/2,R 为PQ 连线上P 、Q 两点外侧的任意一点,求

(1)自P 发出的波在R 点的振动与自Q 发出的波在R 点的振动的位相差; (2)R 点合振动的振幅。

5-37 一弦的振动方程为0.02cos0.16cos750(SI)y x t

=,求

(1)合成此振动的两个分振动的振幅及波速为多少? (2)两个相邻节点间的距离为多大?

(3)t =×10-3s 时,位于x =5.0cm 处的质元的速度为多少? 5-38 如图所示,一列振幅为A 、频率为ν平面简谐波,沿x 轴正方向传播,BC 为波密介质的反射

面,波在P 点反射。已知34OP λ=,

6DP λ=,在

0=t 时,O 处质元经过平衡位置向负

方向运动。求入

射波与反射波在D 点处叠加的合振动

方程。

5-39 速度为20m s 的火车A 和速度也为20m s 的火车B 相向行驶,火车A 以频率ν = 500Hz 鸣汽笛,试就下列两种情况求火车B 中乘客听到的声音的频率。(设声速为340m s )

(1) A 、B 相遇之前; (2) A 、B 相遇之后。

习题5-38 图

5-40一人造地球卫星发出ν= 108Hz的微波信号,卫星探测器在某一时刻检测到由地面

?= 2400Hz的拍,求此时卫星沿地面站方站反射回的信号与卫星发出的信号产生了拍频ν

向的分速度。

5-41从远方某一星体发射的光谱,经研究确认其中有一组氢原子的巴尔末线系。经测定,地球上氢原子的434nm谱线与该星体上氢原子的589nm谱线属于同一谱线。试由此推断该星体是正在远离还是正在接近地球?它相对地球的运动速度是多大?

大学物理振动与波练习题与答案

第二章 振动与波习题答案 12、一放置在水平桌面上的弹簧振子,振幅2 10 0.2-?=A 米,周期50.0=T 秒,当0 =t 时 (1) 物体在正方向的端点; (2) 物体在负方向的端点; (3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。 求以上各种情况的谐振动方程。 【解】:π=π = ω45 .02 )m () t 4cos(02.0x ?+π=, )s /m ()2 t 4cos(08.0v π+?+ππ= (1) 01)cos(=?=?,, )m () t 4cos(02.0x π= (2) π=?-=?,1)cos(, )m () t 4cos(02.0x π+π= (3) 2 1)2cos(π=?-=π+?, , )m () 2 t 4cos(02.0x π+π= (4) 21)2cos(π-=?=π+?, , )m () 2 t 4cos(02.0x π-π= 13、已知一个谐振动的振幅02.0=A 米,园频率πω 4=弧度/秒, 初相2/π=?。 (1) 写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。 【解】:)m () 2 t 4cos(02.0x π+π= , )(2 12T 秒=ωπ= 15、图中两条曲线表示两个谐振动 (1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。 虚线: )2 t 2 1cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米 16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为 t 3cos 4x 1= 厘米 )3 2t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。 【解】:)cm () 6 t 3cos(32x π+= 17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。 (1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。 【解】: 18、波源作谐振动,其振动方程为(m ))240(1043t cos y π-?=,它所形成的波以30m/s 的速度沿一直线传播。

振动与波动习题与答案

振动与波动习题与答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π = 2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

振动、波动部分答案(新)

大学物理学——振动和波 振 动 班级 学号 姓名 成绩 内容提要 1、简谐振动的三个判据 (1);(2);(3) 2、描述简谐振动的特征量: A 、T 、γ;T 1= γ,πγπω22== T 3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法 4、简谐振动的速度和加速度:)2 cos()sin(v 00π ?ω?ωω+ +=+-== t v t A dt dx m ; a= )()(π?ω?ωω±+=+=0m 02 2 2 t a t cos -dt x d A 5、振动的相位随时间变化的关系: 6、简谐振动实例 弹簧振子:, 单摆小角度振动:, 复摆: 0mgh dt d 2 2 =+ θθJ ,T=2mgh J π 7、简谐振动的能量:2 22 m 21k 2 1A A E ω== 系统的动能为:)(?ωω+==t sin m 21mv 212 2 2 2 A E K ; 系统的势能为:)?ω+==t (cos k 2 1kx 2 122 2 A E P 8、两个简谐振动的合成 (1)两个同方向同频率的简谐振动的合成

合振动方程为:)(?ω+=t cos x A 其中,其中;。 *(2) 两个同方向不同频率简谐振动的合成 拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ= *(3)两个相互垂直简谐振动的合成 合振动方程: )(122 122 122 22 1 2-sin )(cos xy 2y x ????=-- + A A A A ,为椭圆方程。 练习一 一、 填空题 1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。 2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动 的三个特征量为:A = ; =ω ;=? 。 3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。已 知细棒绕过其一端的轴的转动惯量J =3/2 ml ,此摆作微小振动的周期 为 。 4.试在下图中画出谐振子的动能、振动势能和机械能随时间而变化的三条曲线(设t =0时物体经过平衡位置)。 5.图中所示为两个简谐振动曲线。若以余弦函数表示这两个振动的合成结果,则合振动的方程为 。

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

统计学原理计算题试题及答案(最新整理)

电大专科统计学原理计算题试题及答案 计算题 1某单位40名职工业务考核成绩分别为 68 89 8884 86 87 75 73 72 68 75 82 9758 81 54 79 76 95 76 71 60 9065 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81 单位规定:60分以下为不及格,60 — 70分为及格,70 — 80分为中,80 — 90 分为良,90 — 100分为优。 要求: (1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法; (3)分析本单位职工业务考核情况。 解:(1) (2)分组标志为”成绩",其类型为" 的开放组距式分组,组限表示方法是重叠组限; (3)本单位的职工考核成绩的分布呈两头小,中间大的”正态分布”的形态, 说明大多数职工对业务知识的掌握达到了该单位的要求。 2.2004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下 价格(元/斤) 甲市场成交额(万元) 乙市场成交量(万斤) 品种

试问哪一个市场农产品的平均价格较高?并说明原因 解:先分别计算两个市场的平均价格如下: 甲市场平均价格 X m 5.5 1.375 (元 /斤) m/x 4 乙市场平均价格 X xf 5.3 1.325 (元 / 斤) f 4 说明:两个市场销售单价是相同的,销售总量也是相同的,影响到两个市场 平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同 3. 某车间有甲、乙两个生产组,甲组平均每个工人的日产量为 36件, 标准差为9.6件;乙组工人日产量资料如下:

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和 T 2。将它们拿到月球上去,相应的周期分别为'T 1和'T 2。则有 ( B ) A .'T T >11且 'T T >22 B .'T T =11且 'T T >22 C .'T T <11且 'T T <22 D .'T T =11且 'T T =22 2.一物体作简谐振动,振动方程为cos 4x A t ?? =+ ?? ? πω,在4 T t = (T 为周期)时刻,物体的加速度为 ( B ) A. 2ω 2ω C. 2ω 2ω 3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D ) A A A A A A C) A x x A A x A B C D 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 )cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二 个质点正在最大正位移处.则第二个质点的振动方程为 ( B ) A. )π21cos( 2++=αωt A x B. )π21 cos(2-+=αωt A x . C. )π2 3 cos( 2-+=αωt A x D. )cos(2π++=αωt A x .

5.波源作简谐运动,其运动方程为t y π240cos 10 0.43 -?=,式中y 的单位为m ,t 的单 位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A ) A .m 25.0 B .m 60.0 C .m 50.0 D .m 32.0 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: ( B ) A .cos x t ππ??=+ ???2 2233 B .cos x t ππ??=+ ??? 42233 C .cos x t ππ??=- ???22233 D .cos x t ππ??=- ??? 42233 二. 填空题(每空2分) 1. 简谐运动方程为)4 20cos(1.0π π+ =t y (t 以s 计,y 以m 计) ,则其振幅为 0.1 m,周期为 0.1 s ;当t=2s 时位移的大小为205.0m. 2.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动 的初相为4 0π ?=,振动方程为_)4 cos(2π π+ =t y 。 3. 平面简谐波的波动方程为()x t y ππ24cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s ,则该波的振幅A= 0.08 ,波长=λ 1 ,离波源0.80m 及0.30m 两处的相位差=?? -Л 。 4. 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为___0 ___,速度为:πω3=A . t

统计学计算题(有答案)

1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙 班的成绩分组资料如下: 按成绩分组学生人数(人) 60以下 4 60~70 10 70~80 25 80~90 14 90~100 2 计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性? 2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产 量资料如下: 日产量(件)工人数(人) 15 15 25 38 35 34 45 13 要求:(1)计算乙组平均每个工人的日产量和标准差 (2)比较甲乙两生产小组的日产量更有代表性 3 月份 1 2 3 4 5 6 8 11 12

库存额60 55 48 43 40 50 45 60 68 又知1月1日商品库存额为63万元,试计算上半年,下半年和全年的平均商品库存额。 4 品名单位销售额2002比2001销售量增长(%) 2001 2002 电视台5000 8880 23 自行车辆4500 4200 -7 合计9500 13080 (2)计算由于销售量变动消费者增加或减少的支出金额 5、某商店两种商品的销售额和销售价格的变化情况如下:(万元) 商品单位销售额1996比1995年销售价格提高(%) 1995 1996 甲米120 130 10 乙件40 36 12 要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额

6、某企业上半年产品量和单位成本资料如下: 要求:(1)计算相关系数, 说明两个变量相关的密切程度 (2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? 月份 产量(千克) 单位成本(元) 1 2 73 2 3 72 3 4 71 4 3 73 5 4 69 6 5 68

大学物理习题解答8第八章振动与波动(1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 222d ()d cos x a A t t ωω?==-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 212 k E mv = · 弹簧的势能为 212 p E kx = · 振子总能量为 P 22222211 ()+()221=2sin cos k E E E m A t kA t kA ωω?ω?=+= ++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 22 2d d 20d d x x x t t βω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 22 P 2d d 2d d cos x x F x t t t m βωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 221112212()cos A A A A A ??=++-

振动和波动计算题及答案

振动和波动计算题 1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置 6 cm 处速度是24 cm/s ,求 (1)周期T; (2)当速度是12 cm/s 时的位移. 解:设振动方程为x A c os t ,则v A sin t (1) 在x = 6 cm,v = 24 cm/s 状态下有 6 12 cos t 24 12 sin t 解得4/ 3,∴T 2 / 3 / 2s 2.72 s 2 分 (2) 设对应于v =12 cm/s 的时刻为t2,则由 v A sin t 得12 12 (4/ 3) sin t , 2 解上式得sin t 0.1875 2 2 相应的位移为x cos 1 sin 10.8 cm 3 分 A t2 A t 2 2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为 4 kg 的物体悬挂在该弹簧的下端并 使之静止,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 物体的振动方程; (2) 物体在平衡位置上方 5 cm 时弹簧对物体的拉力; (3) 物体从第一次越过平衡位置时刻起到它运动到上方 5 cm 处所需要的最短时间. 解:k = f/x =200 N/m , k / m 7.07 rad/s 2 分 (1) 选平衡位置为原点,x 轴指向下方(如图所示),t = 0 时,x0 = 10A c os ,v0 = 0 = - A sin . 解以上二式得 A = 10 cm,= 0. 2 分 ∴振动方程x = 0.1 cos(7.07t) (SI) 1 分 (2) 物体在平衡位置上方 5 cm 时,弹簧对物体的拉力 f = m( g- a ),而 a = - 2x = 2.5 m/s2 ∴ f =4 (9.8-2.5) N= 29.2 N 3 分 5 c m O (3) 设t1 时刻物体在平衡位置,此时x = 0,即 0 = Acos t1 或cos t1 = 0.

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

统计学计算题和标准答案

企业型号价格(元/台)甲专卖店销售额(万元)乙专卖店销售量(台) A 2500 50.0 340 B 3400 115.6 260 C 4100 106.6 200 合计—272.2 — 要求:分别计算两个专卖店空调的平均销售价格,并分析平均价格差异的原因。 答案: 2某企业甲、乙两个生产车间,甲车间平均每个工人日加工零件数为65件,标准差为11件;乙车间工人日加工零件数资料如下表。试计算乙车间工人加工零件的平均数和标准差,并比较甲、乙两个生产车间哪个车间的平均日加工零件数更有代表性? 日加工零件数(件)60以下60—70 70—80 80—90 90—100 工人数(人) 5 9 12 14 10 答案: 三、某地区2009—2014年GDP资料如下表,要求: 1、计算2009—2014年GDP的年平均增长量; 2、计算2009—2014年GDP的年平均发展水平; 3、计算2009—2014年GDP的年平均发展速度和平均增长速度。

答案: x-== 年平均增长速度:100%100%22.9% 试用最小平方法配合销售额的直线趋势方程,并预测2016年的销售额将达到什么水平? 答案:2010年—2014年的数据有5项,是奇数,所以取中间为0,以1递增。设定x为-2、-1、0、1、2、 年份/销售额(y)x xy x2 2010 320 -2 -640 4 2011 332 -1 -332 1 2012 340 0 0 0 2013 356 1 356 1 2014 380 2 760 4 合计1728 0 144 10 b=∑xy/∑x2=144/10=14.4 a=∑y/n=1728/5=345.6 y=345.6+14.4x 预测2016年,按照设定的方法,到2016年应该是5 y=345.6+14.4*5=417.6元 五、某企业生产三种产品,2013年三种产品的总生产成本分别为20万元,45万元,35万元,2014年同2013年相比,三种产品的总生产成本分别增长8%,10%,6%,产量分别增长12%,6%,4%。试计算: 1、三种产品的总生产成本增长的百分比及增加的绝对额; 2、三种产品的总产量增长的百分比,及由于产量增长而增加的总生产成本; 3、利用指数体系推算单位产品成本增长的百分比。 试计算: 1、三种商品的销售额总指数; 2、三种商品的价格总指数和销售量总指数;

物理学下册波动作业答案

一平面简谐波沿Ox轴正方向传播,t= 0时刻的波形图如图所示,则P处介质质点的振动方程是() } A.(SI) B.(SI) C.(SI) D.(SI) 答案:A 2.如图所示,S1和S2为两相干波源,它们的振动方向均垂直于图面,发出波长为的简谐波,P点是两列波相遇区域中的一点,已知,,两列波在P点发生相消干涉.若S1的振动方程为,则S2的振动方程为() } A. B. C. D. 答案:D 3.两相干波源S1和S2相距,(为波长),S1的相位比S2的相位超前,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的相位差是() } B. C. D. 答案:C 4.在弦线上有一简谐波,其表达式为 (SI) 为了在此弦线上形成驻波,并且在x= 0处为一波腹,此弦线上还应有一简 谐波,其表达式为() } A.(SI) B.(SI) C.(SI) D.(SI) 答案:D 5.沿着相反方向传播的两列相干波,其表达式为 和. 在叠加后形成的驻波中,各处简谐振动的振幅是() } C. D. 答案:D 6.{ 一平面余弦波在t= 0时刻的波形曲线如图所示,则O点的振动初相为() } B. C. D.(或) 答案:D 7.{ 如图所示,有一平面简谐波沿x轴负方向传播,坐标原点O的振动规律为),则B点的振动方程为() } A. B.

答案:D 8.{ 如图,一平面简谐波以波速u沿x轴正方向传播,O为坐标原点.已知P点的振动方程为,则() } 点的振动方程为 B.波的表达式为 C.波的表达式为 点的振动方程为 答案:C 9.一声波在空气中的波长是 m,传播速度是340 m/s,当它进入另一介质时,波长变成了 m,它在该介质中传播速度为______________. 答案:503 m/s 10.一平面简谐波的表达式为(SI),其角频率=_____________,波速u=_______________,波长= _________________.答案:125 rad/s|338 m/s | m 11.图为t=T/ 4 时一平面简谐波的波形曲线,则其波的表达式为________________________. 答案:(SI) 12.一平面简谐波沿Ox轴正方向传播,波长为.若如图P1点处质点的振动方程为,则P2点处质点的振动方程为 _________________________________;与P1点处质点振动状态相同的那些点的位置是___________________________. 答案:|(k=±1,±2,…) 13.如图所示,一平面简谐波沿Ox轴负方向传播,波长为,若P处质点的振动方程是,则该波的表达式是 _______________________________;P处质点____________________________时刻的振动状态与O处质点t1时刻的振动状态相同. 答案:|,k= 0,±1,±2,…[只写也可以] 14.如图所示,波源S1和S2发出的波在P点相遇,P点距波源S1和S2的距离分别为和,为两列波在介质中的波长,若P点的合振幅总是极大值,则两波在P点的振动频率___________,波源S1的相位比S2的相位领先_______. 答案:相同.|. 15.在固定端x= 0处反射的反射波表达式是.设反射波无能量损失,那么入射波的表达式是y1= ________________________;形成的驻波的表达式是y= ________________________________________. 答案:| 16.如果入射波的表达式是,在x= 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y2= _______________________________;在x=处质点合振动的振幅等于______________________. 答案:|A 17.如图,一平面波在介质中以波速u=20 m/s沿x轴负方向传播,已知A点的振动方程为(SI). (1) 以A点为坐标原点写出波的表达式; (2) 以距A点5 m处的B点为坐标原点,写出波的表达式. 答案: 解:(1)坐标为x点的振动相位为 2分 波的表达式为(SI) 2分 (2)以B点为坐标原点,则坐标为x点的振动相位为 (SI) 2分 波的表达式为(SI) 2分 18.如图所示,两相干波源在x轴上的位置为S1和S2,其间距离为d=30 m,S1位于坐标原点O.设波只沿x轴正负方向传播,单独传播时强度保持不变.x1=9 m和x2=12 m处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差. 答案:{ 解:设S1和S2的振动相位分别为和.在x1点两波引起的振动相位差 即① 2分 在x2点两波引起的振动相位差 即② 3分

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

统计学计算例题及答案

计算题例题及答案: 1、某校社会学专业同学统计课成绩如下表所示。 社会学专业同学统计课成绩表 学号成绩学号成绩学号成绩101023 76 101037 75 101052 70 101024 91 101038 70 101053 88 101025 87 101039 76 101054 93 101026 78 101040 90 101055 62 101027 85 101041 76 101056 95 101028 96 101042 86 101057 95 101029 87 101043 97 101058 66 101030 86 101044 93 101059 82 101031 90 101045 92 101060 79 101032 91 101046 82 101061 76 101033 80 101047 80 101062 76 101034 81 101048 90 101063 68 101035 80 101049 88 101064 94 101036 83 101050 77 101065 83 要求: (1)对考试成绩按由低到高进行排序,求出众数、中位数和平均数。

(2)对考试成绩进行适当分组,编制频数分布表,并计算累计频数和累计频率。答案: (1)考试成绩由低到高排序: 62,66,68,70,70,75,76,76,76,76,76,77,78,79, 80,80,80,81,82,82,83,83,85,86,86,87,87,88, 88,90,90,90,91,91,92,93,93,94,95,95,96,97, 众数:76 中位数:83 平均数: =(62+66+……+96+97)÷42 =3490÷42 =83.095 (2) 按成绩 分组频数频率(%) 向上累积向下累积 频数频率(%) 频数频率(%) 60-69 3 7.143 3 7.143 42 100.000 70-79 11 26.190 14 33.333 39 92.857 80-89 15 35.714 29 69.048 28 66.667

机械振动与机械波 计算题

机械振动与机械波(计算题) 1.(16分)如图甲是某简谐横波在t=0时刻的图像,如图乙是A 点的振动图像,试求: (1)A 点的振幅多大、此时振动的方向如何? (2)该波的波长和振动频率。 (3)该波的波速的大小及方向如何? 2.(10分)如图1所示,一列简谐横波沿x 轴正方向传播,波速为v = 80m/s 。P 、S 、Q 是波传播方向上的三个质点,已知距离PS = 0.4m 、SQ = 0.2m 。在t = 0的时刻,波源P 从平衡位置(x = 0,y = 0)处开始向上振动(y 轴正方向),振幅为15cm ,振动周期T = 0.01s 。 (1)求这列简谐波的波长λ ; (2)在图2中画出质点P 的位移—时间图象(在图中标出横轴的标度,至少画出一个周期); (3)在图3中画出波传到Q 点时的波形图(在图中标出横轴的标度)。 v 图1 x - -×甲 乙

3.(9分) (1)下列说法中正确的是________. A .水面上的油膜在阳光照射下会呈现彩色,这是由光的衍射造成的 B .根据麦克斯韦的电磁场理论可知,变化的电场周围一定可以产生变化的磁场 C .狭义相对论认为:不论光源与观察者做怎样的相对运动,光速都是一样的 D .在“探究单摆周期与摆长的关系”的实验中,测量单摆周期应该从小球经过最大位移处开始计时,以减小实验误差 (2)如图9所示,一个半径为R 的14 透明球体放置在水平面上,一束蓝光从A 点沿水平方向射入球体后经B 点射出,最后射到水平面上的C 点.已知OA = 2 R ,该球 体对蓝光的折射率为.则它从球面射出时的出射角β=________;若换用一束红光同样从A 点射向该球体,则它从球体射出后落到水平面上形成的光点与C 点相比,位置________(填“偏左”、“偏右”或“不变”). (3)一列简谐横波沿x 轴正方向传播,周期为2 s ,t =0时刻的波形如图10所示.该列波的波速是________m/s ;质点a 平衡位置的坐标x a =2.5 m ,再经________s 它第一次经过平衡位置向y 轴正方向运动. 4.如图12-2-12甲所示,在某介质中波源A 、B 相距d =20 m ,t =0时两者开始上下振动,A 只振动了半个周期,B 连续振动,所形成的波的传播速度都为v =1.0 m/s ,开始阶段两波源的振动图象如图乙所示. (1)定性画出t =14.3 s 时A 波所达位置一定区域内的实际波形; (2)求时间t =16 s 内从A 发出的半波前进过程中所遇到的波峰个数. y /c t/ × 0 15 -15 图2 y /c x/m 0 15 -15 图3

第4章_振动与波动(1)

第4章 振动与波动题目无答案 一、选择题 1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F = (B) abx F -= (C) b ax F +-= (D) a bx F /-= 2. 在下列所述的各种物体运动中, 可视为简谐振动的是 [ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放 (B) 将弹簧振子置于光滑斜面上, 让其振动 (C) 从光滑的半圆弧槽的边缘释放一个小滑块 (D) 拍皮球时球的运动 3. 欲使弹簧振子系统的振动是简谐振动, 下列条件中不满足简谐振动条件的是 [ ] (A) 摩擦阻力及其它阻力略去不计 (B) 弹簧本身的质量略去不计 (C) 振子的质量略去不计 (D) 弹簧的形变在弹性限度内 4. 当用正弦函数或余弦函数形式表示同一个简谐振动时, 振动方程中不同的量是 [ ] (A) 振幅 (B) 角频率 (C) 初相位 (D) 振幅、圆频率和初相位 5. 如T4-1-5图所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 3T (D) 6. 三只相同的弹簧(质量忽略不计)都一端固定, 另一端连接质 量为m 的物体, 但放置情况不同.如T4-1-6图所示,其中一个平放, 一个斜放, 另一个竖直放.如果让它们振动起来, 则三者的 [ ] (A) 周期和平衡位置都不相同 (B) 周期和平衡位置都相同 (C) 周期相同, 平衡位置不同 (D) 周期不同, 平衡位置相同 7. 如T4-1-7图所示,升降机中有一个做谐振动的单摆, 当升降机静止时, 其振动周期为2秒; 当升降机以加速度上升时, 升降机中的观察者观察到其单摆的振动周期与原来的振动周期相比,将 [ ] (A) 增大 (B ) 不变 (C) 减小 (D) 不能确定 T 4-1-6图 T 4-1-7图 T 4-1-5图

统计学原理计算题及参考答案

"

}

| 1、某生产车间30名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 34 47 33 43 38 42 32 34 38 46 43 39 35 要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50,计算各组的频数和频率,编制次数分布表; (2) 根据整理表计算工人平均日产零件数。(20分) 解:(1)根据以上资料编制次数分布表如下:

则工人平均劳动生产率为: 17.3830 1145 == = ∑∑f xf x # 要求:(1)建立以产量为自变量的直线回归方程,指出产量每增加1000件时单位成本的平均变动是多少 、 (2)当产量为10000件时,预测单位成本为多少元(15分) x bx a y n x b n y a x x n y x xy n b c 5.28080 10703 125.232105.2615 1441502520250512503210128353)(2 2 2-=+==+=?+=-=-=-=--=-??-?= --= ∑∑∑∑∑∑∑因为,5.2-=b ,所以产量每增加1000件时, 即x 增加1单位时,单位成本的平均变动是:平均减少元 (2)当产量为10000件时,即10=x 时,单位成本为 — 55105.280=?-=c y 元

>课程的测试,甲班平均成绩为81分,标准差为分;乙班的成绩分组资料如下: 计算乙班学生的平均成绩,并比较甲.乙两班哪个班的平均成绩更有代表性 解:乙班学生的平均成绩∑∑=f xf x ,所需的计算数据见下表:

机械振动与机械波计算题.docx

叮叮小文库 机械振动与机械波 (计算题 ) 1. (16 分) 如图甲是某简谐横波在 t=0 时刻的图像,如图乙是 A 点的振动图像,试求: ( 1) A 点的振幅多大、此时振动的方向如何? ( 2)该波的波长和振动频率。 ( 3)该波的波速的大小及方向如何? y /cm y /cm 5 5 0 A 0 4 t / × 10-2 s 26 10 x/m -5 2 -5 甲 乙 2.( 10 分)如图 1 所示,一列简谐横波沿 x 轴正方向传播,波速为 v = 80m/s 。 P 、S 、 Q 是波传播方向上的三个质点,已知距离 PS = 0.4m 、 SQ = 0.2m 。在 t = 0 的时刻,波 源 P 从平衡位置( x = 0 , y = 0 )处开始向上振动( y 轴正方向),振幅为 15cm ,振动周期 T = 0.01s 。 v P S Q x 图 1 ( 1)求这列简谐波的波长 λ ; ( 2)在图 2 中画出质点 P 的位移—时间图象(在图中标出横轴的标度,至少画出一个周期); ( 3)在图 3 中画出波传到 Q 点时的波形图(在图中标出横轴的标度) 。 y/c y/c 15 15 t/ × x/ m - 15 -15 图 2 图 3 3. (9 分 ) (1)下列说法中正确的是 ________. A .水面上的油膜在阳光照射下会呈现彩色,这是由光的衍射造成的 B .根据麦克斯韦的电磁场理论可知,变化的电场周围一定可以产生变化的磁场 C .狭义相对论认为:不论光源与观察者做怎样的相对运动,光速都是一样的 D .在“探究单摆周期与摆长的关系”的实验中,测量单摆周期应该从小球经过最大位 移处开始计时,以减小实验误差 (2) 如图 9 所示,一个半径为 R 的 1 透明球体放置在水平面上,一束蓝光从 A 点沿水平 4

相关文档
最新文档